Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
248149f4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
248149f4
编写于
7月 21, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add depthwiseconv test and fix the little bug of the convOpTest
上级
5b07d4e0
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
202 addition
and
147 deletion
+202
-147
paddle/function/ConvOpTest.cpp
paddle/function/ConvOpTest.cpp
+202
-147
未找到文件。
paddle/function/ConvOpTest.cpp
浏览文件 @
248149f4
...
@@ -38,76 +38,76 @@ public:
...
@@ -38,76 +38,76 @@ public:
for
(
size_t
filterSize
:
{
1
,
3
,
5
})
{
for
(
size_t
filterSize
:
{
1
,
3
,
5
})
{
for
(
size_t
inputChannels
:
{
3
,
64
})
{
for
(
size_t
inputChannels
:
{
3
,
64
})
{
for
(
size_t
outputChannels
:
{
3
,
64
})
{
for
(
size_t
outputChannels
:
{
3
,
64
})
{
for
(
size_t
groups
:
{
1
,
3
,
64
})
{
if
(
inputChannels
>
outputChannels
)
break
;
if
(
inputChannels
>
outputChannels
)
break
;
size_t
groups
;
if
(
groups
!=
1
&&
if
(
!
useGroups
)
{
(
inputChannels
!=
groups
||
outputChannels
%
groups
!=
0
))
groups
=
1
;
continue
;
}
else
{
if
(
!
useGroups
)
groups
=
1
;
if
(
outputChannels
%
inputChannels
!=
0
)
continue
;
groups
=
inputChannels
;
for
(
size_t
stride
:
{
1
,
2
})
{
}
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
for
(
size_t
stride
:
{
1
,
2
})
{
size_t
outputSize
=
for
(
size_t
padding
:
{
0
,
1
})
{
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
if
(
padding
>=
filterSize
)
break
;
stride
;
size_t
outputSize
=
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
<<
" inputChannels="
<<
inputChannels
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputHeight="
<<
inputSize
<<
" inputChannels="
<<
inputChannels
<<
" inputWidth
="
<<
inputSize
<<
" inputHeight
="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" inputWidth="
<<
inputSize
<<
" filterHeight="
<<
filterSize
<<
" outputChannels="
<<
outputChannels
<<
" filterWidth
="
<<
filterSize
<<
" filterHeight
="
<<
filterSize
<<
" outputHeight="
<<
output
Size
<<
" filterWidth="
<<
filter
Size
<<
" outputWidth
="
<<
outputSize
<<
" outputHeight
="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
Compare2Function
<
DType1
,
DType2
>
test
(
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
conv1
,
Compare2Function
<
DType1
,
DType2
>
test
(
conv2
,
conv1
,
FuncConfig
()
conv2
,
.
set
(
"paddings"
,
paddings
)
FuncConfig
(
)
.
set
(
"strides"
,
stride
s
)
.
set
(
"paddings"
,
padding
s
)
.
set
(
"groups"
,
group
s
)
.
set
(
"strides"
,
stride
s
)
.
set
(
"algo"
,
algo
));
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
;
if
(
groups
>
1
)
TensorShape
filter
;
filter
=
TensorShape
({
groups
,
if
(
groups
>
1
)
outputChannels
/
groups
,
filter
=
TensorShape
({
groups
,
in
putChannels
/
groups
,
out
putChannels
/
groups
,
filterSize
,
inputChannels
/
groups
,
filterSize
});
filterSize
,
else
filterSize
});
filter
=
TensorShape
({
outputChannels
,
else
in
putChannels
,
filter
=
TensorShape
({
out
putChannels
,
filterSize
,
inputChannels
,
filterSize
});
filterSize
,
TensorShape
output
{
filterSize
});
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
(
);
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
)
);
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
run
();
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
ADD_TO
);
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
),
test
.
run
(
);
ADD_TO
);
}
test
.
run
();
}
}
}
}
}
}
...
@@ -136,77 +136,78 @@ public:
...
@@ -136,77 +136,78 @@ public:
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
inputChannels
:
{
7
})
{
for
(
size_t
inputChannels
:
{
7
})
{
for
(
size_t
outputChannels
:
{
7
})
{
for
(
size_t
outputChannels
:
{
7
})
{
for
(
size_t
groups
:
{
1
,
7
})
{
size_t
groups
;
if
(
groups
!=
1
&&
(
inputChannels
!=
groups
||
if
(
!
useGroups
)
{
outputChannels
%
groups
!=
0
))
groups
=
1
;
continue
;
}
else
{
if
(
!
useGroups
)
groups
=
1
;
if
(
outputChannels
%
inputChannels
!=
0
)
continue
;
groups
=
inputChannels
;
size_t
stride
=
1
;
}
size_t
padding
=
0
;
size_t
outputHeight
=
size_t
stride
=
1
;
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
size_t
padding
=
0
;
stride
;
size_t
outputHeight
=
size_t
outputWidth
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
stride
;
size_t
outputWidth
=
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
<<
" inputChannels="
<<
inputChannels
stride
;
<<
" inputHeight="
<<
inputHeight
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputWidth="
<<
inputWidth
<<
" inputChannels="
<<
inputChannels
<<
" outputChannels="
<<
outputChannels
<<
" inputHeight="
<<
inputHeight
<<
" filterHeight="
<<
filterHeight
<<
" inputWidth="
<<
inputWidth
<<
" filterWidth="
<<
filterWidth
<<
" outputChannels="
<<
outputChannels
<<
" outputHeight="
<<
outputHeight
<<
" filterHeight="
<<
filterHeight
<<
" outputWidth="
<<
outputWidth
<<
" filterWidth="
<<
filterWidth
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
<<
" outputHeight="
<<
outputHeight
<<
" outputWidth="
<<
outputWidth
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
conv1
,
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
conv2
,
Compare2Function
<
DType1
,
DType2
>
test
(
FuncConfig
()
conv1
,
.
set
(
"paddings"
,
paddings
)
conv2
,
.
set
(
"strides"
,
strides
)
FuncConfig
()
.
set
(
"groups"
,
groups
)
.
set
(
"paddings"
,
paddings
)
.
set
(
"algo"
,
algo
));
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
TensorShape
input
{
.
set
(
"algo"
,
algo
));
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
};
TensorShape
input
{
TensorShape
filter
;
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
};
if
(
groups
>
1
)
filter
=
TensorShape
({
groups
,
TensorShape
filter
;
outputChannels
/
groups
,
if
(
groups
>
1
)
inputChannels
/
groups
,
filter
=
TensorShape
({
groups
,
filterHeight
,
outputChannels
/
groups
,
filterWidth
});
inputChannels
/
groups
,
else
filterHeight
,
filter
=
TensorShape
({
outputChannels
,
filterWidth
});
inputChannels
,
else
filterHeight
,
filter
=
TensorShape
({
outputChannels
,
filterWidth
});
inputChannels
,
TensorShape
output
{
filterHeight
,
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
};
filterWidth
});
TensorShape
output
{
if
(
type
==
kForwardTest
)
{
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
};
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
if
(
type
==
kForwardTest
)
{
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
run
();
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
ADD_TO
);
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
();
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
run
();
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
run
();
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
),
}
ADD_TO
);
test
.
run
();
}
}
}
}
}
}
...
@@ -218,6 +219,8 @@ public:
...
@@ -218,6 +219,8 @@ public:
}
}
};
};
// ======Start Convolution TEST======
TEST
(
Forward
,
GEMM
)
{
TEST
(
Forward
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test
(
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
kForwardTest
,
false
);
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
kForwardTest
,
false
);
...
@@ -228,24 +231,76 @@ TEST(Forward, GEMM) {
...
@@ -228,24 +231,76 @@ TEST(Forward, GEMM) {
#ifndef PADDLE_ONLY_CPU
#ifndef PADDLE_ONLY_CPU
TEST
(
Forward
,
GEMM2
)
{
TEST
(
Forward
,
GEMM2
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
);
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
,
false
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
);
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
,
false
);
}
}
TEST
(
BackwardInput
,
GEMM
)
{
TEST
(
BackwardInput
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
);
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
,
false
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
);
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
,
false
);
}
}
TEST
(
BackwardFilter
,
GEMM
)
{
TEST
(
BackwardFilter
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
);
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
,
false
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
);
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
,
false
);
}
}
#endif
#endif
// ======End Convolution TEST======
// ======Start DepthwiseConvolution TEST======
// TODO(zhaolong) The depthwise convolution cpu test will be added when the cpu
// version of depthwiseConv is implemented.
#ifndef PADDLE_ONLY_CPU
TEST
(
DepthwiseConvForward
,
GEMM2
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-CPU"
,
"DepthwiseConv-GPU"
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-CPU"
,
"DepthwiseConv-GPU"
,
kForwardTest
);
}
TEST
(
DepthwiseConvBackwardInput
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradInput-CPU"
,
"DepthwiseConvGradInput-GPU"
,
kBackwardInputTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradInput-CPU"
,
"DepthwiseConvGradInput-GPU"
,
kBackwardInputTest
);
}
TEST
(
DepthwiseConvBackwardFilter
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradFilter-CPU"
,
"DepthwiseConvGradFilter-GPU"
,
kBackwardFilterTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradFilter-CPU"
,
"DepthwiseConvGradFilter-GPU"
,
kBackwardFilterTest
);
}
#endif
// ======End DepthwiseConvolution TEST======
}
// namespace paddle
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录