Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
23a69bc7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
23a69bc7
编写于
3月 31, 2022
作者:
Y
ykkk2333
提交者:
GitHub
3月 31, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update elementwise unittest style, *test=kunlun (#40779)
上级
bdef57cd
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
1429 addition
and
1883 deletion
+1429
-1883
python/paddle/fluid/tests/unittests/xpu/test_elementwise_add_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_add_op_xpu.py
+268
-477
python/paddle/fluid/tests/unittests/xpu/test_elementwise_div_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_div_op_xpu.py
+208
-223
python/paddle/fluid/tests/unittests/xpu/test_elementwise_floordiv_op_xpu.py
...d/tests/unittests/xpu/test_elementwise_floordiv_op_xpu.py
+47
-49
python/paddle/fluid/tests/unittests/xpu/test_elementwise_max_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_max_op_xpu.py
+146
-154
python/paddle/fluid/tests/unittests/xpu/test_elementwise_min_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_min_op_xpu.py
+141
-153
python/paddle/fluid/tests/unittests/xpu/test_elementwise_mul_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_mul_op_xpu.py
+204
-244
python/paddle/fluid/tests/unittests/xpu/test_elementwise_pow_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_pow_op_xpu.py
+132
-155
python/paddle/fluid/tests/unittests/xpu/test_elementwise_sub_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_sub_op_xpu.py
+156
-183
python/paddle/fluid/tests/unittests/xpu/test_top_k_v2_op_xpu.py
.../paddle/fluid/tests/unittests/xpu/test_top_k_v2_op_xpu.py
+127
-245
未找到文件。
python/paddle/fluid/tests/unittests/xpu/test_elementwise_add_op_xpu.py
浏览文件 @
23a69bc7
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/xpu/test_elementwise_div_op_xpu.py
浏览文件 @
23a69bc7
# Copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -20,231 +20,216 @@ import paddle.fluid as fluid
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
ElementwiseDivOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
dtype
=
np
.
float32
self
.
init_dtype
()
self
.
use_xpu
=
True
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.05
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
'Y'
))
def
init_dtype
(
self
):
pass
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_scalar
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
20
,
3
,
4
]).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
]).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
/
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_Vector
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_0
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
,
3
,
4
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_1
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
100
,
4
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_2
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_3
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
12
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_4
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
50
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
,
50
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_broadcast_5
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
20
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
1
,
20
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_commonuse_1
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
1
,
100
]).
astype
(
"float32"
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_commonuse_2
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
3
,
1
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
1
,
4
,
1
]).
astype
(
"float32"
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivOp_xsize_lessthan_ysize
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
10
,
12
]).
astype
(
"float32"
),
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseDivBroadcast
(
unittest
.
TestCase
):
def
test_shape_with_batch_sizes
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x_var
=
fluid
.
data
(
name
=
'x'
,
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
])
one
=
2.
out
=
one
/
x_var
exe
=
fluid
.
Executor
(
fluid
.
XPUPlace
(
0
))
x
=
np
.
random
.
uniform
(
0.1
,
0.6
,
(
1
,
3
,
32
,
32
)).
astype
(
"float32"
)
out_result
,
=
exe
.
run
(
feed
=
{
'x'
:
x
},
fetch_list
=
[
out
])
self
.
assertEqual
((
out_result
==
(
2
/
x
)).
all
(),
True
)
class
XPUTestElementwiseDivOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'elementwise_div'
self
.
use_dynamic_create_class
=
False
class
ElementwiseDivOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
dtype
=
self
.
in_type
self
.
init_dtype
()
self
.
use_xpu
=
True
self
.
init_input_output
()
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.05
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
'Y'
))
def
init_dtype
(
self
):
pass
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseDivOp_scalar
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
20
,
3
,
4
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
/
self
.
inputs
[
'Y'
]}
class
TestElementwiseDivOp_Vector
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseDivOp_broadcast_0
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
,
3
,
4
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
class
TestElementwiseDivOp_broadcast_1
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
100
,
4
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
class
TestElementwiseDivOp_broadcast_2
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
class
TestElementwiseDivOp_broadcast_3
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
12
,
5
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
))
}
class
TestElementwiseDivOp_broadcast_4
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
50
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
,
50
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseDivOp_broadcast_5
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
20
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
1
,
20
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseDivOp_commonuse_1
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
100
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
1
,
100
]).
astype
(
self
.
dtype
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseDivOp_commonuse_2
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
3
,
1
,
5
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
30
,
1
,
4
,
1
]).
astype
(
self
.
dtype
),
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseDivOp_xsize_lessthan_ysize
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
12
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
10
,
12
]).
astype
(
self
.
dtype
),
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseDivBroadcast
(
unittest
.
TestCase
):
def
test_shape_with_batch_sizes
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
()):
x_var
=
fluid
.
data
(
name
=
'x'
,
dtype
=
'float32'
,
shape
=
[
None
,
3
,
None
,
None
])
one
=
2.
out
=
one
/
x_var
exe
=
fluid
.
Executor
(
fluid
.
XPUPlace
(
0
))
x
=
np
.
random
.
uniform
(
0.1
,
0.6
,
(
1
,
3
,
32
,
32
)).
astype
(
'float32'
)
out_result
,
=
exe
.
run
(
feed
=
{
'x'
:
x
},
fetch_list
=
[
out
])
self
.
assertEqual
((
out_result
==
(
2
/
x
)).
all
(),
True
)
support_types
=
get_xpu_op_support_types
(
'elementwise_div'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestElementwiseDivOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_elementwise_floordiv_op_xpu.py
浏览文件 @
23a69bc7
# Copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -20,68 +20,66 @@ import paddle.fluid as fluid
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
import
random
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseModOp
(
XPUOpTest
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
False
class
XPUTestElementwiseModOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'elementwise_floordiv'
self
.
use_dynamic_create_class
=
False
def
setUp
(
self
):
self
.
op_type
=
"elementwise_floordiv"
self
.
dtype
=
np
.
float32
self
.
axis
=
-
1
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_kernel_type
()
self
.
init_axis
()
class
TestElementwiseModOp
(
XPUOpTest
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
False
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
setUp
(
self
):
self
.
op_type
=
"elementwise_floordiv"
self
.
dtype
=
self
.
in_type
self
.
axis
=
-
1
self
.
init_input_output
()
self
.
init_kernel_type
()
self
.
init_axis
()
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
init_input
_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0
,
10000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0
,
1000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
floor_divide
(
self
.
x
,
self
.
y
)
def
test_check
_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
init_dtype
(
self
):
pass
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0
,
10000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
1000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
floor_divide
(
self
.
x
,
self
.
y
)
def
init_axis
(
self
):
pass
def
init_axis
(
self
):
pass
class
TestElementwiseModOp_scalar
(
TestElementwiseModOp
):
def
init_input_output
(
self
):
scale_x
=
random
.
randint
(
0
,
100000
)
scale_y
=
random
.
randint
(
1
,
100000
)
self
.
x
=
(
np
.
random
.
rand
(
2
,
3
,
4
)
*
scale_x
).
astype
(
self
.
dtype
)
self
.
y
=
(
np
.
random
.
rand
(
1
)
*
scale_y
+
1
).
astype
(
self
.
dtype
)
self
.
out
=
np
.
floor_divide
(
self
.
x
,
self
.
y
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseModOp_scalar
(
TestElementwiseModOp
):
def
init_input_output
(
self
):
scale_x
=
random
.
randint
(
0
,
100000000
)
scale_y
=
random
.
randint
(
1
,
100000000
)
self
.
x
=
(
np
.
random
.
rand
(
2
,
3
,
4
)
*
scale_x
).
astype
(
self
.
dtype
)
self
.
y
=
(
np
.
random
.
rand
(
1
)
*
scale_y
+
1
).
astype
(
self
.
dtype
)
self
.
out
=
np
.
floor_divide
(
self
.
x
,
self
.
y
)
class
TestElementwiseModOpInverse
(
TestElementwiseModOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0
,
10000
,
[
10
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
1
,
1000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
floor_divide
(
self
.
x
,
self
.
y
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseModOpInverse
(
TestElementwiseModOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0
,
10000
,
[
10
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0
,
1000
,
[
10
,
10
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
floor_divide
(
self
.
x
,
self
.
y
)
support_types
=
get_xpu_op_support_types
(
'elementwise_floordiv'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestElementwiseModOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_elementwise_max_op_xpu.py
浏览文件 @
23a69bc7
# Copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -18,162 +18,154 @@ import numpy as np
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
XPUOpTest
import
paddle
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
use_xpu
=
True
self
.
op_type
=
"elementwise_max"
# If x and y have the same value, the max() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.006
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.006
,
no_grad_set
=
set
(
'Y'
))
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_scalar
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
2
,
3
,
20
]).
astype
(
"float32"
)
y
=
np
.
array
([
0.5
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_0
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
100
,
5
,
2
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[:,
0
,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_1
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
100
,
3
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_2
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
1
,
3
,
100
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_3
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
50
,
2
,
1
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
50
,
2
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
50
,
2
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
50
,
2
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMaxOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
,
5
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
3
,
1
,
5
)).
astype
(
np
.
float32
)
y
=
x
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
2
,
3
,
1
,
5
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
XPUTestElementwiseMaxOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'elementwise_max'
self
.
use_dynamic_create_class
=
False
class
TestElementwiseOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
use_xpu
=
True
self
.
op_type
=
"elementwise_max"
self
.
dtype
=
self
.
in_type
self
.
init_input_output
()
# If x and y have the same value, the max() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
self
.
dtype
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.006
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.006
,
no_grad_set
=
set
(
'Y'
))
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMaxOp_scalar
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
2
,
3
,
20
]).
astype
(
self
.
dtype
)
y
=
np
.
array
([
0.5
]).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseMaxOp_Vector
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseMaxOp_broadcast_0
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
100
,
5
,
2
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
y
=
x
[:,
0
,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
class
TestElementwiseMaxOp_broadcast_1
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
100
,
3
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
class
TestElementwiseMaxOp_broadcast_2
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
1
,
3
,
100
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
class
TestElementwiseMaxOp_broadcast_3
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
50
,
2
,
1
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
50
,
2
)).
astype
(
self
.
dtype
)
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
50
,
2
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
50
,
2
,
1
))
}
class
TestElementwiseMaxOp_broadcast_4
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
3
,
1
,
5
)).
astype
(
self
.
dtype
)
y
=
x
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
2
,
3
,
1
,
5
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
support_types
=
get_xpu_op_support_types
(
'elementwise_max'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestElementwiseMaxOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_elementwise_min_op_xpu.py
浏览文件 @
23a69bc7
# Copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -20,161 +20,149 @@ import paddle.fluid as fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
import
paddle
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
# If x and y have the same value, the min() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
'Y'
))
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMinOp_scalar
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
10
,
3
,
4
]).
astype
(
"float32"
)
y
=
np
.
array
([
0.5
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
"float32"
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_broadcast_0
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
100
,
3
,
2
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[:,
0
,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_broadcast_1
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
100
,
3
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_broadcast_2
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
100
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_broadcast_3
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
25
,
4
,
1
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
25
,
4
)).
astype
(
np
.
float32
)
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
25
,
4
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
25
,
4
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMinOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
10
,
2
,
5
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
10
,
1
,
5
)).
astype
(
np
.
float32
)
y
=
x
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
2
,
10
,
1
,
5
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
XPUTestElementwiseMinOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'elementwise_min'
self
.
use_dynamic_create_class
=
False
class
TestElementwiseOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
# If x and y have the same value, the min() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
self
.
dtype
=
self
.
in_type
self
.
init_input_output
()
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
[
13
,
17
]).
astype
(
self
.
dtype
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
'Y'
))
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMinOp_scalar
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
random_integers
(
-
5
,
5
,
[
10
,
3
,
4
]).
astype
(
self
.
dtype
)
y
=
np
.
array
([
0.5
]).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseMinOp_Vector
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
y
=
x
+
sgn
*
np
.
random
.
uniform
(
0.1
,
1
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseMinOp_broadcast_0
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
100
,
3
,
2
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
y
=
x
[:,
0
,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
attrs
=
{
'axis'
:
0
}
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
class
TestElementwiseMinOp_broadcast_1
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
100
,
3
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
y
=
x
[
0
,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
attrs
=
{
'axis'
:
1
}
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
))
}
class
TestElementwiseMinOp_broadcast_2
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
100
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
100
,
)).
astype
(
self
.
dtype
)
y
=
x
[
0
,
0
,
:]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
100
,
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
))
}
class
TestElementwiseMinOp_broadcast_3
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
25
,
4
,
1
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
25
,
4
)).
astype
(
self
.
dtype
)
y
=
x
[
0
,
:,
:,
0
]
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
25
,
4
)).
astype
(
self
.
dtype
)
self
.
attrs
=
{
'axis'
:
1
}
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
25
,
4
,
1
))
}
class
TestElementwiseMinOp_broadcast_4
(
TestElementwiseOp
):
def
init_input_output
(
self
):
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
10
,
2
,
5
)).
astype
(
self
.
dtype
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
10
,
1
,
5
)).
astype
(
self
.
dtype
)
y
=
x
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
2
,
10
,
1
,
5
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
support_types
=
get_xpu_op_support_types
(
'elementwise_min'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestElementwiseMinOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_elementwise_mul_op_xpu.py
浏览文件 @
23a69bc7
# Copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -20,252 +20,212 @@ import paddle.fluid as fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
import
paddle
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
ElementwiseMulOp
(
XPUOpTest
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
False
def
setUp
(
self
):
self
.
use_xpu
=
True
self
.
op_type
=
"elementwise_mul"
self
.
dtype
=
np
.
float32
self
.
axis
=
-
1
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_kernel_type
()
self
.
init_axis
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
self
.
use_mkldnn
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
,
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
),
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
multiply
(
self
.
x
,
self
.
y
)
def
init_dtype
(
self
):
pass
def
init_axis
(
self
):
pass
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_scalar
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
4
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_Vector
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
multiply
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_0
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
,
2
,
3
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
*
self
.
y
.
reshape
(
100
,
1
,
1
)
def
init_axis
(
self
):
self
.
axis
=
0
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_1
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
100
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
)
}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_2
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
)
}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_3
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
)
}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_4
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
2
,
11
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
1
,
11
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_broadcast_5
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
4
,
2
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
4
,
1
,
3
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_commonuse_1
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
,
1
,
100
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_commonuse_2
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
30
,
3
,
1
,
5
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
30
,
1
,
4
,
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOp_xsize_lessthan_ysize
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
10
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
2
,
10
,
10
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
reshape
(
1
,
1
,
10
,
10
)
*
self
.
inputs
[
'Y'
]
}
self
.
init_kernel_type
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseMulOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the input of elementwise_mul must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
XPUPlace
(
0
))
y1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
XPUPlace
(
0
))
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
elementwise_mul
,
x1
,
y1
)
# the input dtype of elementwise_mul must be float32
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"uint8"
)
y2
=
fluid
.
layers
.
data
(
name
=
'y2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"uint8"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
elementwise_mul
,
x2
,
y2
)
class
XPUTestElementwiseMulOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'elementwise_mul'
self
.
use_dynamic_create_class
=
False
class
ElementwiseMulOp
(
XPUOpTest
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
False
def
setUp
(
self
):
self
.
op_type
=
'elementwise_mul'
self
.
use_xpu
=
True
self
.
dtype
=
self
.
in_type
self
.
axis
=
-
1
self
.
init_dtype
()
self
.
init_input_output
()
self
.
init_kernel_type
()
self
.
init_axis
()
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
,
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
),
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
multiply
(
self
.
x
,
self
.
y
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_mkldnn'
:
self
.
use_mkldnn
}
def
init_dtype
(
self
):
pass
def
init_axis
(
self
):
pass
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseMulOp_scalar
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
4
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
1
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
class
TestElementwiseMulOp_Vector
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
multiply
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])
}
class
TestElementwiseMulOp_broadcast_0
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
100
,
2
,
3
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
)
}
self
.
attrs
=
{
'axis'
:
0
}
class
TestElementwiseMulOp_broadcast_1
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
100
,
3
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
)
}
class
TestElementwiseMulOp_broadcast_2
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
)
}
class
TestElementwiseMulOp_broadcast_3
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
)
}
class
TestElementwiseMulOp_broadcast_4
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
2
,
11
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
10
,
1
,
11
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
class
TestElementwiseMulOp_broadcast_5
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
4
,
2
,
3
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
10
,
4
,
1
,
3
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
class
TestElementwiseMulOp_commonuse_1
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
1
,
1
,
100
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
class
TestElementwiseMulOp_commonuse_2
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
30
,
3
,
1
,
5
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
30
,
1
,
4
,
1
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
class
TestElementwiseMulOp_xsize_lessthan_ysize
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
10
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
2
,
2
,
10
,
10
).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
reshape
(
1
,
1
,
10
,
10
)
*
self
.
inputs
[
'Y'
]
}
class
TestElementwiseMulOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
# the input of elementwise_mul must be Variable.
x1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
XPUPlace
(
0
))
y1
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
XPUPlace
(
0
))
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
elementwise_mul
,
x1
,
y1
)
# the input dtype of elementwise_mul must be float32
x2
=
fluid
.
layers
.
data
(
name
=
'x2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"uint8"
)
y2
=
fluid
.
layers
.
data
(
name
=
'y2'
,
shape
=
[
3
,
4
,
5
,
6
],
dtype
=
"uint8"
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
elementwise_mul
,
x2
,
y2
)
support_types
=
get_xpu_op_support_types
(
'elementwise_mul'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestElementwiseMulOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_elementwise_pow_op_xpu.py
浏览文件 @
23a69bc7
# Copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -20,163 +20,140 @@ import paddle.fluid as fluid
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
20
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
1
,
2
,
[
20
,
5
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_big_shape_1
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
10
,
10
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_big_shape_2
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
10
,
10
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.2
,
2
,
[
10
,
10
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwisePowOp_scalar
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
3
,
4
]).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
]).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_tensor
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
1
,
3
,
[
100
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_broadcast_0
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
,
100
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_broadcast_1
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
100
,
1
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_broadcast_2
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
,
3
,
1
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_broadcast_3
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
20
,
5
,
1
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
20
,
5
]).
astype
(
"float32"
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
20
,
5
,
1
))
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOp_broadcast_4
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
3
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
1
,
5
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwisePowOpInt
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
asarray
([
1
,
3
,
6
]),
'Y'
:
np
.
asarray
([
1
,
1
,
1
])}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
self
.
check_output
()
@
skip_check_grad_ci
(
reason
=
"XPU does not support grad op currently"
)
class
XPUTestElementwisePowOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'elementwise_pow'
self
.
use_dynamic_create_class
=
False
class
TestElementwisePowOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
dtype
=
self
.
in_type
self
.
__class__
.
no_need_check_grad
=
True
self
.
compute_input_output
()
def
compute_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
20
,
5
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
1
,
2
,
[
20
,
5
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
class
TestElementwisePowOp_big_shape_1
(
TestElementwisePowOp
):
def
compute_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
10
,
10
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
10
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwisePowOp_big_shape_2
(
TestElementwisePowOp
):
def
compute_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
10
,
10
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.2
,
2
,
[
10
,
10
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwisePowOp_scalar
(
TestElementwisePowOp
):
def
compute_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
3
,
3
,
4
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
1
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwisePowOp_tensor
(
TestElementwisePowOp
):
def
compute_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
1
,
3
,
[
100
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwisePowOp_broadcast_0
(
TestElementwisePowOp
):
def
compute_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
,
100
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwisePowOp_broadcast_1
(
TestElementwisePowOp
):
def
compute_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
100
,
1
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
))
}
class
TestElementwisePowOp_broadcast_2
(
TestElementwisePowOp
):
def
compute_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
,
3
,
1
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
100
]).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
))
}
class
TestElementwisePowOp_broadcast_3
(
TestElementwisePowOp
):
def
compute_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
20
,
5
,
1
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
20
,
5
]).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
].
reshape
(
1
,
20
,
5
,
1
))
}
class
TestElementwisePowOp_broadcast_4
(
TestElementwisePowOp
):
def
compute_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
3
,
5
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
10
,
1
,
5
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwisePowOpInt
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
asarray
([
1
,
3
,
6
]),
'Y'
:
np
.
asarray
([
1
,
1
,
1
])
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
def
test_check_output
(
self
):
self
.
check_output
()
support_types
=
get_xpu_op_support_types
(
'elementwise_pow'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestElementwisePowOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_elementwise_sub_op_xpu.py
浏览文件 @
23a69bc7
# Copyright (c) 202
0
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -19,191 +19,164 @@ import paddle
from
op_test
import
OpTest
,
skip_check_grad_ci
from
op_test_xpu
import
XPUOpTest
import
unittest
paddle
.
enable_static
()
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseOp
(
OpTest
):
def
setUp
(
self
):
self
.
use_xpu
=
True
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
'Y'
))
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseSubOp_scalar
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
4
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
100
,
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_broadcast_0
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
100
,
3
,
2
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_broadcast_1
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
100
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_broadcast_2
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_broadcast_3
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
5
,
3
,
12
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
5
,
1
,
12
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_commonuse_1
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
,
1
,
100
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_commonuse_2
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
1
,
4
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
10
,
1
,
12
,
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestElementwiseSubOp_xsize_lessthan_ysize
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
3
,
10
,
12
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
reshape
(
1
,
1
,
10
,
12
)
-
self
.
inputs
[
'Y'
]
}
class
XPUTestElementwiseSubOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'elementwise_sub'
self
.
use_dynamic_create_class
=
False
class
TestElementwiseOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
use_xpu
=
True
self
.
dtype
=
self
.
in_type
self
.
init_input_output
()
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
def
test_check_grad_normal
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
,
'Y'
],
'Out'
)
def
test_check_grad_ingore_x
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Y'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
,
max_relative_error
=
0.005
,
no_grad_set
=
set
(
'Y'
))
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
class
TestElementwiseSubOp_scalar
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
4
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
1
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_Vector
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
random
((
100
,
)).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_broadcast_0
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
100
,
3
,
2
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
100
,
1
,
1
)
}
class
TestElementwiseSubOp_broadcast_1
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
100
,
3
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
100
,
1
)
}
class
TestElementwiseSubOp_broadcast_2
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
1
,
100
)
}
class
TestElementwiseSubOp_broadcast_3
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
10
,
12
,
3
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
1
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
].
reshape
(
1
,
10
,
12
,
1
)
}
class
TestElementwiseSubOp_broadcast_4
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
5
,
3
,
12
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
2
,
5
,
1
,
12
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_commonuse_1
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
100
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
1
,
1
,
100
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_commonuse_2
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
3
,
1
,
4
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
10
,
1
,
12
,
1
).
astype
(
self
.
dtype
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_xsize_lessthan_ysize
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
10
,
12
).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
rand
(
2
,
3
,
10
,
12
).
astype
(
self
.
dtype
)
}
self
.
attrs
=
{
'axis'
:
2
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
reshape
(
1
,
1
,
10
,
12
)
-
self
.
inputs
[
'Y'
]
}
support_types
=
get_xpu_op_support_types
(
'elementwise_sub'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestElementwiseSubOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_top_k_v2_op_xpu.py
浏览文件 @
23a69bc7
# Copyright (c) 20
18
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -18,9 +18,10 @@ import unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
from
op_test
_xpu
import
XPU
OpTest
import
paddle
import
paddle.fluid.core
as
core
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
...
...
@@ -41,249 +42,130 @@ def numpy_topk(x, k=1, axis=-1, largest=True):
return
value
,
indices
class
TestTopkOp
(
OpTest
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
20
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad
(
set
([
'X'
]),
'Out'
)
class
TestTopkOp1
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp2
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp3
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
5
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp4
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
1
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp5
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
2
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp6
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
5
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
8
,
32
,
64
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp7
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
10
self
.
axis
=
2
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
8
,
5
,
10
,
16
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp8
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
1
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
8
,
32
,
64
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp9
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp10
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp11
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
5
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
TestTopkOp12
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
1
self
.
axis
=
1
self
.
largest
=
True
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
dtype
=
np
.
float32
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
)
self
.
init_args
()
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
class
XPUTestTopKV2Op
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'top_k_v2'
self
.
use_dynamic_create_class
=
False
class
TestTopkOp
(
XPUOpTest
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
20
).
astype
(
self
.
dtype
)
def
setUp
(
self
):
self
.
op_type
=
"top_k_v2"
self
.
init_args
()
self
.
dtype
=
self
.
in_type
self
.
inputs
=
{
'X'
:
self
.
input_data
}
self
.
attrs
=
{
'k'
:
self
.
k
,
'axis'
:
self
.
axis
,
'largest'
:
self
.
largest
}
output
,
indices
=
numpy_topk
(
self
.
input_data
,
axis
=
self
.
axis
,
k
=
self
.
k
,
largest
=
self
.
largest
)
self
.
outputs
=
{
'Out'
:
output
,
'Indices'
:
indices
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad
(
set
([
'X'
]),
'Out'
)
class
TestTopkOp1
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
100
,
155
).
astype
(
self
.
dtype
)
class
TestTopkOp2
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
class
TestTopkOp3
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
5
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
class
TestTopkOp4
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
1
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
class
TestTopkOp5
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
2
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
class
TestTopkOp6
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
5
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
8
,
32
,
64
).
astype
(
self
.
dtype
)
class
TestTopkOp7
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
10
self
.
axis
=
2
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
8
,
5
,
10
,
16
).
astype
(
self
.
dtype
)
class
TestTopkOp8
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
1
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
8
,
32
,
64
).
astype
(
self
.
dtype
)
class
TestTopkOp9
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
class
TestTopkOp10
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
3
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
class
TestTopkOp11
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
5
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
class
TestTopkOp12
(
TestTopkOp
):
def
init_args
(
self
):
self
.
k
=
1
self
.
axis
=
1
self
.
largest
=
True
self
.
input_data
=
np
.
random
.
rand
(
10
,
10
,
5
).
astype
(
self
.
dtype
)
support_types
=
get_xpu_op_support_types
(
'top_k_v2'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestTopKV2Op
,
stype
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录