Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2336d5ca
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2300
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2336d5ca
编写于
3月 29, 2019
作者:
Z
zhoukunsheng
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into rank
上级
f32c125e
1096746c
变更
70
隐藏空白更改
内联
并排
Showing
70 changed file
with
1837 addition
and
609 deletion
+1837
-609
paddle/fluid/framework/data_layout_transform.cc
paddle/fluid/framework/data_layout_transform.cc
+16
-7
paddle/fluid/framework/data_transform.cc
paddle/fluid/framework/data_transform.cc
+6
-24
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+7
-2
paddle/fluid/framework/details/alloc_continuous_space_for_grad_pass.cc
...framework/details/alloc_continuous_space_for_grad_pass.cc
+29
-19
paddle/fluid/framework/details/broadcast_op_handle.cc
paddle/fluid/framework/details/broadcast_op_handle.cc
+5
-8
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+39
-13
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+2
-1
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
...uid/framework/details/fast_threaded_ssa_graph_executor.cc
+3
-2
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h
...luid/framework/details/fast_threaded_ssa_graph_executor.h
+12
-7
paddle/fluid/framework/details/fuse_adam_op_pass.cc
paddle/fluid/framework/details/fuse_adam_op_pass.cc
+199
-0
paddle/fluid/framework/details/fuse_adam_op_pass.h
paddle/fluid/framework/details/fuse_adam_op_pass.h
+55
-0
paddle/fluid/framework/details/fuse_optimizer_op_pass.cc
paddle/fluid/framework/details/fuse_optimizer_op_pass.cc
+240
-0
paddle/fluid/framework/details/fuse_optimizer_op_pass.h
paddle/fluid/framework/details/fuse_optimizer_op_pass.h
+75
-0
paddle/fluid/framework/details/fuse_sgd_op_pass.cc
paddle/fluid/framework/details/fuse_sgd_op_pass.cc
+74
-0
paddle/fluid/framework/details/fuse_sgd_op_pass.h
paddle/fluid/framework/details/fuse_sgd_op_pass.h
+50
-0
paddle/fluid/framework/details/fused_all_reduce_op_handle.cc
paddle/fluid/framework/details/fused_all_reduce_op_handle.cc
+23
-6
paddle/fluid/framework/details/multi_devices_graph_pass.h
paddle/fluid/framework/details/multi_devices_graph_pass.h
+4
-1
paddle/fluid/framework/details/multi_devices_helper.h
paddle/fluid/framework/details/multi_devices_helper.h
+13
-13
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+4
-4
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+9
-10
paddle/fluid/framework/tensor.cc
paddle/fluid/framework/tensor.cc
+1
-1
paddle/fluid/framework/tensor.h
paddle/fluid/framework/tensor.h
+10
-34
paddle/fluid/framework/tensor_util.cc
paddle/fluid/framework/tensor_util.cc
+0
-5
paddle/fluid/operators/alloc_continuous_space_op.cc
paddle/fluid/operators/alloc_continuous_space_op.cc
+35
-10
paddle/fluid/operators/bpr_loss_op.cc
paddle/fluid/operators/bpr_loss_op.cc
+19
-1
paddle/fluid/operators/detection/roi_perspective_transform_op.cc
...fluid/operators/detection/roi_perspective_transform_op.cc
+20
-1
paddle/fluid/operators/elementwise/mkldnn/elementwise_add_mkldnn_op.cc
...operators/elementwise/mkldnn/elementwise_add_mkldnn_op.cc
+13
-6
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
+8
-2
paddle/fluid/operators/im2sequence_op.cc
paddle/fluid/operators/im2sequence_op.cc
+18
-1
paddle/fluid/operators/interpolate_op.cc
paddle/fluid/operators/interpolate_op.cc
+32
-6
paddle/fluid/operators/l1_norm_op.cc
paddle/fluid/operators/l1_norm_op.cc
+18
-1
paddle/fluid/operators/label_smooth_op.cc
paddle/fluid/operators/label_smooth_op.cc
+19
-5
paddle/fluid/operators/linear_chain_crf_op.cc
paddle/fluid/operators/linear_chain_crf_op.cc
+36
-3
paddle/fluid/operators/log_loss_op.cc
paddle/fluid/operators/log_loss_op.cc
+19
-1
paddle/fluid/operators/lstm_op.cc
paddle/fluid/operators/lstm_op.cc
+41
-1
paddle/fluid/operators/margin_rank_loss_op.cc
paddle/fluid/operators/margin_rank_loss_op.cc
+20
-3
paddle/fluid/operators/mean_op.cc
paddle/fluid/operators/mean_op.cc
+9
-2
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
+17
-7
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
+25
-11
paddle/fluid/operators/mkldnn/concat_mkldnn_op.cc
paddle/fluid/operators/mkldnn/concat_mkldnn_op.cc
+2
-1
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
+24
-23
paddle/fluid/operators/mkldnn/conv_transpose_mkldnn_op.cc
paddle/fluid/operators/mkldnn/conv_transpose_mkldnn_op.cc
+2
-1
paddle/fluid/operators/mkldnn/gaussian_random_mkldnn_op.cc
paddle/fluid/operators/mkldnn/gaussian_random_mkldnn_op.cc
+2
-6
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
+13
-8
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
+0
-8
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
+5
-4
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
+5
-21
paddle/fluid/operators/multiplex_op.cc
paddle/fluid/operators/multiplex_op.cc
+28
-7
paddle/fluid/operators/multiplex_op.cu
paddle/fluid/operators/multiplex_op.cu
+8
-3
paddle/fluid/operators/multiplex_op.h
paddle/fluid/operators/multiplex_op.h
+8
-3
paddle/fluid/operators/pad_op.cc
paddle/fluid/operators/pad_op.cc
+14
-7
paddle/fluid/operators/psroi_pool_op.cc
paddle/fluid/operators/psroi_pool_op.cc
+19
-1
paddle/fluid/operators/rank_loss_op.cc
paddle/fluid/operators/rank_loss_op.cc
+20
-0
paddle/fluid/operators/roi_align_op.cc
paddle/fluid/operators/roi_align_op.cc
+19
-1
paddle/fluid/operators/roi_pool_op.cc
paddle/fluid/operators/roi_pool_op.cc
+20
-1
paddle/fluid/operators/scatter_op.cc
paddle/fluid/operators/scatter_op.cc
+30
-5
paddle/fluid/operators/shuffle_channel_op.cc
paddle/fluid/operators/shuffle_channel_op.cc
+18
-2
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+33
-40
paddle/fluid/platform/mkldnn_utils.h
paddle/fluid/platform/mkldnn_utils.h
+0
-69
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+9
-0
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+65
-55
python/paddle/fluid/contrib/slim/quantization/quantization_strategy.py
.../fluid/contrib/slim/quantization/quantization_strategy.py
+11
-5
python/paddle/fluid/contrib/slim/tests/quantization/compress.yaml
...addle/fluid/contrib/slim/tests/quantization/compress.yaml
+2
-0
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+0
-3
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+15
-45
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+2
-0
python/paddle/fluid/tests/unittests/test_alloc_continuous_space_op.py
...e/fluid/tests/unittests/test_alloc_continuous_space_op.py
+33
-10
python/paddle/fluid/tests/unittests/test_fuse_optimizer_pass.py
.../paddle/fluid/tests/unittests/test_fuse_optimizer_pass.py
+135
-0
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
...addle/fluid/tests/unittests/test_parallel_executor_crf.py
+61
-54
python/paddle/fluid/tests/unittests/test_parallel_executor_dry_run.py
...e/fluid/tests/unittests/test_parallel_executor_dry_run.py
+9
-8
未找到文件。
paddle/fluid/framework/data_layout_transform.cc
浏览文件 @
2336d5ca
...
...
@@ -134,6 +134,11 @@ void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
out_layout
=
out_layout
==
DataLayout
::
kAnyLayout
?
DataLayout
::
kNCHW
:
out_layout
;
auto
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
*
dev_ctx
=
dynamic_cast
<
platform
::
MKLDNNDeviceContext
*>
(
pool
.
Get
(
expected_kernel_type
.
place_
));
auto
&
cpu_engine
=
dev_ctx
->
GetEngine
();
std
::
vector
<
int
>
in_tz
=
paddle
::
framework
::
vectorize2int
(
in
.
dims
());
std
::
vector
<
int
>
out_tz
=
in_tz
;
...
...
@@ -142,25 +147,29 @@ void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
"Input tensor type is not supported: %s"
,
in
.
type
());
memory
::
data_type
out_type
=
in_type
;
auto
in_format
=
platform
::
MKLDNNFormatForSize
(
in_tz
.
size
(),
in
.
format
());
auto
out_format
=
platform
::
MKLDNNFormatForSize
(
in_tz
.
size
(),
ToMKLDNNFormat
(
out_layout
));
// output tensor has the same dims as input. Reorder don't change dims
out
->
Resize
(
in
.
dims
());
// tempory mem pd fr out , to make reorder
auto
out_mem_pd
=
paddle
::
platform
::
create_prim_desc_from_dims
(
paddle
::
framework
::
vectorize2int
(
out
->
dims
()),
mkldnn
::
memory
::
format
::
blocked
,
out_type
);
if
(
in
.
get_mkldnn_prim_desc
()
!=
out_mem_pd
)
{
if
(
in_format
!=
out_format
)
{
void
*
in_data
=
GetDataFromTensor
(
in
,
in_type
);
auto
out_data
=
out
->
mutable_data
(
expected_kernel_type
.
place_
,
in
.
type
());
auto
in_memory
=
memory
(
in
.
get_mkldnn_prim_desc
(),
in_data
);
auto
out_memory
=
memory
(
out_mem_pd
,
out_data
);
auto
in_memory
=
memory
({{{
in_tz
},
in_type
,
in_format
},
cpu_engine
},
in_data
);
auto
out_memory
=
memory
({{{
out_tz
},
out_type
,
out_format
},
cpu_engine
},
out_data
);
platform
::
Reorder
(
in_memory
,
out_memory
);
}
else
{
out
->
ShareDataWith
(
in
);
}
out
->
set_layout
(
out_layout
);
// reset format since the out tensor will be feed to non-MKLDNN OPkernel
out
->
set_format
(
memory
::
format
::
format_undef
);
#endif
}
...
...
paddle/fluid/framework/data_transform.cc
浏览文件 @
2336d5ca
...
...
@@ -51,31 +51,13 @@ void TransformData(const OpKernelType &expected_kernel_type,
#ifdef PADDLE_WITH_MKLDNN
// Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
// Just set layout/format. No real transform occur
auto
out_format
=
platform
::
MKLDNNFormatForSize
(
in
.
dims
().
size
(),
ToMKLDNNFormat
(
lin
));
out
.
ShareDataWith
(
input_tensor
);
// TODO(jczaja): Remove that once all mkldnn ops
// are modified to work with mkldnn_blocked
auto
mkldnn_fmt
=
[
&
](
int
rank
)
{
switch
(
rank
)
{
case
5
:
return
mkldnn
::
memory
::
format
::
ncdhw
;
case
4
:
return
mkldnn
::
memory
::
format
::
nchw
;
case
3
:
return
mkldnn
::
memory
::
format
::
ncw
;
case
2
:
return
mkldnn
::
memory
::
format
::
nc
;
case
1
:
return
mkldnn
::
memory
::
format
::
x
;
default:
return
mkldnn
::
memory
::
format
::
blocked
;
}
};
auto
out_mem_pd
=
paddle
::
platform
::
create_prim_desc_from_dims
(
paddle
::
framework
::
vectorize2int
(
out
.
dims
()),
mkldnn_fmt
(
out
.
dims
().
size
()));
out
.
set_mkldnn_prim_desc
(
out_mem_pd
);
out
.
set_layout
(
DataLayout
::
kMKLDNN
);
out
.
set_format
(
out_format
);
#endif
}
else
{
// Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
2336d5ca
...
...
@@ -10,7 +10,10 @@ cc_library(fetch_barrier_op_handle SRCS fetch_barrier_op_handle.cc DEPS framewor
cc_library
(
multi_devices_helper SRCS multi_devices_helper.cc DEPS graph graph_helper
)
cc_library
(
multi_devices_graph_print_pass SRCS multi_devices_graph_print_pass.cc DEPS multi_devices_helper
)
cc_library
(
multi_devices_graph_check_pass SRCS multi_devices_graph_check_pass.cc DEPS multi_devices_helper
)
cc_library
(
alloc_continuous_space_for_grad_pass SRCS alloc_continuous_space_for_grad_pass.cc DEPS graph graph_helper
)
cc_library
(
fuse_adam_op_pass SRCS fuse_adam_op_pass.cc fuse_optimizer_op_pass.cc DEPS graph graph_helper
)
cc_library
(
fuse_sgd_op_pass SRCS fuse_sgd_op_pass.cc fuse_optimizer_op_pass.cc DEPS graph graph_helper
)
cc_library
(
variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows
)
...
...
@@ -104,5 +107,7 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass multi_batch_merge_pass
fuse_relu_depthwise_conv_pass
memory_optimize_pass lock_free_optimize_pass alloc_continuous_space_for_grad_pass fuse_all_reduce_op_pass
)
fuse_relu_depthwise_conv_pass
memory_optimize_pass lock_free_optimize_pass
alloc_continuous_space_for_grad_pass fuse_all_reduce_op_pass
fuse_adam_op_pass fuse_sgd_op_pass
)
paddle/fluid/framework/details/alloc_continuous_space_for_grad_pass.cc
浏览文件 @
2336d5ca
...
...
@@ -21,6 +21,7 @@
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
DEFINE_uint32
(
fuse_parameter_memory_size
,
0
,
// 0 KB
"fuse_parameter_memory_size is up limited memory size "
"of one group parameters' gradient which is the input "
...
...
@@ -105,20 +106,29 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
auto
ele_dtype
=
iter
->
second
->
Var
()
->
GetDataType
();
if
(
dtype
==
kDefaultDtype
)
{
dtype
=
ele_dtype
;
PADDLE_ENFORCE_NE
(
ele_dtype
,
kDefaultDtype
);
PADDLE_ENFORCE_NE
(
ele_dtype
,
kDefaultDtype
,
"The data type should not be bool."
);
}
PADDLE_ENFORCE_EQ
(
ele_dtype
,
dtype
);
PADDLE_ENFORCE_EQ
(
ele_dtype
,
dtype
,
"The data type of input is not consistent."
);
}
// Create the fused variable name.
// Create a FusedVarsSet to avoid duplicating names for fused_var in other
// pass.
if
(
!
result
.
Has
(
kFusedVars
))
{
result
.
Set
(
kFusedVars
,
new
FusedVars
);
}
const
std
::
string
prefix
(
kFusedVarNamePrefix
);
// The fused_var_name should be unique.
auto
fused_var_name
=
prefix
+
"GRAD@"
+
params_grads
[
0
].
second
;
// the kFusedGrads is used be fuse_optimizer_op_pass.
result
.
Set
(
kFusedGrads
,
new
FusedGrads
);
// the fused_var_name should be unique, so it appends
// params_grads.begin()->second.
auto
fused_var_name
=
std
::
string
(
kFusedVarNamePrefix
)
+
"@GRAD@"
+
params_grads
.
begin
()
->
second
;
result
.
Get
<
FusedGrads
>
(
kFusedGrads
)
=
fused_var_name
;
auto
&
fused_var_set
=
result
.
Get
<
FusedVars
>
(
kFusedVars
);
PADDLE_ENFORCE_EQ
(
fused_var_set
.
count
(
fused_var_name
),
0
);
PADDLE_ENFORCE_EQ
(
fused_var_set
.
count
(
fused_var_name
),
0
,
"%s is duplicate in FusedVars."
,
fused_var_name
);
fused_var_set
.
insert
(
fused_var_name
);
InitFusedVarsAndAllocSpaceForVars
(
places
,
local_scopes
,
vars
,
...
...
@@ -295,17 +305,6 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
return
type
==
proto
::
VarType
::
LOD_TENSOR
;
}
void
AppendAllocSpaceForVarsOp
(
const
std
::
vector
<
std
::
string
>
&
params_name
,
const
std
::
vector
<
std
::
string
>
&
grads_name
,
const
std
::
string
&
fused_var_name
,
BlockDesc
*
global_block
)
const
{
auto
op_desc
=
global_block
->
AppendOp
();
op_desc
->
SetType
(
"alloc_continuous_space"
);
op_desc
->
SetInput
(
"Input"
,
params_name
);
op_desc
->
SetOutput
(
"Output"
,
grads_name
);
op_desc
->
SetOutput
(
"FusedOutput"
,
{
fused_var_name
});
}
void
RecordParamsAndGrads
(
ir
::
Node
*
node
,
ParamsAndGrads
*
params_grads
)
const
{
try
{
...
...
@@ -358,6 +357,7 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
}
}
// Alloc continuous space for vars.
std
::
vector
<
std
::
string
>
grads_name
;
std
::
vector
<
std
::
string
>
params_name
;
grads_name
.
reserve
(
params_grads
.
size
());
...
...
@@ -370,7 +370,6 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
AppendAllocSpaceForVarsOp
(
params_name
,
grads_name
,
fused_var_name
,
program_desc
.
MutableBlock
(
0
));
// Run Only Once Programs
for
(
size_t
i
=
0
;
i
<
local_scopes
.
size
();
++
i
)
{
for
(
auto
&
op_desc
:
program_desc
.
Block
(
0
).
AllOps
())
{
auto
op
=
OpRegistry
::
CreateOp
(
*
op_desc
);
...
...
@@ -378,6 +377,17 @@ class AllocContinuousSpaceForGradPass : public ir::Pass {
}
}
}
void
AppendAllocSpaceForVarsOp
(
const
std
::
vector
<
std
::
string
>
&
params_name
,
const
std
::
vector
<
std
::
string
>
&
grads_name
,
const
std
::
string
&
fused_var_name
,
BlockDesc
*
global_block
)
const
{
auto
op_desc
=
global_block
->
AppendOp
();
op_desc
->
SetType
(
"alloc_continuous_space"
);
op_desc
->
SetInput
(
"Input"
,
params_name
);
op_desc
->
SetOutput
(
"Output"
,
grads_name
);
op_desc
->
SetOutput
(
"FusedOutput"
,
{
fused_var_name
});
}
};
}
// namespace details
...
...
paddle/fluid/framework/details/broadcast_op_handle.cc
浏览文件 @
2336d5ca
...
...
@@ -27,20 +27,17 @@ void BroadcastOpHandle::RunImpl() {
if
(
places_
.
size
()
==
1
)
return
;
// The input and output may have dummy vars.
VarHandle
*
in_var_handle
;
{
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
inputs_
);
PADDLE_ENFORCE_EQ
(
in_var_handles
.
size
(),
1UL
,
"The number of input should be one."
);
in_var_handle
=
in_var_handles
[
0
];
}
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
inputs_
);
auto
out_var_handles
=
DynamicCast
<
VarHandle
>
(
outputs_
);
PADDLE_ENFORCE_EQ
(
in_var_handles
.
size
(),
1UL
,
"The number of input should be one."
);
PADDLE_ENFORCE_EQ
(
out_var_handles
.
size
(),
places_
.
size
(),
"The number of output should equal to the number of places."
);
VarHandle
*
in_var_handle
=
in_var_handles
[
0
];
WaitInputVarGenerated
();
std
::
vector
<
const
Scope
*>
var_scopes
;
...
...
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
2336d5ca
...
...
@@ -17,7 +17,6 @@ limitations under the License. */
#include <glog/logging.h>
#include <memory>
#include <utility>
#include "paddle/fluid/framework/details/memory_optimize_helper.h"
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
...
...
@@ -82,23 +81,43 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
AppendPass
(
"inplace_pass"
);
}
if
(
strategy
.
fuse_elewise_add_act_ops_
)
{
if
(
strategy
_
.
fuse_elewise_add_act_ops_
)
{
VLOG
(
10
)
<<
"Add fuse_elewise_add_act_pass"
;
AppendPass
(
"fuse_elewise_add_act_pass"
);
}
// for single card training, fuse_all_reduce_ops is unnecessary.
// alloc_continuous_space_for_grad_pass should be before of MultiDevPass.
if
(
strategy
.
fuse_all_reduce_ops_
)
{
if
(
strategy
_
.
fuse_all_reduce_ops_
)
{
VLOG
(
10
)
<<
"Add alloc_continuous_space_for_grad_pass"
;
AppendPass
(
"alloc_continuous_space_for_grad_pass"
);
}
if
(
strategy_
.
fuse_all_optimizer_ops_
)
{
if
(
strategy_
.
reduce_
==
BuildStrategy
::
ReduceStrategy
::
kReduce
||
strategy_
.
is_distribution_
)
{
VLOG
(
3
)
<<
"Currently, fuse_all_optimizer_ops only works under AllReduce "
"mode."
;
strategy_
.
fuse_all_optimizer_ops_
=
false
;
}
else
{
VLOG
(
10
)
<<
"Add alloc_continuous_space_for_grad_pass"
;
AppendPass
(
"alloc_continuous_space_for_grad_pass"
);
// NOTE: fuse_all_xx_ops will count the number of xx operator first,
// if the number is zero, fuse_all_reduce_ops will do nothing.
// Currently, only one type of optimization algorithm can be fused.
VLOG
(
10
)
<<
"Add fuse_adam_op_pass"
;
AppendPass
(
"fuse_adam_op_pass"
);
VLOG
(
10
)
<<
"Add fuse_sgd_op_pass"
;
AppendPass
(
"fuse_sgd_op_pass"
);
}
}
// Add a graph viz pass to record a graph.
if
(
!
strategy
.
debug_graphviz_path_
.
empty
())
{
auto
viz_pass
=
AppendPass
(
"graph_viz_pass"
);
const
std
::
string
graph_path
=
string
::
Sprintf
(
"%s%s"
,
strategy
.
debug_graphviz_path_
.
c_str
(),
"_fused_graph"
);
"%s%s"
,
strategy
_
.
debug_graphviz_path_
.
c_str
(),
"_fused_graph"
);
viz_pass
->
Set
<
std
::
string
>
(
"graph_viz_path"
,
new
std
::
string
(
graph_path
));
}
...
...
@@ -118,14 +137,14 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// the de-fact IR, any reuse on Graph is meaningless.
// A side-effect of that, memory optimize cannot forsee the fetched vars
// , so fetchlist should be set persistable before call the Run interface.
if
(
strategy
.
memory_optimize_
)
{
if
(
strategy
_
.
memory_optimize_
)
{
VLOG
(
10
)
<<
"Add memory_optimize_pass"
;
AppendPass
(
"memory_optimize_pass"
);
}
AppendMultiDevPass
(
strategy
);
AppendMultiDevPass
(
strategy
_
);
if
(
strategy
.
fuse_all_reduce_ops_
)
{
if
(
strategy
_
.
fuse_all_reduce_ops_
)
{
// NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
// first, if the number is zero, fuse_all_reduce_ops will do nothing.
VLOG
(
10
)
<<
"Add fuse_all_reduce_op_pass"
;
...
...
@@ -151,7 +170,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
AppendPass
(
"all_reduce_deps_pass"
);
}
if
(
SeqOnlyAllReduceOps
(
strategy
))
{
if
(
SeqOnlyAllReduceOps
(
strategy
_
))
{
VLOG
(
10
)
<<
"Add all_reduce_deps_pass"
;
AppendPass
(
"all_reduce_deps_pass"
);
}
...
...
@@ -165,7 +184,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Convert graph to run on multi-devices.
void
AppendMultiDevPass
(
const
BuildStrategy
&
strategy
)
{
ir
::
Pass
*
multi_devices_pass
=
nullptr
;
if
(
strategy
_
.
is_distribution_
)
{
if
(
strategy
.
is_distribution_
)
{
VLOG
(
10
)
<<
"Add dist_multi_devices_pass"
;
multi_devices_pass
=
AppendPass
(
"dist_multi_devices_pass"
).
get
();
}
else
{
...
...
@@ -235,17 +254,22 @@ ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
pass
->
Erase
(
kNCCLCtxs
);
pass
->
SetNotOwned
<
platform
::
NCCLContextMap
>
(
kNCCLCtxs
,
nctx
);
#endif
}
else
if
(
pass
->
Type
()
==
"fuse_all_reduce_op_pass"
)
{
}
else
if
(
pass
->
Type
()
==
"alloc_continuous_space_for_grad_pass"
||
pass
->
Type
()
==
"fuse_adam_op_pass"
||
pass
->
Type
()
==
"fuse_sgd_op_pass"
||
pass
->
Type
()
==
"fuse_all_reduce_op_pass"
)
{
pass
->
Erase
(
kPlaces
);
pass
->
SetNotOwned
<
const
std
::
vector
<
platform
::
Place
>>
(
kPlaces
,
&
places
);
pass
->
Erase
(
kLocalScopes
);
pass
->
SetNotOwned
<
const
std
::
vector
<
Scope
*>>
(
kLocalScopes
,
&
local_scopes
);
if
(
pass
->
Type
()
==
"fuse_all_reduce_op_pass"
)
{
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
platform
::
NCCLContextMap
*
nctx
=
use_cuda
?
nccl_ctxs
:
nullptr
;
pass
->
Erase
(
kNCCLCtxs
);
pass
->
SetNotOwned
<
platform
::
NCCLContextMap
>
(
kNCCLCtxs
,
nctx
);
platform
::
NCCLContextMap
*
nctx
=
use_cuda
?
nccl_ctxs
:
nullptr
;
pass
->
Erase
(
kNCCLCtxs
);
pass
->
SetNotOwned
<
platform
::
NCCLContextMap
>
(
kNCCLCtxs
,
nctx
);
#endif
}
}
else
if
(
pass
->
Type
()
==
"alloc_continuous_space_for_grad_pass"
)
{
pass
->
Erase
(
kPlaces
);
pass
->
SetNotOwned
<
const
std
::
vector
<
platform
::
Place
>>
(
kPlaces
,
&
places
);
...
...
@@ -294,4 +318,6 @@ USE_PASS(inplace_pass);
USE_PASS
(
lock_free_optimize_pass
);
USE_PASS
(
alloc_continuous_space_for_grad_pass
);
USE_PASS
(
graph_to_program_pass
);
USE_PASS
(
fuse_adam_op_pass
);
USE_PASS
(
fuse_sgd_op_pass
);
USE_PASS
(
fuse_all_reduce_op_pass
);
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
2336d5ca
...
...
@@ -18,7 +18,6 @@
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -76,6 +75,8 @@ struct BuildStrategy {
bool
fuse_elewise_add_act_ops_
{
false
};
bool
fuse_all_optimizer_ops_
{
false
};
bool
fuse_all_reduce_ops_
{
false
};
bool
fuse_relu_depthwise_conv_
{
false
};
...
...
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
浏览文件 @
2336d5ca
...
...
@@ -31,9 +31,10 @@ FastThreadedSSAGraphExecutor::FastThreadedSSAGraphExecutor(
local_scopes_
(
local_scopes
),
places_
(
places
),
graph_
(
graph
),
fetch_ctxs_
(
places
),
pool_
(
strategy
.
num_threads_
),
prepare_pool_
(
1
),
// add one more thread for generate op_deps
fetch_ctxs_
(
places
)
{
// add one more thread for generate op_deps
prepare_pool_
(
1
)
{
for
(
auto
&
op
:
ir
::
FilterByNodeWrapper
<
OpHandleBase
>
(
*
graph_
))
{
int
dep
=
static_cast
<
int
>
(
op
->
NotReadyInputSize
());
op_deps_
.
emplace
(
op
,
dep
);
...
...
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h
浏览文件 @
2336d5ca
...
...
@@ -14,7 +14,9 @@
#pragma once
#include <ThreadPool.h>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/exception_holder.h"
...
...
@@ -37,6 +39,8 @@ class FastThreadedSSAGraphExecutor : public SSAGraphExecutor {
const
ir
::
Graph
&
Graph
()
const
override
;
private:
// Note(zcd): the ThreadPool should be placed last so that ThreadPool should
// be destroyed first.
ExecutionStrategy
strategy_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
...
...
@@ -45,21 +49,22 @@ class FastThreadedSSAGraphExecutor : public SSAGraphExecutor {
std
::
unordered_map
<
OpHandleBase
*
,
int
>
op_deps_
;
std
::
vector
<
OpHandleBase
*>
bootstrap_ops_
;
::
ThreadPool
pool_
;
::
ThreadPool
prepare_pool_
;
platform
::
DeviceContextPool
fetch_ctxs_
;
std
::
atomic
<
int
>
remaining_
;
std
::
future
<
std
::
unique_ptr
<
std
::
unordered_map
<
OpHandleBase
*
,
std
::
atomic
<
int
>>>>
atomic_op_deps_
;
ExceptionHolder
exception_
;
::
ThreadPool
pool_
;
::
ThreadPool
prepare_pool_
;
void
RunOpAsync
(
std
::
unordered_map
<
OpHandleBase
*
,
std
::
atomic
<
int
>>
*
op_deps
,
OpHandleBase
*
op
,
const
std
::
shared_ptr
<
BlockingQueue
<
size_t
>>
&
complete_q
);
void
PrepareAtomicOpDeps
();
std
::
future
<
std
::
unique_ptr
<
std
::
unordered_map
<
OpHandleBase
*
,
std
::
atomic
<
int
>>>>
atomic_op_deps_
;
ExceptionHolder
exception_
;
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/fuse_adam_op_pass.cc
0 → 100644
浏览文件 @
2336d5ca
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fuse_adam_op_pass.h"
#include <algorithm>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
const
std
::
string
FuseAdamOpPass
::
GetOpType
()
const
{
return
"adam"
;
}
const
std
::
vector
<
std
::
string
>
FuseAdamOpPass
::
GetAuxiliaryVarNames
()
const
{
return
{
"Param"
,
"Moment1"
,
"Moment2"
,
"Beta1Pow"
,
"Beta2Pow"
};
}
void
FuseAdamOpPass
::
FuseOptimizerOps
(
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
aux_var_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
,
const
std
::
vector
<
ir
::
Node
*>
&
adam_ops
,
ir
::
Graph
*
graph
)
const
{
FuseAdamOps
(
aux_var_set
,
fused_vars_name
,
adam_ops
,
graph
);
FuseScaleOps
(
aux_var_set
.
at
(
"Beta1Pow"
),
fused_vars_name
.
at
(
"Beta1Pow"
),
adam_ops
,
graph
);
FuseScaleOps
(
aux_var_set
.
at
(
"Beta2Pow"
),
fused_vars_name
.
at
(
"Beta2Pow"
),
adam_ops
,
graph
);
}
void
FuseAdamOpPass
::
FuseAdamOps
(
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
vars_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
,
const
std
::
vector
<
ir
::
Node
*>
&
adam_ops
,
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_GT
(
adam_ops
.
size
(),
static_cast
<
size_t
>
(
0
));
// Check attributions
// NOTE: If new attribution is added, the following code maybe need change.
int
op_role
=
boost
::
get
<
int
>
(
adam_ops
[
0
]
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()));
float
beta1
=
boost
::
get
<
float
>
(
adam_ops
[
0
]
->
Op
()
->
GetAttr
(
"beta1"
));
float
beta2
=
boost
::
get
<
float
>
(
adam_ops
[
0
]
->
Op
()
->
GetAttr
(
"beta2"
));
float
epsilon
=
boost
::
get
<
float
>
(
adam_ops
[
0
]
->
Op
()
->
GetAttr
(
"epsilon"
));
bool
lazy_mode
=
boost
::
get
<
bool
>
(
adam_ops
[
0
]
->
Op
()
->
GetAttr
(
"lazy_mode"
));
int64_t
min_row_size_to_use_multithread
=
boost
::
get
<
int64_t
>
(
adam_ops
[
0
]
->
Op
()
->
GetAttr
(
"min_row_size_to_use_multithread"
));
for
(
auto
&
adam_op
:
adam_ops
)
{
PADDLE_ENFORCE_EQ
(
beta1
,
boost
::
get
<
float
>
(
adam_op
->
Op
()
->
GetAttr
(
"beta1"
)));
PADDLE_ENFORCE_EQ
(
beta2
,
boost
::
get
<
float
>
(
adam_op
->
Op
()
->
GetAttr
(
"beta2"
)));
PADDLE_ENFORCE_EQ
(
epsilon
,
boost
::
get
<
float
>
(
adam_op
->
Op
()
->
GetAttr
(
"epsilon"
)));
PADDLE_ENFORCE_EQ
(
lazy_mode
,
boost
::
get
<
bool
>
(
adam_op
->
Op
()
->
GetAttr
(
"lazy_mode"
)));
PADDLE_ENFORCE_EQ
(
min_row_size_to_use_multithread
,
boost
::
get
<
int64_t
>
(
adam_op
->
Op
()
->
GetAttr
(
"min_row_size_to_use_multithread"
)));
PADDLE_ENFORCE_EQ
(
op_role
,
boost
::
get
<
int
>
(
adam_op
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
())));
}
// NOTE: fused_var is only exist in scope, so the graph doesn't have fused_var
// node.
VLOG
(
10
)
<<
"Insert adam to graph "
;
OpDesc
adam_desc
(
adam_ops
[
0
]
->
Op
()
->
Block
());
adam_desc
.
SetType
(
"adam"
);
adam_desc
.
SetInput
(
"Param"
,
{
fused_vars_name
.
at
(
"Param"
)});
adam_desc
.
SetInput
(
"Grad"
,
{
fused_vars_name
.
at
(
"Grad"
)});
adam_desc
.
SetInput
(
"Moment1"
,
{
fused_vars_name
.
at
(
"Moment1"
)});
adam_desc
.
SetInput
(
"Moment2"
,
{
fused_vars_name
.
at
(
"Moment2"
)});
// TODO(zcd): The LearningRate, Beta1Pow, Beta2Pow should be equal.
adam_desc
.
SetInput
(
"LearningRate"
,
adam_ops
[
0
]
->
Op
()
->
Input
(
"LearningRate"
));
adam_desc
.
SetInput
(
"Beta1Pow"
,
adam_ops
[
0
]
->
Op
()
->
Input
(
"Beta1Pow"
));
adam_desc
.
SetInput
(
"Beta2Pow"
,
adam_ops
[
0
]
->
Op
()
->
Input
(
"Beta2Pow"
));
adam_desc
.
SetOutput
(
"ParamOut"
,
{
fused_vars_name
.
at
(
"Param"
)});
adam_desc
.
SetOutput
(
"Moment1Out"
,
{
fused_vars_name
.
at
(
"Moment1"
)});
adam_desc
.
SetOutput
(
"Moment2Out"
,
{
fused_vars_name
.
at
(
"Moment2"
)});
adam_desc
.
SetAttr
(
"beta1"
,
beta1
);
adam_desc
.
SetAttr
(
"beta2"
,
beta2
);
adam_desc
.
SetAttr
(
"epsilon"
,
epsilon
);
adam_desc
.
SetAttr
(
"lazy_mode"
,
lazy_mode
);
adam_desc
.
SetAttr
(
"min_row_size_to_use_multithread"
,
min_row_size_to_use_multithread
);
adam_desc
.
SetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
(),
op_role
);
auto
adam_node
=
graph
->
CreateOpNode
(
&
adam_desc
);
InserInputAndOutputForOptOps
(
adam_ops
,
adam_node
);
}
void
FuseAdamOpPass
::
FuseScaleOps
(
const
std
::
vector
<
std
::
string
>
&
beta_name
,
const
std
::
string
&
fused_var_name
,
const
std
::
vector
<
ir
::
Node
*>
&
adam_ops
,
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_EQ
(
beta_name
.
size
(),
adam_ops
.
size
());
const
std
::
string
scale_op_name
=
"scale"
;
// Get the scale_ops of dealing the adam's beta var.
std
::
vector
<
ir
::
Node
*>
scale_ops
;
scale_ops
.
reserve
(
beta_name
.
size
());
for
(
size_t
i
=
0
;
i
<
adam_ops
.
size
();
++
i
)
{
auto
&
beta_1_pow_name
=
beta_name
[
i
];
auto
beta_pow_iter
=
std
::
find_if
(
adam_ops
[
i
]
->
inputs
.
begin
(),
adam_ops
[
i
]
->
inputs
.
end
(),
[
&
beta_name
,
&
beta_1_pow_name
](
ir
::
Node
*
var_node
)
->
bool
{
return
var_node
->
Var
()
&&
var_node
->
Var
()
->
Name
()
==
beta_1_pow_name
;
});
PADDLE_ENFORCE
(
beta_pow_iter
!=
adam_ops
[
i
]
->
inputs
.
end
());
auto
beta_pow_node
=
*
beta_pow_iter
;
auto
scale_op_iter
=
std
::
find_if
(
beta_pow_node
->
outputs
.
begin
(),
beta_pow_node
->
outputs
.
end
(),
[
&
scale_op_name
](
ir
::
Node
*
op_node
)
->
bool
{
return
op_node
->
Op
()
&&
op_node
->
Op
()
->
Type
()
==
scale_op_name
;
});
PADDLE_ENFORCE
(
scale_op_iter
!=
beta_pow_node
->
outputs
.
end
());
scale_ops
.
emplace_back
(
*
scale_op_iter
);
}
PADDLE_ENFORCE_EQ
(
scale_ops
.
size
(),
beta_name
.
size
());
// Check attributions
// NOTE: If new attribution is added, the following code maybe need change.
int
op_role
=
boost
::
get
<
int
>
(
scale_ops
[
0
]
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()));
float
scale
=
boost
::
get
<
float
>
(
scale_ops
[
0
]
->
Op
()
->
GetAttr
(
"scale"
));
float
bias
=
boost
::
get
<
float
>
(
scale_ops
[
0
]
->
Op
()
->
GetAttr
(
"bias"
));
bool
bias_after_scale
=
boost
::
get
<
bool
>
(
scale_ops
[
0
]
->
Op
()
->
GetAttr
(
"bias_after_scale"
));
for
(
auto
&
scale_op
:
scale_ops
)
{
PADDLE_ENFORCE_EQ
(
scale
,
boost
::
get
<
float
>
(
scale_op
->
Op
()
->
GetAttr
(
"scale"
)));
PADDLE_ENFORCE_EQ
(
bias
,
boost
::
get
<
float
>
(
scale_op
->
Op
()
->
GetAttr
(
"bias"
)));
PADDLE_ENFORCE_EQ
(
bias_after_scale
,
boost
::
get
<
bool
>
(
scale_op
->
Op
()
->
GetAttr
(
"bias_after_scale"
)));
PADDLE_ENFORCE_EQ
(
op_role
,
boost
::
get
<
int
>
(
scale_op
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
())));
}
// NOTE: fused_var is only exist in scope, so the graph doesn't have fused_var
// node.
VLOG
(
10
)
<<
"Insert fused scale to graph."
;
OpDesc
scale_desc
(
scale_ops
[
0
]
->
Op
()
->
Block
());
scale_desc
.
SetType
(
"scale"
);
scale_desc
.
SetInput
(
"X"
,
{
fused_var_name
});
scale_desc
.
SetOutput
(
"Out"
,
{
fused_var_name
});
scale_desc
.
SetAttr
(
"scale"
,
scale
);
scale_desc
.
SetAttr
(
"bias"
,
bias
);
scale_desc
.
SetAttr
(
"bias_after_scale"
,
bias_after_scale
);
scale_desc
.
SetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
(),
op_role
);
auto
scale_node
=
graph
->
CreateOpNode
(
&
scale_desc
);
for
(
auto
scale_op
:
scale_ops
)
{
// set inputs
scale_node
->
inputs
.
insert
(
scale_node
->
inputs
.
begin
(),
scale_op
->
inputs
.
begin
(),
scale_op
->
inputs
.
end
());
for
(
auto
&
input
:
scale_op
->
inputs
)
{
std
::
replace
(
input
->
outputs
.
begin
(),
input
->
outputs
.
end
(),
scale_op
,
scale_node
);
}
// set outputs
scale_node
->
outputs
.
insert
(
scale_node
->
outputs
.
begin
(),
scale_op
->
outputs
.
begin
(),
scale_op
->
outputs
.
end
());
for
(
auto
&
output
:
scale_op
->
outputs
)
{
std
::
replace
(
output
->
inputs
.
begin
(),
output
->
inputs
.
end
(),
scale_op
,
scale_node
);
}
}
// Delete scale_ops
for
(
auto
&
scale_op
:
scale_ops
)
{
graph
->
RemoveNode
(
scale_op
);
}
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
fuse_adam_op_pass
,
paddle
::
framework
::
details
::
FuseAdamOpPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kPlaces
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kLocalScopes
);
paddle/fluid/framework/details/fuse_adam_op_pass.h
0 → 100644
浏览文件 @
2336d5ca
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/fuse_optimizer_op_pass.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
FuseAdamOpPass
:
public
FuseOptimizerOpPass
{
private:
virtual
const
std
::
string
GetOpType
()
const
;
virtual
const
std
::
vector
<
std
::
string
>
GetAuxiliaryVarNames
()
const
;
// Fuse Adam Ops and Scale Ops which are used to update "Beta1Pow", "Beta2Pow"
virtual
void
FuseOptimizerOps
(
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
vars_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
,
const
std
::
vector
<
ir
::
Node
*>
&
adam_ops
,
ir
::
Graph
*
graph
)
const
;
void
FuseAdamOps
(
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
vars_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
,
const
std
::
vector
<
ir
::
Node
*>
&
adam_ops
,
ir
::
Graph
*
graph
)
const
;
void
FuseScaleOps
(
const
std
::
vector
<
std
::
string
>
&
aux_var_set
,
const
std
::
string
&
fused_var_name
,
const
std
::
vector
<
ir
::
Node
*>
&
adam_ops
,
ir
::
Graph
*
graph
)
const
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/fuse_optimizer_op_pass.cc
0 → 100644
浏览文件 @
2336d5ca
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fuse_optimizer_op_pass.h"
#include <algorithm>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
void
FuseOptimizerOpPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
ir
::
Graph
&
result
=
*
graph
;
auto
&
places
=
Get
<
const
std
::
vector
<
platform
::
Place
>>
(
kPlaces
);
auto
&
local_scopes
=
Get
<
const
std
::
vector
<
Scope
*>>
(
kLocalScopes
);
const
std
::
string
fuse_op_type
=
GetOpType
();
const
std
::
vector
<
std
::
string
>
aux_var_names
=
GetAuxiliaryVarNames
();
// Step 1: Get the specified op and auxiliary variables.
std
::
vector
<
ir
::
Node
*>
topo_nodes
=
ir
::
TopologySortOperations
(
result
);
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
aux_var_set
;
std
::
vector
<
ir
::
Node
*>
opt_ops
;
for
(
auto
&
node
:
topo_nodes
)
{
GetSpecifiedOpsAndVars
(
fuse_op_type
,
aux_var_names
,
node
,
&
opt_ops
,
&
aux_var_set
);
}
VLOG
(
10
)
<<
"Find "
<<
fuse_op_type
<<
" operators: "
<<
opt_ops
.
size
();
if
(
opt_ops
.
size
()
==
0
)
{
return
;
}
if
(
result
.
Has
(
kFusedOptType
))
{
VLOG
(
10
)
<<
"Currently only support fusing one type optimizer op. Has fused "
<<
result
.
Get
<
FusedOptType
>
(
kFusedOptType
);
return
;
}
else
{
result
.
Set
(
kFusedOptType
,
new
FusedOptType
);
}
result
.
Get
<
FusedOptType
>
(
kFusedOptType
)
=
fuse_op_type
;
// Step 2: Insert fused_var_name to FusedVars, and the FusedVars need be
// initialized in scopes before execution.
if
(
!
result
.
Has
(
kFusedVars
))
{
result
.
Set
(
kFusedVars
,
new
FusedVars
);
}
std
::
unordered_map
<
std
::
string
,
std
::
string
>
fused_vars_name
;
fused_vars_name
.
reserve
(
aux_var_names
.
size
()
+
1
);
auto
&
fused_var_set
=
result
.
Get
<
FusedVars
>
(
kFusedVars
);
const
std
::
string
prefix
(
kFusedVarNamePrefix
);
// NOTE: the fused_var_name should be unique.
for
(
auto
&
var_name
:
aux_var_names
)
{
auto
fused_var_name
=
prefix
+
"_"
+
fuse_op_type
+
"_"
+
var_name
+
"_"
+
aux_var_set
[
var_name
][
0
];
VLOG
(
10
)
<<
fused_var_name
;
fused_vars_name
.
emplace
(
var_name
,
fused_var_name
);
PADDLE_ENFORCE_EQ
(
fused_var_set
.
count
(
fused_var_name
),
0
);
fused_var_set
.
insert
(
fused_var_name
);
}
// Step 3: Get the fused Gradient's name
auto
&
params_grads
=
result
.
Get
<
ParamsAndGrads
>
(
kParamsAndGrads
);
if
(
!
result
.
Has
(
kFusedGrads
))
{
PADDLE_THROW
(
"The alloc_continuous_space_for_grad_pass should be called before this "
"pass."
);
}
auto
&
fused_grad
=
result
.
Get
<
FusedGrads
>
(
kFusedGrads
);
auto
&
fused_vars
=
result
.
Get
<
FusedVars
>
(
kFusedVars
);
auto
iter
=
std
::
find
(
fused_vars
.
begin
(),
fused_vars
.
end
(),
fused_grad
);
PADDLE_ENFORCE
(
iter
!=
fused_vars
.
end
(),
"Not find the fused_grad."
);
fused_vars_name
.
emplace
(
"Grad"
,
fused_grad
);
// Step 4: Sort the parameters and auxiliary variables according
// to parameters' name to make variables' name correspond correctly.
PADDLE_ENFORCE
(
result
.
Has
(
kParamsAndGrads
),
"Does't find kParamsAndGrads."
);
PADDLE_ENFORCE_EQ
(
params_grads
.
size
(),
aux_var_set
.
begin
()
->
second
.
size
(),
"The size of params_grads and aux_var_set are not equal."
);
SortParametersAndAuxVars
(
params_grads
,
&
aux_var_set
,
&
opt_ops
);
// Step 5: Alloc continuous space for Parameters and AuxiliaryVar(e.g.
// Moment1, Moment2, Beta1Pow, Beta2Pow) of all the optimizer ops separately.
InitFusedVarsAndAllocSpaceForVars
(
places
,
local_scopes
,
aux_var_names
,
aux_var_set
,
fused_vars_name
);
// Step 6: Fuse optimizer Ops and Scale Ops
FuseOptimizerOps
(
aux_var_set
,
fused_vars_name
,
opt_ops
,
&
result
);
// Step 7: Remove optimizer Ops
for
(
auto
&
opt_op
:
opt_ops
)
{
graph
->
RemoveNode
(
opt_op
);
}
}
void
FuseOptimizerOpPass
::
InitFusedVarsAndAllocSpaceForVars
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
std
::
string
>
&
aux_var_names
,
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
aux_var_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
)
const
{
VLOG
(
10
)
<<
"Init FusedVars."
;
// Alloc parameters and auxiliary vars in the respective scope.
size_t
idx
=
local_scopes
.
size
();
for
(
auto
iter
=
local_scopes
.
rbegin
();
iter
!=
local_scopes
.
rend
();
++
iter
,
--
idx
)
{
auto
&
scope
=
*
iter
;
for
(
auto
&
var_name
:
aux_var_names
)
{
auto
fused_var_name
=
fused_vars_name
.
at
(
var_name
);
VLOG
(
10
)
<<
"Init "
<<
fused_var_name
;
PADDLE_ENFORCE
(
scope
->
FindVar
(
fused_var_name
)
==
nullptr
,
"%s has exist in scope[%d]"
,
fused_var_name
,
idx
);
scope
->
Var
(
fused_var_name
)
->
GetMutable
<
LoDTensor
>
();
}
}
ProgramDesc
program_desc
;
auto
*
global_block
=
program_desc
.
MutableBlock
(
0
);
for
(
auto
&
var_name
:
aux_var_names
)
{
AppendAllocContinuousSpace
(
aux_var_set
.
at
(
var_name
),
fused_vars_name
.
at
(
var_name
),
true
,
global_block
);
}
for
(
size_t
i
=
0
;
i
<
local_scopes
.
size
();
++
i
)
{
for
(
auto
&
op_desc
:
global_block
->
AllOps
())
{
auto
op
=
OpRegistry
::
CreateOp
(
*
op_desc
);
op
->
Run
(
*
local_scopes
[
i
],
places
[
i
]);
}
}
}
void
FuseOptimizerOpPass
::
SortParametersAndAuxVars
(
const
std
::
vector
<
std
::
pair
<
std
::
string
,
std
::
string
>>
&
params_grads
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
*
aux_vars_set
,
std
::
vector
<
ir
::
Node
*>
*
ops
)
const
{
PADDLE_ENFORCE_NE
(
aux_vars_set
->
count
(
"Param"
),
static_cast
<
size_t
>
(
0
));
auto
&
param_vec
=
aux_vars_set
->
at
(
"Param"
);
std
::
vector
<
size_t
>
param_sort_idx
;
param_sort_idx
.
reserve
(
param_vec
.
size
());
for
(
auto
&
p_g
:
params_grads
)
{
auto
iter
=
std
::
find
(
param_vec
.
begin
(),
param_vec
.
end
(),
p_g
.
first
);
PADDLE_ENFORCE
(
iter
!=
param_vec
.
end
());
auto
idx
=
std
::
distance
(
param_vec
.
begin
(),
iter
);
param_sort_idx
.
emplace_back
(
idx
);
}
for
(
auto
&
aux_vars
:
*
aux_vars_set
)
{
std
::
vector
<
std
::
string
>
sorted_vars
;
sorted_vars
.
reserve
(
aux_vars
.
second
.
size
());
for
(
size_t
i
=
0
;
i
<
aux_vars
.
second
.
size
();
++
i
)
{
sorted_vars
.
emplace_back
(
aux_vars
.
second
.
at
(
param_sort_idx
[
i
]));
}
std
::
swap
(
aux_vars
.
second
,
sorted_vars
);
std
::
stringstream
out
;
for
(
auto
&
var_name
:
aux_vars
.
second
)
{
out
<<
var_name
<<
" "
;
}
VLOG
(
10
)
<<
aux_vars
.
first
<<
": "
<<
out
.
str
();
}
std
::
vector
<
ir
::
Node
*>
sorted_ops
;
sorted_ops
.
reserve
(
ops
->
size
());
for
(
size_t
i
=
0
;
i
<
ops
->
size
();
++
i
)
{
sorted_ops
.
emplace_back
(
ops
->
at
(
param_sort_idx
[
i
]));
}
std
::
swap
(
*
ops
,
sorted_ops
);
}
void
FuseOptimizerOpPass
::
GetSpecifiedOpsAndVars
(
const
std
::
string
&
op_type
,
const
std
::
vector
<
std
::
string
>
&
aux_vars_name
,
ir
::
Node
*
node
,
std
::
vector
<
ir
::
Node
*>
*
ops
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
*
aux_args_name
)
const
{
if
(
node
->
Op
()
->
Type
()
!=
op_type
)
return
;
for
(
auto
&
var_n
:
aux_vars_name
)
{
auto
arg_names
=
node
->
Op
()
->
Input
(
var_n
);
PADDLE_ENFORCE_EQ
(
arg_names
.
size
(),
static_cast
<
size_t
>
(
1
));
(
*
aux_args_name
)[
var_n
].
emplace_back
(
arg_names
[
0
]);
VLOG
(
10
)
<<
var_n
<<
", "
<<
arg_names
[
0
];
}
ops
->
emplace_back
(
node
);
}
void
FuseOptimizerOpPass
::
AppendAllocContinuousSpace
(
const
std
::
vector
<
std
::
string
>
&
args
,
const
std
::
string
&
out_arg
,
bool
copy_data
,
BlockDesc
*
global_block
)
const
{
auto
op_desc
=
global_block
->
AppendOp
();
op_desc
->
SetType
(
"alloc_continuous_space"
);
op_desc
->
SetInput
(
"Input"
,
args
);
op_desc
->
SetOutput
(
"Output"
,
args
);
op_desc
->
SetOutput
(
"FusedOutput"
,
{
out_arg
});
op_desc
->
SetAttr
(
"copy_data"
,
copy_data
);
op_desc
->
SetAttr
(
"check_name"
,
true
);
}
void
FuseOptimizerOpPass
::
InserInputAndOutputForOptOps
(
const
std
::
vector
<
ir
::
Node
*>
&
opt_ops
,
ir
::
Node
*
opt_node
)
const
{
std
::
unordered_set
<
ir
::
Node
*>
inputs
;
std
::
unordered_set
<
ir
::
Node
*>
outputs
;
for
(
auto
opt_op
:
opt_ops
)
{
// set inputs
inputs
.
insert
(
opt_op
->
inputs
.
begin
(),
opt_op
->
inputs
.
end
());
for
(
auto
&
input
:
opt_op
->
inputs
)
{
replace
(
input
->
outputs
.
begin
(),
input
->
outputs
.
end
(),
opt_op
,
opt_node
);
}
// set outputs
outputs
.
insert
(
opt_op
->
outputs
.
begin
(),
opt_op
->
outputs
.
end
());
for
(
auto
&
output
:
opt_op
->
outputs
)
{
replace
(
output
->
inputs
.
begin
(),
output
->
inputs
.
end
(),
opt_op
,
opt_node
);
}
}
opt_node
->
inputs
.
insert
(
opt_node
->
inputs
.
begin
(),
inputs
.
begin
(),
inputs
.
end
());
opt_node
->
outputs
.
insert
(
opt_node
->
outputs
.
begin
(),
outputs
.
begin
(),
outputs
.
end
());
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/fuse_optimizer_op_pass.h
0 → 100644
浏览文件 @
2336d5ca
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
FuseOptimizerOpPass
:
public
ir
::
Pass
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
protected:
virtual
void
SortParametersAndAuxVars
(
const
std
::
vector
<
std
::
pair
<
std
::
string
,
std
::
string
>>
&
params_grads
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
*
aux_var_set
,
std
::
vector
<
ir
::
Node
*>
*
ops
)
const
;
void
InserInputAndOutputForOptOps
(
const
std
::
vector
<
ir
::
Node
*>
&
opt_ops
,
ir
::
Node
*
opt_node
)
const
;
private:
virtual
const
std
::
string
GetOpType
()
const
=
0
;
virtual
const
std
::
vector
<
std
::
string
>
GetAuxiliaryVarNames
()
const
=
0
;
virtual
void
FuseOptimizerOps
(
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
vars_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
,
const
std
::
vector
<
ir
::
Node
*>
&
adam_ops
,
ir
::
Graph
*
graph
)
const
=
0
;
void
GetSpecifiedOpsAndVars
(
const
std
::
string
&
op_type
,
const
std
::
vector
<
std
::
string
>
&
aux_vars_name
,
ir
::
Node
*
node
,
std
::
vector
<
ir
::
Node
*>
*
ops
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
*
aux_args_name
)
const
;
void
AppendAllocContinuousSpace
(
const
std
::
vector
<
std
::
string
>
&
args
,
const
std
::
string
&
out_arg
,
bool
copy_data
,
BlockDesc
*
global_block
)
const
;
void
InitFusedVarsAndAllocSpaceForVars
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
std
::
string
>
&
aux_var_names
,
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
aux_var_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
)
const
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/fuse_sgd_op_pass.cc
0 → 100644
浏览文件 @
2336d5ca
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fuse_sgd_op_pass.h"
#include <algorithm>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
const
std
::
string
FuseSgdOpPass
::
GetOpType
()
const
{
return
"sgd"
;
}
const
std
::
vector
<
std
::
string
>
FuseSgdOpPass
::
GetAuxiliaryVarNames
()
const
{
return
{
"Param"
};
}
void
FuseSgdOpPass
::
FuseOptimizerOps
(
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
aux_var_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
,
const
std
::
vector
<
ir
::
Node
*>
&
sgd_ops
,
ir
::
Graph
*
graph
)
const
{
FuseSgdOps
(
aux_var_set
,
fused_vars_name
,
sgd_ops
,
graph
);
}
void
FuseSgdOpPass
::
FuseSgdOps
(
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
vars_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
,
const
std
::
vector
<
ir
::
Node
*>
&
sgd_ops
,
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_GT
(
sgd_ops
.
size
(),
static_cast
<
size_t
>
(
0
));
// NOTE: fused_var is only exist in scope, so the graph doesn't have fused_var
// node.
int
op_role
=
boost
::
get
<
int
>
(
sgd_ops
[
0
]
->
Op
()
->
GetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
()));
VLOG
(
10
)
<<
"Insert sgd to graph "
;
// Add fused scale
OpDesc
Sgd_desc
(
sgd_ops
[
0
]
->
Op
()
->
Block
());
Sgd_desc
.
SetType
(
"sgd"
);
Sgd_desc
.
SetInput
(
"Param"
,
{
fused_vars_name
.
at
(
"Param"
)});
Sgd_desc
.
SetInput
(
"Grad"
,
{
fused_vars_name
.
at
(
"Grad"
)});
Sgd_desc
.
SetOutput
(
"ParamOut"
,
{
fused_vars_name
.
at
(
"Param"
)});
// TODO(zcd): The LearningRate, Beta1Pow, Beta2Pow should be equal.
Sgd_desc
.
SetInput
(
"LearningRate"
,
sgd_ops
[
0
]
->
Op
()
->
Input
(
"LearningRate"
));
// NOTE: multi_devices_pass requires that every op should have a role.
Sgd_desc
.
SetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
(),
op_role
);
auto
sgd_node
=
graph
->
CreateOpNode
(
&
Sgd_desc
);
InserInputAndOutputForOptOps
(
sgd_ops
,
sgd_node
);
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
fuse_sgd_op_pass
,
paddle
::
framework
::
details
::
FuseSgdOpPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kPlaces
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kLocalScopes
);
paddle/fluid/framework/details/fuse_sgd_op_pass.h
0 → 100644
浏览文件 @
2336d5ca
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/fuse_optimizer_op_pass.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
FuseSgdOpPass
:
public
FuseOptimizerOpPass
{
private:
virtual
const
std
::
string
GetOpType
()
const
;
virtual
const
std
::
vector
<
std
::
string
>
GetAuxiliaryVarNames
()
const
;
// Fuse Sgd Ops
virtual
void
FuseOptimizerOps
(
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
vars_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
,
const
std
::
vector
<
ir
::
Node
*>
&
sgd_ops
,
ir
::
Graph
*
graph
)
const
;
void
FuseSgdOps
(
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
&
vars_set
,
const
std
::
unordered_map
<
std
::
string
,
std
::
string
>
&
fused_vars_name
,
const
std
::
vector
<
ir
::
Node
*>
&
sgd_ops
,
ir
::
Graph
*
graph
)
const
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/fused_all_reduce_op_handle.cc
浏览文件 @
2336d5ca
...
...
@@ -24,6 +24,19 @@ namespace paddle {
namespace
framework
{
namespace
details
{
// Note(zcd): Addresses should be aligned, otherwise, the results may have
// diff.
static
size_t
Alignment
(
size_t
size
,
const
platform
::
Place
&
place
)
{
// Allow to allocate the minimum chunk size is 4 KB.
size_t
alignment
=
1
<<
12
;
if
(
platform
::
is_gpu_place
(
place
))
{
// Allow to allocate the minimum chunk size is 256 B.
alignment
=
1
<<
8
;
}
size_t
remaining
=
size
%
alignment
;
return
remaining
==
0
?
size
:
size
+
(
alignment
-
remaining
);
}
typedef
std
::
vector
<
std
::
vector
<
std
::
pair
<
std
::
string
,
const
LoDTensor
*>>>
GradientAndLoDTensor
;
...
...
@@ -111,10 +124,11 @@ void FusedAllReduceOpHandle::RunImpl() {
return
grad1
.
second
->
data
<
void
>
()
<
grad2
.
second
->
data
<
void
>
();
});
size_t
size_of_dtype
=
framework
::
SizeOfType
(
dtype
);
for
(
size_t
k
=
1
;
k
<
g_tensor
.
size
();
++
k
)
{
const
void
*
cur_address
=
g_tensor
.
at
(
k
-
1
).
second
->
data
<
void
>
();
int64_t
len
=
g_tensor
.
at
(
k
-
1
).
second
->
numel
();
auto
offset
=
len
*
framework
::
SizeOfType
(
dtype
);
auto
offset
=
Alignment
(
len
*
size_of_dtype
,
places_
[
0
]
);
void
*
infer_next_address
=
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
cur_address
)
+
offset
);
const
void
*
next_address
=
g_tensor
.
at
(
k
).
second
->
data
<
void
>
();
...
...
@@ -228,18 +242,21 @@ void FusedAllReduceOpHandle::GetDTypeAndNumel(
const
std
::
vector
<
std
::
pair
<
std
::
string
,
const
LoDTensor
*>>
&
grad_tensor
,
proto
::
VarType
::
Type
*
dtype
,
int64_t
*
numel
)
const
{
*
numel
=
0
;
size_t
size_of_dtype
=
0
;
for
(
size_t
i
=
0
;
i
<
grad_tensor
.
size
();
++
i
)
{
// Get element number
int64_t
len
=
grad_tensor
.
at
(
i
).
second
->
numel
();
PADDLE_ENFORCE_GT
(
len
,
0
);
*
numel
+=
len
;
// Get dtype
auto
ele_type
=
grad_tensor
.
at
(
i
).
second
->
type
();
if
(
i
==
0
)
{
*
dtype
=
ele_type
;
size_of_dtype
=
framework
::
SizeOfType
(
ele_type
);
}
PADDLE_ENFORCE_EQ
(
ele_type
,
*
dtype
);
// Get element number
int64_t
len
=
grad_tensor
.
at
(
i
).
second
->
numel
();
PADDLE_ENFORCE_GT
(
len
,
0
);
// Alignment(len)
*
numel
+=
Alignment
(
len
*
size_of_dtype
,
places_
[
0
])
/
size_of_dtype
;
}
}
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.h
浏览文件 @
2336d5ca
...
...
@@ -20,7 +20,6 @@
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph.h"
...
...
@@ -34,6 +33,10 @@ namespace framework {
class
Scope
;
namespace
details
{
constexpr
char
kLossVarName
[]
=
"loss_var_name"
;
constexpr
char
kStrategy
[]
=
"strategy"
;
constexpr
char
kNRanks
[]
=
"nranks"
;
class
MultiDevSSAGraphBuilderBase
:
public
ir
::
Pass
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
...
...
paddle/fluid/framework/details/multi_devices_helper.h
浏览文件 @
2336d5ca
...
...
@@ -20,7 +20,6 @@
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/details/var_handle.h"
...
...
@@ -41,22 +40,25 @@ namespace details {
// `std::vector<VarHandle*>` is the version of varaibles.
typedef
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandle
*>>>
GraphVars
;
const
char
kGraphVars
[]
=
"vars"
;
// aux variables to represent dependency. Useful to resolve data hazard.
typedef
std
::
unordered_set
<
VarHandleBase
*>
GraphDepVars
;
const
char
kGraphDepVars
[]
=
"dep_vars"
;
constexpr
char
kGraphVars
[]
=
"vars"
;
constexpr
char
kNCCLCtxs
[]
=
"nccl_ctxs"
;
constexpr
char
kLossVarName
[]
=
"loss_var_name"
;
constexpr
char
kPlaces
[]
=
"places"
;
constexpr
char
kLocalScopes
[]
=
"local_scopes"
;
constexpr
char
kStrategy
[]
=
"strategy"
;
constexpr
char
kNRanks
[]
=
"nranks"
;
constexpr
char
kNCCLCtxs
[]
=
"nccl_ctxs"
;
// aux variables to represent dependency. Useful to resolve data hazard.
typedef
std
::
unordered_set
<
VarHandleBase
*>
GraphDepVars
;
constexpr
char
kGraphDepVars
[]
=
"dep_vars"
;
typedef
std
::
unordered_set
<
std
::
string
>
FusedVars
;
constexpr
char
kFusedVars
[]
=
"fused_vars"
;
constexpr
char
kFusedVarNamePrefix
[]
=
"@FUSEDVAR@"
;
typedef
std
::
string
FusedOptType
;
constexpr
char
kFusedOptType
[]
=
"fused_opt_type"
;
typedef
std
::
string
FusedGrads
;
constexpr
char
kFusedGrads
[]
=
"fused_gradients"
;
typedef
std
::
vector
<
std
::
pair
<
std
::
string
,
std
::
string
>>
ParamsAndGrads
;
constexpr
char
kParamsAndGrads
[]
=
"params_grads"
;
...
...
@@ -65,8 +67,6 @@ typedef std::vector<std::vector<std::pair<std::string, std::string>>>
GroupGradsAndParams
;
constexpr
char
kGroupGradsAndParams
[]
=
"group_grads_params"
;
constexpr
char
kFusedVarNamePrefix
[]
=
"@FUSEDVAR@"
;
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
2336d5ca
...
...
@@ -24,13 +24,13 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
const
ExecutionStrategy
&
strategy
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
ir
::
Graph
*
graph
)
:
graph_
(
graph
),
pool_
(
strategy
.
num_threads_
>=
2
?
new
::
ThreadPool
(
strategy
.
num_threads_
)
:
nullptr
),
prepare_pool_
(
1
),
local_scopes_
(
local_scopes
),
places_
(
places
),
fetch_ctxs_
(
places
),
strategy_
(
strategy
)
{
strategy_
(
strategy
),
prepare_pool_
(
1
),
pool_
(
strategy
.
num_threads_
>=
2
?
new
::
ThreadPool
(
strategy
.
num_threads_
)
:
nullptr
)
{
PrepareOpDeps
();
CopyOpDeps
();
}
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
2336d5ca
...
...
@@ -63,13 +63,20 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
details
::
OpHandleBase
*
op
);
private:
// Note(zcd): the ThreadPool should be placed last so that ThreadPool should
// be destroyed first.
ir
::
Graph
*
graph_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
;
::
ThreadPool
prepare_pool_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
platform
::
DeviceContextPool
fetch_ctxs_
;
ExceptionHolder
exception_holder_
;
std
::
unique_ptr
<
OpDependentData
>
op_deps_
;
std
::
future
<
std
::
unique_ptr
<
OpDependentData
>>
op_deps_futures_
;
ExecutionStrategy
strategy_
;
// use std::list because clear(), push_back, and for_each are O(1)
std
::
list
<
std
::
future
<
void
>>
run_op_futures_
;
::
ThreadPool
prepare_pool_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
;
void
InsertPendingOp
(
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
OpHandleBase
*
op_instance
)
const
;
...
...
@@ -88,14 +95,6 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
void
PrepareOpDeps
();
void
CopyOpDeps
();
private:
std
::
future
<
std
::
unique_ptr
<
OpDependentData
>>
op_deps_futures_
;
ExecutionStrategy
strategy_
;
std
::
unique_ptr
<
OpDependentData
>
op_deps_
;
// use std::list because clear(), push_back, and for_each are O(1)
std
::
list
<
std
::
future
<
void
>>
run_op_futures_
;
};
}
// namespace details
...
...
paddle/fluid/framework/tensor.cc
浏览文件 @
2336d5ca
...
...
@@ -70,7 +70,7 @@ Tensor& Tensor::ShareDataWith(const Tensor& src) {
return
*
this
;
}
Tensor
Tensor
::
Slice
(
int
begin_idx
,
in
t
end_idx
)
const
{
Tensor
Tensor
::
Slice
(
int
64_t
begin_idx
,
int64_
t
end_idx
)
const
{
check_memory_size
();
PADDLE_ENFORCE_GE
(
begin_idx
,
0
,
"The start row index must be greater than 0."
);
...
...
paddle/fluid/framework/tensor.h
浏览文件 @
2336d5ca
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include <cstring>
#include <memory>
#include <typeindex>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/ddim.h"
...
...
@@ -27,10 +28,6 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_utils.h"
#endif
namespace
paddle
{
namespace
framework
{
...
...
@@ -41,34 +38,10 @@ class Tensor {
#ifdef PADDLE_WITH_MKLDNN
public:
// TODO(jczaja): This is depracted and will be removed
inline
mkldnn
::
memory
::
format
format
()
const
{
if
(
layout_
==
DataLayout
::
kMKLDNN
)
{
return
static_cast
<
mkldnn
::
memory
::
format
>
(
mem_pd_
.
desc
().
data
.
format
);
}
else
{
return
mkldnn
::
memory
::
format
::
format_undef
;
}
}
inline
mkldnn
::
memory
::
format
format
()
const
{
return
format_
;
}
// TODO(jczaja): This is depracted and will be removed
inline
void
set_format
(
const
mkldnn
::
memory
::
format
fmt
,
mkldnn
::
memory
::
data_type
data_type
=
mkldnn
::
memory
::
f32
)
{
mem_pd_
=
paddle
::
platform
::
create_prim_desc_from_format
(
paddle
::
framework
::
vectorize2int
(
dims
()),
fmt
,
data_type
);
layout_
=
DataLayout
::
kMKLDNN
;
}
inline
mkldnn
::
memory
::
primitive_desc
get_mkldnn_prim_desc
()
const
{
return
mem_pd_
;
}
inline
void
set_mkldnn_prim_desc
(
const
mkldnn
::
memory
::
primitive_desc
&
mem_pd
)
{
// Internally MKL-DNN is just copying (increasing reference counter)
// to shared_ptr. So asignment should be quite cheap
mem_pd_
=
mem_pd
;
layout_
=
DataLayout
::
kMKLDNN
;
inline
void
set_format
(
const
mkldnn
::
memory
::
format
format
)
{
format_
=
format
;
}
protected:
...
...
@@ -76,9 +49,12 @@ class Tensor {
* @brief the detail format of memory block which have layout as kMKLDNN
*
* @note MKLDNN lib support various memory format like nchw, nhwc, nChw8C,
* nChw16c, etc. For a MKLDNN memory block, we store memory descriptor
* nChw16c, etc. For a MKLDNN memory block, layout will be set as
* DataLayout::kMKLDNN meanwhile detail memory format will be kept in
* this field.
*/
mutable
mkldnn
::
memory
::
primitive_desc
mem_pd_
;
mkldnn
::
memory
::
format
format_
=
mkldnn
::
memory
::
format
::
format_undef
;
#endif
public:
...
...
@@ -157,7 +133,7 @@ class Tensor {
* @param[in] end_idx The index of the end row(exclusive) to slice.
* The index number begins from 0.
*/
Tensor
Slice
(
int
begin_idx
,
in
t
end_idx
)
const
;
Tensor
Slice
(
int
64_t
begin_idx
,
int64_
t
end_idx
)
const
;
platform
::
Place
place
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
...
...
paddle/fluid/framework/tensor_util.cc
浏览文件 @
2336d5ca
...
...
@@ -44,11 +44,6 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
<<
dst_place
;
return
;
}
#ifdef PADDLE_WITH_MKLDNN
if
(
src
.
layout
()
==
DataLayout
::
kMKLDNN
)
{
dst
->
set_mkldnn_prim_desc
(
src
.
get_mkldnn_prim_desc
());
}
#endif
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
dst_place
),
dst_ptr
,
boost
::
get
<
platform
::
CPUPlace
>
(
src_place
),
src_ptr
,
size
);
}
...
...
paddle/fluid/operators/alloc_continuous_space_op.cc
浏览文件 @
2336d5ca
...
...
@@ -65,7 +65,8 @@ class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
// Get numel and dtype
size_t
numel
=
0
;
auto
dtype
=
kDefaultDtype
;
GetMemSizeAndDtype
(
in_tensors
,
in_var_names
,
&
numel
,
&
dtype
);
GetMemSizeAndDtype
(
in_tensors
,
in_var_names
,
&
numel
,
&
dtype
,
context
.
GetPlace
());
// Alloc the continuous space
auto
fused_tensor
=
context
.
Output
<
framework
::
LoDTensor
>
(
"FusedOutput"
);
...
...
@@ -74,14 +75,18 @@ class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
// Init the continuous space
auto
out_tensors
=
context
.
MultiOutput
<
framework
::
LoDTensor
>
(
"Output"
);
int64_t
offset
=
0
;
size_t
offset
=
0
;
size_t
size_of_dtype
=
framework
::
SizeOfType
(
dtype
);
if
(
context
.
Attr
<
bool
>
(
"copy_data"
))
{
for
(
size_t
i
=
0
;
i
<
in_var_names
.
size
();
++
i
)
{
int64_t
len
=
out_tensors
[
i
]
->
numel
(
);
auto
sub_tensor
=
fused_tensor
->
Slice
(
offset
,
offset
+
len
);
offset
+=
len
;
framework
::
TensorCopy
(
*
out
_tensors
[
i
],
context
.
GetPlace
(),
dev_ctx
,
size_t
len
=
static_cast
<
size_t
>
(
in_tensors
[
i
]
->
numel
()
);
auto
sub_tensor
=
fused_tensor
->
Slice
(
static_cast
<
int64_t
>
(
offset
),
static_cast
<
int64_t
>
(
offset
+
len
))
;
framework
::
TensorCopy
(
*
in
_tensors
[
i
],
context
.
GetPlace
(),
dev_ctx
,
&
sub_tensor
);
offset
+=
Alignment
(
len
*
size_of_dtype
,
context
.
GetPlace
())
/
size_of_dtype
;
}
}
else
if
(
context
.
Attr
<
bool
>
(
"set_constant"
))
{
math
::
SetConstant
<
DeviceContext
,
T
>
set_constant
;
...
...
@@ -92,11 +97,13 @@ class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
// Make the outputs point to the continuous space.
offset
=
0
;
for
(
size_t
i
=
0
;
i
<
out_tensors
.
size
();
++
i
)
{
int64_t
len
=
out_tensors
[
i
]
->
numel
(
);
size_t
len
=
static_cast
<
size_t
>
(
out_tensors
[
i
]
->
numel
()
);
auto
dim
=
out_tensors
[
i
]
->
dims
();
out_tensors
[
i
]
->
ShareDataWith
(
fused_tensor
->
Slice
(
offset
,
offset
+
len
))
->
ShareDataWith
(
fused_tensor
->
Slice
(
static_cast
<
int64_t
>
(
offset
),
static_cast
<
int64_t
>
(
offset
+
len
)))
.
Resize
(
dim
);
len
=
Alignment
(
len
*
size_of_dtype
,
context
.
GetPlace
())
/
size_of_dtype
;
offset
+=
len
;
VLOG
(
10
)
<<
"alloc_space_for_vars: output("
<<
out_var_names
[
i
]
<<
") ,dim:("
<<
dim
<<
")"
...
...
@@ -104,12 +111,28 @@ class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
}
}
private:
// Note(zcd): Addresses should be aligned, otherwise, the results may have
// diff.
size_t
Alignment
(
size_t
size
,
const
platform
::
Place
&
place
)
const
{
// Allow to allocate the minimum chunk size is 4 KB.
size_t
alignment
=
1
<<
12
;
if
(
platform
::
is_gpu_place
(
place
))
{
// Allow to allocate the minimum chunk size is 256 B.
alignment
=
1
<<
8
;
}
size_t
remaining
=
size
%
alignment
;
return
remaining
==
0
?
size
:
size
+
(
alignment
-
remaining
);
}
void
GetMemSizeAndDtype
(
const
std
::
vector
<
const
framework
::
LoDTensor
*>
&
lod_tensors
,
const
std
::
vector
<
std
::
string
>
var_names
,
size_t
*
numel
,
framework
::
proto
::
VarType
::
Type
*
dtype
)
const
{
framework
::
proto
::
VarType
::
Type
*
dtype
,
const
platform
::
Place
&
place
)
const
{
PADDLE_ENFORCE_EQ
(
lod_tensors
.
size
(),
var_names
.
size
());
*
numel
=
0
;
size_t
size_of_dtype
=
0
;
for
(
size_t
i
=
0
;
i
<
var_names
.
size
();
++
i
)
{
PADDLE_ENFORCE
(
lod_tensors
[
i
]
->
IsInitialized
(),
"%s is not initialized."
,
var_names
[
i
]);
...
...
@@ -119,6 +142,7 @@ class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_NE
(
p_dtype
,
kDefaultDtype
,
"%s's type should not be %s."
,
var_names
[
i
],
kDefaultDtype
);
*
dtype
=
p_dtype
;
size_of_dtype
=
framework
::
SizeOfType
(
p_dtype
);
}
PADDLE_ENFORCE_EQ
(
p_dtype
,
*
dtype
,
"Input vars is not equal."
);
...
...
@@ -126,7 +150,8 @@ class AllocContinuousSpaceKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_GT
(
size
,
0
);
VLOG
(
10
)
<<
"alloc_space_for_vars: input("
<<
var_names
[
i
]
<<
") ,dim:("
<<
lod_tensors
[
i
]
->
dims
()
<<
")"
;
*
numel
+=
size
;
*
numel
+=
Alignment
(
static_cast
<
size_t
>
(
size
)
*
size_of_dtype
,
place
)
/
size_of_dtype
;
}
}
};
...
...
paddle/fluid/operators/bpr_loss_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/bpr_loss_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -127,6 +128,23 @@ neural networks>(https://arxiv.org/abs/1511.06939)
)DOC"
);
}
};
class
BprLossGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"bpr_loss_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"Label"
,
Input
(
"Label"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Y"
),
OutputGrad
(
"Y"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -134,7 +152,7 @@ namespace ops = paddle::operators;
using
CPUCtx
=
paddle
::
platform
::
CPUDeviceContext
;
REGISTER_OPERATOR
(
bpr_loss
,
ops
::
BprLossOp
,
ops
::
BprLossOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
BprLossGradDescMaker
);
REGISTER_OPERATOR
(
bpr_loss_grad
,
ops
::
BprLossGradientOp
);
REGISTER_OP_CPU_KERNEL
(
bpr_loss
,
ops
::
BprLossOpKernel
<
CPUCtx
,
float
>
,
ops
::
BprLossOpKernel
<
CPUCtx
,
double
>
);
...
...
paddle/fluid/operators/detection/roi_perspective_transform_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
...
...
@@ -568,13 +569,31 @@ class ROIPerspectiveTransformOpMaker
}
};
class
ROIPerspectiveTransformGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"roi_perspective_transform_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"ROIs"
,
Input
(
"ROIs"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
roi_perspective_transform
,
ops
::
ROIPerspectiveTransformOp
,
ops
::
ROIPerspectiveTransformOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
ROIPerspectiveTransformGradDescMaker
);
REGISTER_OPERATOR
(
roi_perspective_transform_grad
,
ops
::
ROIPerspectiveTransformGradOp
);
REGISTER_OP_CPU_KERNEL
(
roi_perspective_transform
,
...
...
paddle/fluid/operators/elementwise/mkldnn/elementwise_add_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -77,7 +77,8 @@ class EltwiseAddMKLDNNKernel : public framework::OpKernel<T> {
}
else
{
functor
.
RunMidWise
(
n
,
pre
,
post
);
}
z
->
set_mkldnn_prim_desc
(
x
->
get_mkldnn_prim_desc
());
z
->
set_layout
(
DataLayout
::
kMKLDNN
);
z
->
set_format
(
x
->
format
());
}
else
{
PADDLE_ENFORCE
(
x
->
layout
()
==
DataLayout
::
kMKLDNN
&&
x
->
format
()
!=
memory
::
format
::
format_undef
,
...
...
@@ -115,8 +116,7 @@ class EltwiseAddMKLDNNKernel : public framework::OpKernel<T> {
auto
sum_pd
=
sum
::
primitive_desc
(
dst_md
,
scales
,
srcs_pd
);
// create mkldnn memory for dst
auto
dst_mem_pd
=
sum_pd
.
dst_primitive_desc
();
memory
dst_memory
=
memory
(
dst_mem_pd
,
z_data
);
memory
dst_memory
=
memory
(
sum_pd
.
dst_primitive_desc
(),
z_data
);
std
::
vector
<
primitive
::
at
>
inputs
;
inputs
.
push_back
(
srcs
[
0
]);
...
...
@@ -129,7 +129,9 @@ class EltwiseAddMKLDNNKernel : public framework::OpKernel<T> {
pipeline
.
push_back
(
sum_prim
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
z
->
set_mkldnn_prim_desc
(
dst_mem_pd
);
z
->
set_layout
(
DataLayout
::
kMKLDNN
);
z
->
set_format
(
(
memory
::
format
)
dst_memory
.
get_primitive_desc
().
desc
().
data
.
format
);
}
}
};
...
...
@@ -150,19 +152,24 @@ class EltwiseAddMKLDNNGradKernel : public ElemwiseGradKernel<T> {
auto
*
out
=
dout
;
auto
*
x
=
dout
,
*
y
=
dout
;
auto
set_mkldnn_format
=
[](
Tensor
*
in
,
const
Tensor
*
out
)
{
in
->
set_layout
(
DataLayout
::
kMKLDNN
);
in
->
set_format
(
out
->
format
());
};
if
(
dx
!=
nullptr
&&
dy
!=
nullptr
&&
dx
->
dims
()
==
dy
->
dims
())
{
if
(
dx
->
dims
()
==
dy
->
dims
())
{
auto
blas
=
math
::
GetBlas
<
paddle
::
platform
::
CPUDeviceContext
,
T
>
(
ctx
);
if
(
dx
)
{
blas
.
VCOPY
(
dout
->
numel
(),
dout
->
data
<
T
>
(),
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
dx
->
set_mkldnn_prim_desc
(
dout
->
get_mkldnn_prim_desc
()
);
set_mkldnn_format
(
dx
,
dout
);
}
if
(
dy
)
{
blas
.
VCOPY
(
dout
->
numel
(),
dout
->
data
<
T
>
(),
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
dy
->
set_mkldnn_prim_desc
(
dout
->
get_mkldnn_prim_desc
()
);
set_mkldnn_format
(
dy
,
dout
);
}
}
}
else
{
...
...
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
浏览文件 @
2336d5ca
...
...
@@ -65,11 +65,17 @@ by input arguments.
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE
(
GaussianRandomBatchSizeLikeNoNeedBufferVarsInference
,
"Input"
);
}
// namespace operators
}
// namespace paddle
REGISTER_OP
_WITHOUT_GRADIENT
(
REGISTER_OP
ERATOR
(
gaussian_random_batch_size_like
,
paddle
::
operators
::
GaussianRandomBatchSizeLikeOp
,
paddle
::
operators
::
GaussianRandomBatchSizeLikeOpMaker
);
paddle
::
operators
::
GaussianRandomBatchSizeLikeOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
,
paddle
::
operators
::
GaussianRandomBatchSizeLikeNoNeedBufferVarsInference
);
// Kernels are registered in gaussian_random_op.cc and gaussian_random_op.cu
paddle/fluid/operators/im2sequence_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/im2sequence_op.h"
#include <memory>
#include <string>
#include <vector>
...
...
@@ -146,12 +147,28 @@ class Im2SequenceGradOp : public framework::OperatorWithKernel {
}
};
class
Im2SequenceGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"im2sequence_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
im2sequence
,
ops
::
Im2SequenceOp
,
ops
::
Im2SequenceOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
Im2SequenceGradDescMaker
);
REGISTER_OPERATOR
(
im2sequence_grad
,
ops
::
Im2SequenceGradOp
);
REGISTER_OP_CPU_KERNEL
(
im2sequence
,
...
...
paddle/fluid/operators/interpolate_op.cc
浏览文件 @
2336d5ca
...
...
@@ -10,6 +10,7 @@
limitations under the License. */
#include "paddle/fluid/operators/interpolate_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -194,21 +195,46 @@ class InterpolateOpGrad : public framework::OperatorWithKernel {
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
());
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
type
(),
ctx
.
GetPlace
());
}
};
class
InterpolateGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
ForwardOp
().
Type
()
+
"_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
if
(
ForwardOp
().
Inputs
().
count
(
"OutSize"
)
>
0
)
{
op
->
SetInput
(
"OutSize"
,
Input
(
"OutSize"
));
}
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE
(
InterpolateGradNoNeedBufferVarsInference
,
"X"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
bilinear_interp
,
ops
::
InterpolateOp
,
ops
::
InterpolateOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
bilinear_interp_grad
,
ops
::
InterpolateOpGrad
);
ops
::
InterpolateGradDescMaker
);
REGISTER_OPERATOR
(
bilinear_interp_grad
,
ops
::
InterpolateOpGrad
,
ops
::
InterpolateGradNoNeedBufferVarsInference
);
REGISTER_OPERATOR
(
nearest_interp
,
ops
::
InterpolateOp
,
ops
::
InterpolateOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
nearest_interp_grad
,
ops
::
InterpolateOpGrad
);
ops
::
InterpolateGradDescMaker
);
REGISTER_OPERATOR
(
nearest_interp_grad
,
ops
::
InterpolateOpGrad
,
ops
::
InterpolateGradNoNeedBufferVarsInference
);
REGISTER_OP_CPU_KERNEL
(
bilinear_interp
,
ops
::
InterpolateKernel
<
float
>
,
ops
::
InterpolateKernel
<
double
>
,
ops
::
InterpolateKernel
<
uint8_t
>
);
...
...
paddle/fluid/operators/l1_norm_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/l1_norm_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -62,12 +63,28 @@ $$Out = \sum{|X|}$$
}
};
class
L1NormGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"l1_norm_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
l1_norm
,
ops
::
L1NormOp
,
ops
::
L1NormOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
L1NormGradDescMaker
);
REGISTER_OPERATOR
(
l1_norm_grad
,
ops
::
L1NormGradOp
);
REGISTER_OP_CPU_KERNEL
(
l1_norm
,
ops
::
L1NormKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
...
...
paddle/fluid/operators/label_smooth_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/label_smooth_op.h"
#include <memory>
#include <string>
namespace
paddle
{
...
...
@@ -105,10 +106,23 @@ class LabelSmoothGradOp : public framework::OperatorWithKernel {
:
OperatorWithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
)));
}
};
class
LabelSmoothGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"label_smooth_grad"
);
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
...
...
@@ -117,7 +131,7 @@ class LabelSmoothGradOp : public framework::OperatorWithKernel {
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
label_smooth
,
ops
::
LabelSmoothOp
,
ops
::
LabelSmoothOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
LabelSmoothGradDescMaker
);
REGISTER_OPERATOR
(
label_smooth_grad
,
ops
::
LabelSmoothGradOp
);
REGISTER_OP_CPU_KERNEL
(
label_smooth
,
...
...
paddle/fluid/operators/linear_chain_crf_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/linear_chain_crf_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -250,14 +251,46 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
}
};
class
LinearChainCRFGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"linear_chain_crf_grad"
);
op
->
SetAttrMap
(
Attrs
());
op
->
SetInput
(
"Emission"
,
Input
(
"Emission"
));
op
->
SetInput
(
"Transition"
,
Input
(
"Transition"
));
op
->
SetInput
(
"Label"
,
Input
(
"Label"
));
op
->
SetInput
(
"Alpha"
,
Output
(
"Alpha"
));
op
->
SetInput
(
"EmissionExps"
,
Output
(
"EmissionExps"
));
op
->
SetInput
(
"TransitionExps"
,
Output
(
"TransitionExps"
));
op
->
SetInput
(
framework
::
GradVarName
(
"LogLikelihood"
),
OutputGrad
(
"LogLikelihood"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Emission"
),
InputGrad
(
"Emission"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Transition"
),
InputGrad
(
"Transition"
));
return
op
;
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE
(
LinearChainCRFGradNoNeedBufferVarsInference
,
"Transition"
,
"Emission"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
linear_chain_crf
,
ops
::
LinearChainCRFOp
,
ops
::
LinearChainCRFOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
linear_chain_crf_grad
,
ops
::
LinearChainCRFGradOp
);
ops
::
LinearChainCRFOpMaker
,
ops
::
LinearChainCRFGradDescMaker
);
REGISTER_OPERATOR
(
linear_chain_crf_grad
,
ops
::
LinearChainCRFGradOp
,
ops
::
LinearChainCRFGradNoNeedBufferVarsInference
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf
,
ops
::
LinearChainCRFOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
...
...
paddle/fluid/operators/log_loss_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/log_loss_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -100,12 +101,29 @@ class LogLossGradOp : public framework::OperatorWithKernel {
}
};
class
LogLossGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"log_loss_grad"
);
op
->
SetInput
(
"Predicted"
,
Input
(
"Predicted"
));
op
->
SetInput
(
"Labels"
,
Input
(
"Labels"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
OutputGrad
(
"Loss"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Predicted"
),
InputGrad
(
"Predicted"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
log_loss
,
ops
::
LogLossOp
,
ops
::
LogLossOpMaker
<
float
>
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
LogLossGradDescMaker
);
REGISTER_OPERATOR
(
log_loss_grad
,
ops
::
LogLossGradOp
);
REGISTER_OP_CPU_KERNEL
(
log_loss
,
ops
::
LogLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
...
...
paddle/fluid/operators/lstm_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/lstm_op.h"
#include <memory>
#include <string>
namespace
paddle
{
...
...
@@ -264,12 +265,51 @@ class LSTMGradOp : public framework::OperatorWithKernel {
}
};
class
LSTMGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"lstm_grad"
);
op
->
SetAttrMap
(
Attrs
());
op
->
SetInput
(
"Input"
,
Input
(
"Input"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Input"
),
InputGrad
(
"Input"
));
if
(
ForwardOp
().
Inputs
().
count
(
"H0"
)
>
0
)
{
op
->
SetInput
(
"H0"
,
Input
(
"H0"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"H0"
),
InputGrad
(
"H0"
));
}
if
(
ForwardOp
().
Inputs
().
count
(
"C0"
)
>
0
)
{
op
->
SetInput
(
"C0"
,
Input
(
"C0"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"C0"
),
InputGrad
(
"C0"
));
}
op
->
SetInput
(
"Weight"
,
Input
(
"Weight"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Weight"
),
InputGrad
(
"Weight"
));
op
->
SetInput
(
"Bias"
,
Input
(
"Bias"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Bias"
),
InputGrad
(
"Bias"
));
op
->
SetInput
(
"Cell"
,
Output
(
"Cell"
));
op
->
SetInput
(
"Hidden"
,
Output
(
"Hidden"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Hidden"
),
OutputGrad
(
"Hidden"
));
op
->
SetInput
(
"BatchGate"
,
Output
(
"BatchGate"
));
op
->
SetInput
(
"BatchCellPreAct"
,
Output
(
"BatchCellPreAct"
));
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
lstm
,
ops
::
LSTMOp
,
ops
::
LSTMOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
LSTMGradOpDescMaker
);
REGISTER_OPERATOR
(
lstm_grad
,
ops
::
LSTMGradOp
);
REGISTER_OP_CPU_KERNEL
(
lstm
,
ops
::
LSTMKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
...
...
paddle/fluid/operators/margin_rank_loss_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/margin_rank_loss_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -94,8 +95,6 @@ class MarginRankLossGradOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X1"
),
"Input(X1) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X2"
),
"Input(X2) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) shouldn't be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Activated"
),
...
...
@@ -106,13 +105,31 @@ class MarginRankLossGradOp : public framework::OperatorWithKernel {
}
};
class
MarginRankLossGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"margin_rank_loss_grad"
);
op
->
SetInput
(
"Activated"
,
Output
(
"Activated"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetInput
(
"Label"
,
Input
(
"Label"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X1"
),
InputGrad
(
"X1"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X2"
),
InputGrad
(
"X2"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
margin_rank_loss
,
ops
::
MarginRankLossOp
,
ops
::
MarginRankLossOpMaker
<
float
>
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
MarginRankLossGradDescMaker
);
REGISTER_OPERATOR
(
margin_rank_loss_grad
,
ops
::
MarginRankLossGradOp
);
REGISTER_OP_CPU_KERNEL
(
margin_rank_loss
,
...
...
paddle/fluid/operators/mean_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,7 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/mean_op.h"
#include <memory>
#include <string>
#include <unordered_map>
namespace
paddle
{
namespace
operators
{
...
...
@@ -61,7 +64,8 @@ class MeanGradOp : public framework::OperatorWithKernel {
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
();
auto
input_data_type
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
type
();
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
...
...
@@ -81,13 +85,16 @@ class MeanGradMaker : public framework::SingleGradOpDescMaker {
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE
(
MeanGradNoNeedBufferVarsInference
,
"X"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
mean
,
ops
::
MeanOp
,
ops
::
MeanOpMaker
,
ops
::
MeanOpInferVarType
,
ops
::
MeanGradMaker
);
REGISTER_OPERATOR
(
mean_grad
,
ops
::
MeanGradOp
);
REGISTER_OPERATOR
(
mean_grad
,
ops
::
MeanGradOp
,
ops
::
MeanGradNoNeedBufferVarsInference
);
REGISTER_OP_CPU_KERNEL
(
mean
,
ops
::
MeanKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MeanKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
...
...
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -96,7 +96,8 @@ void eltwise_forward(const framework::ExecutionContext &ctx,
std
::
vector
<
int
>
src_tz
=
framework
::
vectorize2int
(
x
->
dims
());
auto
src_format
=
x
->
format
();
auto
src_format
=
src_tz
.
size
()
==
2
?
mkldnn
::
memory
::
format
::
nc
:
x
->
format
();
const
std
::
string
key
=
gethash
(
src_tz
,
algorithm
);
const
std
::
string
key_src_data
=
...
...
@@ -126,8 +127,10 @@ void eltwise_forward(const framework::ExecutionContext &ctx,
if
(
p_fwd
==
nullptr
)
{
// create mkldnn memory for input X
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
src_format
);
auto
src_memory
=
std
::
shared_ptr
<
memory
>
(
new
memory
(
x
->
get_mkldnn_prim_desc
()
,
to_void_cast
(
x_data
)));
new
memory
(
{
src_md
,
mkldnn_engine
}
,
to_void_cast
(
x_data
)));
// save src_memory to be referred in backward path
dev_ctx
.
SetBlob
(
key_src_mem
,
src_memory
);
...
...
@@ -174,7 +177,8 @@ void eltwise_forward(const framework::ExecutionContext &ctx,
pipeline
.
push_back
(
*
p_fwd
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
y
->
set_mkldnn_prim_desc
(
dst_memory
->
get_primitive_desc
());
y
->
set_layout
(
DataLayout
::
kMKLDNN
);
y
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory
));
}
template
<
typename
T
>
...
...
@@ -192,6 +196,9 @@ void eltwise_grad(const framework::ExecutionContext &ctx,
std
::
vector
<
int
>
diff_dst_tz
=
framework
::
vectorize2int
(
diff_y
->
dims
());
auto
diff_y_format
=
diff_dst_tz
.
size
()
==
2
?
mkldnn
::
memory
::
format
::
nc
:
diff_y
->
format
();
const
std
::
string
key
=
gethash
(
diff_dst_tz
,
algorithm
);
const
std
::
string
key_src_data
=
key
+
ctx
.
op
().
Input
(
"Out"
)
+
"@eltwise_fwd_src_data"
;
...
...
@@ -203,8 +210,8 @@ void eltwise_grad(const framework::ExecutionContext &ctx,
key
+
std
::
to_string
(
*
p_src_layout
)
+
"@eltwise_fwd_src_mem"
;
const
std
::
string
key_fwd_pd
=
key
+
std
::
to_string
(
*
p_src_layout
)
+
"@eltwise_fwd_pd"
;
const
std
::
string
key_with_layouts
=
key
+
std
::
to_string
(
*
p_src_layout
)
+
"-"
+
std
::
to_string
(
diff_y
->
format
()
);
const
std
::
string
key_with_layouts
=
key
+
std
::
to_string
(
*
p_src_layout
)
+
"-"
+
std
::
to_string
(
diff_y_format
);
const
std
::
string
key_diff_src_mem
=
key_with_layouts
+
"@eltwise_diff_src_mem"
;
const
std
::
string
key_diff_dst_mem
=
...
...
@@ -227,8 +234,10 @@ void eltwise_grad(const framework::ExecutionContext &ctx,
if
(
p_grad
==
nullptr
)
{
// create mkldnn memory for input diff_y
auto
diff_dst_md
=
platform
::
MKLDNNMemDesc
(
diff_dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
diff_y_format
);
auto
diff_dst_memory
=
std
::
shared_ptr
<
memory
>
(
new
memory
(
diff_y
->
get_mkldnn_prim_desc
()
,
to_void_cast
(
diff_y_data
)));
new
memory
(
{
diff_dst_md
,
mkldnn_engine
}
,
to_void_cast
(
diff_y_data
)));
dev_ctx
.
SetBlob
(
key_diff_dst_mem
,
diff_dst_memory
);
// retrieve eltwise primitive desc from device context
...
...
@@ -272,7 +281,8 @@ void eltwise_grad(const framework::ExecutionContext &ctx,
pipeline
.
push_back
(
*
p_grad
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
diff_x
->
set_mkldnn_prim_desc
(
diff_src_memory
->
get_primitive_desc
());
diff_x
->
set_layout
(
DataLayout
::
kMKLDNN
);
diff_x
->
set_format
(
GetMKLDNNFormat
(
*
diff_src_memory
));
}
template
<
typename
T
,
mkldnn
::
algorithm
algorithm
>
...
...
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -206,14 +206,17 @@ class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
if
(
fuse_with_relu
)
flags
|=
mkldnn
::
fuse_bn_relu
;
// create mkldnn memory from input x tensor
mkldnn
::
memory
::
format
input_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
x
->
format
());
// keys for backward pass
const
std
::
string
key
=
BatchNormMKLDNNHandler
::
GetHash
(
src_tz
,
epsilon
,
flags
,
global_stats
,
x
->
format
()
,
src_tz
,
epsilon
,
flags
,
global_stats
,
input_format
,
ctx
.
op
().
Output
(
"SavedMean"
));
const
std
::
string
key_batch_norm_fwd_pd
=
key
+
"@bn_fwd_pd"
;
auto
user_src_md
=
x
->
get_mkldnn_prim_desc
().
desc
();
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input_format
);
// create primitive descriptor for batch norm forward
using
bn_fwd_types
=
bn_type_traits
<
mkldnn
::
batch_normalization_forward
>
;
...
...
@@ -227,8 +230,8 @@ class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
BatchNormMKLDNNHandler
handler
(
batch_norm_fwd_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
auto
src_memory
=
handler
.
AcquireSrcMemory
(
x
->
get_mkldnn_prim_desc
(),
to_void_cast
(
x_data
));
auto
src_memory
=
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
(
x_data
));
// crate mkldnn memory for weights(scale/shift)
auto
scaleshift_memory
=
...
...
@@ -262,7 +265,8 @@ class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
variance_memory
,
false
);
}
y
->
set_mkldnn_prim_desc
(
dst_memory
->
get_primitive_desc
());
y
->
set_layout
(
DataLayout
::
kMKLDNN
);
y
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_memory
));
std
::
vector
<
mkldnn
::
primitive
>
pipeline
;
pipeline
.
push_back
(
*
batch_norm_p
);
...
...
@@ -332,6 +336,9 @@ class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
using
bn_bwd_types
=
bn_type_traits
<
mkldnn
::
batch_normalization_backward
>
;
mkldnn
::
memory
::
format
dst_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
diff_y
->
format
());
mkldnn
::
memory
::
format
input_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
x
->
format
());
...
...
@@ -339,14 +346,14 @@ class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
// keys from forward pass
const
std
::
string
key
=
BatchNormMKLDNNHandler
::
GetHash
(
src_tz
,
epsilon
,
flags
,
false
,
x
->
format
()
,
src_tz
,
epsilon
,
flags
,
false
,
input_format
,
ctx
.
op
().
Input
(
"SavedMean"
));
const
std
::
string
key_batch_norm_fwd_pd
=
key
+
"@bn_fwd_pd"
;
// keys for primitives reuse
const
std
::
string
key_with_hash
=
key
+
BatchNormMKLDNNHandler
::
GetHash
(
src_tz
,
epsilon
,
flags
,
false
,
x
->
format
()
);
input_format
);
const
std
::
string
key_batch_norm_bwd_p
=
key_with_hash
+
"@batch_norm_bwd_p"
;
const
std
::
string
key_batch_norm_src_mem_p
=
...
...
@@ -366,8 +373,9 @@ class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
primitive
reorder_diff_dst
;
bool
is_diff_dst_reordered
=
false
;
auto
user_diff_dst_memory
=
memory
(
diff_y
->
get_mkldnn_prim_desc
(),
to_void_cast
(
diff_y_data
));
auto
user_diff_dst_memory
=
memory
(
{{{
diff_dst_tz
},
memory
::
data_type
::
f32
,
dst_format
},
mkldnn_engine
},
to_void_cast
(
diff_y_data
));
// MKLDNN requires a single piece of memory for scale and shift/bias data
const
size_t
scaleshift_size
=
2
*
ic
;
...
...
@@ -451,7 +459,10 @@ class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
dev_ctx
.
SetBlob
(
key_batch_norm_diff_dst_mem_p
,
diff_dst_memory
);
// set layout/format of output tensors
diff_x
->
set_mkldnn_prim_desc
(
diff_src_memory
->
get_primitive_desc
());
diff_x
->
set_layout
(
DataLayout
::
kMKLDNN
);
diff_x
->
set_format
((
memory
::
format
)
diff_src_memory
->
get_primitive_desc
()
.
desc
()
.
data
.
format
);
}
else
{
// primitives already exist
UpdateMemoryData
(
dev_ctx
,
key_batch_norm_src_mem_p
,
to_void_cast
(
x_data
));
...
...
@@ -476,7 +487,10 @@ class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
}
// set layout/format of output tensors
diff_x
->
set_mkldnn_prim_desc
(
diff_src_memory
->
get_primitive_desc
());
diff_x
->
set_layout
(
DataLayout
::
kMKLDNN
);
diff_x
->
set_format
((
memory
::
format
)
diff_src_memory
->
get_primitive_desc
()
.
desc
()
.
data
.
format
);
}
// execute optional reorder and batch_norm backward primitive
...
...
paddle/fluid/operators/mkldnn/concat_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -210,7 +210,8 @@ class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
stream
(
stream
::
kind
::
eager
).
submit
({
*
concat_p
}).
wait
();
output
->
set_mkldnn_prim_desc
(
concat_pd
->
dst_primitive_desc
());
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetDstMemFormat
(
*
concat_pd
));
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -96,8 +96,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
*
bias
=
ctx
.
HasInput
(
"Bias"
)
?
ctx
.
Input
<
Tensor
>
(
"Bias"
)
:
nullptr
;
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
PADDLE_ENFORCE
(
input
->
layout
()
==
DataLayout
::
kMKLDNN
);
PADDLE_ENFORCE
(
filter
->
layout
()
==
DataLayout
::
kMKLDNN
);
PADDLE_ENFORCE
(
input
->
layout
()
==
DataLayout
::
kMKLDNN
&&
input
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Input tensor"
);
PADDLE_ENFORCE
(
filter
->
layout
()
==
DataLayout
::
kMKLDNN
&&
filter
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Filter tensor"
);
PADDLE_ENFORCE
(
input
->
dims
().
size
()
==
4
||
input
->
dims
().
size
()
==
5
,
"Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW"
);
PADDLE_ENFORCE
(
filter
->
dims
().
size
()
==
4
||
filter
->
dims
().
size
()
==
5
,
...
...
@@ -144,19 +148,14 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
primitive
>
pipeline
;
// For convolution with groups we need to recreate primitive descriptor
// as Paddle tensor is not having group dims while mkldnn treats
// group as another dimensions
mkldnn
::
memory
::
primitive_desc
user_weights_mpd
=
filter
->
get_mkldnn_prim_desc
();
if
(
g
>
1
)
{
mkldnn
::
memory
::
format
weights_format
=
GetWeightsFormat
(
filter
->
format
(),
g
,
is_conv3d
);
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
weights_format
);
user_weights_mpd
=
mkldnn
::
memory
::
primitive_desc
(
user_weights_md
,
mkldnn_engine
);
}
auto
src_format
=
input
->
format
();
mkldnn
::
memory
::
format
weights_format
=
GetWeightsFormat
(
filter
->
format
(),
g
,
is_conv3d
);
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
src_format
);
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
weights_format
);
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
...
...
@@ -166,7 +165,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
mkldnn
::
memory
::
format
weights_format
=
mkldnn
::
memory
::
format
::
any
;
weights_format
=
mkldnn
::
memory
::
format
::
any
;
// Check the format for user's special output
if
(
chosen_memory_format
!=
mkldnn
::
memory
::
format
::
any
)
{
if
(
is_conv3d
)
{
...
...
@@ -206,10 +205,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
platform
::
ConvMKLDNNHandler
handler
(
conv_pd
,
dev_ctx
,
mkldnn_engine
,
key
);
// create mkldnn memory from input tensors (data/weights)
auto
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
input
->
get_mkldnn_prim_desc
()
,
to_void_cast
<
T
>
(
input_data
));
auto
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
user_weights_m
p
d
,
to_void_cast
<
T
>
(
filter_data
));
user_weights_md
,
to_void_cast
<
T
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
auto
src_memory_p
=
...
...
@@ -282,7 +281,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
pipeline
.
push_back
(
*
conv_p
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_mkldnn_prim_desc
(
dst_memory_p
->
get_primitive_desc
());
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
}
void
ComputeINT8
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
{
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
...
...
@@ -948,8 +948,8 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
// push primitive to stream and wait until it's executed
pipeline
.
push_back
(
*
conv_bwd_weights_p
);
auto
filter_grad_mpd
=
diff_weights_memory_p
->
get_primitive_desc
(
);
filter_grad
->
set_
mkldnn_prim_desc
(
filter_grad_mpd
);
filter_grad
->
set_layout
(
DataLayout
::
kMKLDNN
);
filter_grad
->
set_
format
(
GetMKLDNNFormat
(
*
diff_weights_memory_p
)
);
}
if
(
input_grad
)
{
...
...
@@ -972,7 +972,8 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
pipeline
.
push_back
(
*
conv_bwd_data_p
);
input_grad
->
set_mkldnn_prim_desc
(
diff_src_memory_p
->
get_primitive_desc
());
input_grad
->
set_layout
(
DataLayout
::
kMKLDNN
);
input_grad
->
set_format
(
GetMKLDNNFormat
(
*
diff_src_memory_p
));
}
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
...
...
paddle/fluid/operators/mkldnn/conv_transpose_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -221,7 +221,8 @@ class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
pipeline
.
push_back
(
*
conv_p
);
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_mkldnn_prim_desc
(
dst_memory_p
->
get_primitive_desc
());
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
dst_memory_p
));
}
private:
...
...
paddle/fluid/operators/mkldnn/gaussian_random_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -42,12 +42,8 @@ class GaussianMKLDNNKernel : public paddle::framework::OpKernel<T> {
// The format of output is set as the mkldnn's format
// TODO(@mozga-intel) The format of matrix sets inside the another layers.
// TODO(jczaja): Remove this hack after checking performance on block layout
auto
tensor_mem_pd
=
paddle
::
platform
::
create_prim_desc_from_dims
(
paddle
::
framework
::
vectorize2int
(
tensor
->
dims
()),
mkldnn
::
memory
::
format
::
oihw
);
tensor
->
set_mkldnn_prim_desc
(
tensor_mem_pd
);
tensor
->
set_layout
(
DataLayout
::
kMKLDNN
);
tensor
->
set_format
(
mkldnn
::
memory
::
format
::
oihw
);
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -81,7 +81,10 @@ class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
e_mid
=
framework
::
EigenTensor
<
T
,
4
>::
From
(
*
mid
);
e_mid
=
e_mid
.
constant
(
k
);
auto
src_md
=
x
->
get_mkldnn_prim_desc
().
desc
();
auto
dims
=
paddle
::
framework
::
vectorize2int
(
x
->
dims
());
auto
src_md
=
paddle
::
platform
::
MKLDNNMemDesc
(
dims
,
mkldnn
::
memory
::
data_type
::
f32
,
x
->
format
());
auto
forward_desc
=
mkldnn
::
lrn_forward
::
desc
{
mkldnn
::
prop_kind
::
forward
,
mkldnn
::
lrn_across_channels
,
...
...
@@ -91,7 +94,7 @@ class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
beta
,
k
};
auto
src_memory_pd
=
x
->
get_mkldnn_prim_desc
()
;
auto
src_memory_pd
=
mkldnn
::
memory
::
primitive_desc
{
src_md
,
mkldnn_engine
}
;
if
(
!
is_test
)
{
const
std
::
string
key
=
ctx
.
op
().
Output
(
"Out"
);
...
...
@@ -108,15 +111,16 @@ class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
src_memory
->
set_data_handle
(
static_cast
<
void
*>
(
const_cast
<
T
*>
(
input_data
)));
auto
dst_memory_pd
=
forward_pd
->
dst_primitive_desc
();
auto
dst_memory
=
mkldnn
::
memory
(
dst_memory_pd
,
static_cast
<
void
*>
(
output_data
));
auto
dst_memory
=
mkldnn
::
memory
(
forward_pd
->
dst_primitive_desc
(),
static_cast
<
void
*>
(
output_data
));
auto
workspace_memory
=
insert_to_context
<
mkldnn
::
memory
>
(
key_workspace_memory
,
dev_ctx
,
forward_pd
->
workspace_primitive_desc
());
run_primitive
(
*
forward_pd
,
*
src_memory
,
*
workspace_memory
,
dst_memory
);
out
->
set_mkldnn_prim_desc
(
dst_memory_pd
);
out
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
platform
::
GetMKLDNNFormat
(
dst_memory
));
}
else
{
auto
forward_pd
=
mkldnn
::
lrn_forward
::
primitive_desc
{
forward_desc
,
mkldnn_engine
};
...
...
@@ -124,12 +128,13 @@ class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
src_memory_pd
,
static_cast
<
void
*>
(
const_cast
<
T
*>
(
input_data
))};
auto
workspace_memory
=
mkldnn
::
memory
{
forward_pd
.
workspace_primitive_desc
()};
auto
dst_memory_pd
=
forward_pd
.
dst_primitive_desc
();
auto
dst_memory
=
mkldnn
::
memory
(
forward_pd
.
dst_primitive_desc
(),
static_cast
<
void
*>
(
output_data
));
run_primitive
(
forward_pd
,
src_memory
,
workspace_memory
,
dst_memory
);
out
->
set_mkldnn_prim_desc
(
dst_memory_pd
);
out
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
platform
::
GetMKLDNNFormat
(
dst_memory
));
}
}
};
...
...
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -158,14 +158,6 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
auto
softmax_p
=
handler
.
AcquireSoftmax
(
softmax_dst_memory_p
,
softmax_src_memory_p
);
// We cannot use softmax_dst_memory_p to get prim desc as
// it contains flattened dims (2D) while output tensor can
// have 2,3,4+ dims
auto
output_mem_pd
=
paddle
::
platform
::
create_prim_desc_from_dims
(
paddle
::
framework
::
vectorize2int
(
output
->
dims
()),
mkldnn
::
memory
::
format
::
blocked
);
output
->
set_mkldnn_prim_desc
(
output_mem_pd
);
std
::
vector
<
primitive
>
pipeline
{
*
(
static_cast
<
softmax_forward
::
primitive
*>
(
softmax_p
.
get
()))};
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
...
...
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -106,12 +106,12 @@ class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
memory
::
desc
(
dst_tz
,
memory
::
data_type
::
f32
,
memory
::
format
::
any
);
auto
sum_pd
=
sum
::
primitive_desc
(
dst_md
,
scales
,
srcs_mpd
);
auto
dst_mem_pd
=
sum_pd
.
dst_primitive_desc
();
std
::
shared_ptr
<
memory
>
dst_mem
;
if
(
in_place
)
{
dst_mem
.
reset
(
new
memory
(
dst_mem_pd
));
dst_mem
.
reset
(
new
memory
(
sum_pd
.
dst_primitive_desc
()
));
}
else
{
dst_mem
.
reset
(
new
memory
(
dst_mem_pd
,
output_data
));
dst_mem
.
reset
(
new
memory
(
sum_pd
.
dst_primitive_desc
()
,
output_data
));
}
std
::
vector
<
mkldnn
::
primitive
::
at
>
inputs
;
for
(
size_t
i
=
0
;
i
<
srcs_mem
.
size
();
++
i
)
{
...
...
@@ -136,7 +136,8 @@ class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
if
(
in_place
)
pipeline
.
push_back
(
reorder_prim
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
output
->
set_mkldnn_prim_desc
(
dst_mem_pd
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
output_format
);
}
else
{
// Fallback to naive version
// TODO(@mozga-intel) Add MKLDNN SelectedRows & LoDTensorArray support
SumKernel
<
CPUDeviceContext
,
T
>
reference_kernel
;
...
...
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
浏览文件 @
2336d5ca
...
...
@@ -52,7 +52,7 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
mkldnn_engine
,
key
);
auto
transpose_src_memory_p
=
handler
.
AcquireSrcMemory
(
input
->
get_mkldnn_prim_desc
(),
platform
::
to_void_cast
<
T
>
(
input_data
));
input
->
format
(),
platform
::
to_void_cast
<
T
>
(
input_data
));
auto
transpose_dst_memory_p
=
handler
.
AcquireDstMemory
(
output
,
ctx
.
GetPlace
());
auto
transpose_p
=
handler
.
AcquireTranspose
(
transpose_dst_memory_p
,
...
...
@@ -62,14 +62,8 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
pipeline
.
push_back
(
*
transpose_p
);
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
// Transpose did change logical dimensions of Tensor, but reorder does not.
// Reorder does change only physical layout eg. format , strides
// so we need to create new primitive descriptor with changed logical layout
// so it match output shape
auto
output_mem_pd
=
paddle
::
platform
::
create_prim_desc_from_dims
(
paddle
::
framework
::
vectorize2int
(
output
->
dims
()),
mkldnn
::
memory
::
format
::
blocked
);
output
->
set_mkldnn_prim_desc
(
output_mem_pd
);
output
->
set_layout
(
DataLayout
::
kNCHW
);
output
->
set_format
(
mkldnn
::
memory
::
format
::
format_undef
);
}
};
...
...
@@ -134,9 +128,8 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
platform
::
TransposeMKLDNNHandler
handler
(
nchw_tz
,
reversed_axis
,
dev_ctx
,
mkldnn_engine
,
key
);
auto
transpose_src_memory_p
=
handler
.
AcquireSrcMemory
(
out_grad
->
get_mkldnn_prim_desc
(),
platform
::
to_void_cast
<
T
>
(
out_grad_data
));
auto
transpose_src_memory_p
=
handler
.
AcquireSrcMemory
(
out_grad
->
format
(),
platform
::
to_void_cast
<
T
>
(
out_grad_data
));
auto
transpose_dst_memory_p
=
handler
.
AcquireDstMemory
(
x_grad
,
ctx
.
GetPlace
());
auto
transpose_p
=
handler
.
AcquireTranspose
(
transpose_dst_memory_p
,
...
...
@@ -145,15 +138,6 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
mkldnn
::
primitive
>
pipeline
;
pipeline
.
push_back
(
*
transpose_p
);
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
// Transpose did change logical dimensions of Tensor, but reorder does not.
// Reorder does change only physical layout eg. format , strides
// so we need to create new primitive descriptor with changed logical layout
// so it match output shape
auto
x_grad_mem_pd
=
paddle
::
platform
::
create_prim_desc_from_dims
(
paddle
::
framework
::
vectorize2int
(
x_grad
->
dims
()),
mkldnn
::
memory
::
format
::
blocked
);
x_grad
->
set_mkldnn_prim_desc
(
x_grad_mem_pd
);
}
};
...
...
paddle/fluid/operators/multiplex_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/multiplex_op.h"
#include <memory>
#include <vector>
namespace
paddle
{
namespace
operators
{
...
...
@@ -111,28 +113,47 @@ class MultiplexGradOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
!
ctx
->
Inputs
(
"X"
).
empty
(),
"Input(X) should not be null."
);
PADDLE_ENFORCE
(
!
ctx
->
Outputs
(
framework
::
GradVarName
(
"X"
)).
empty
(),
"Output(X@Grad) should not be null."
);
auto
&
dxs
=
ctx
->
Outputs
(
framework
::
GradVarName
(
"X"
));
PADDLE_ENFORCE
(
!
dxs
.
empty
(),
"Output(X@Grad) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null."
);
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputsDim
(
"X"
));
auto
dout_dim
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
std
::
vector
<
framework
::
DDim
>
(
dxs
.
size
(),
dout_dim
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
MultiInput
<
Tensor
>
(
"X"
)[
0
]
->
type
(),
ctx
.
device_context
());
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
type
(),
ctx
.
device_context
());
}
};
class
MultiplexGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"multiplex_grad"
);
op
->
SetInput
(
"Ids"
,
Input
(
"Ids"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
,
false
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
multiplex
,
ops
::
MultiplexOp
,
ops
::
MultiplexOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
false
>
);
ops
::
MultiplexGradDescMaker
);
REGISTER_OPERATOR
(
multiplex_grad
,
ops
::
MultiplexGradOp
);
REGISTER_OP_CPU_KERNEL
(
multiplex
,
...
...
paddle/fluid/operators/multiplex_op.cu
浏览文件 @
2336d5ca
...
...
@@ -53,20 +53,25 @@ class MultiplexGradGPUKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
ins
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
*
ids
=
ctx
.
Input
<
Tensor
>
(
"Ids"
);
auto
d_ins
=
ctx
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
size_t
idx
=
-
1UL
;
for
(
size_t
i
=
0
;
i
<
d_ins
.
size
();
i
++
)
{
if
(
d_ins
[
i
])
{
d_ins
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_ins
[
i
]);
t
.
device
(
*
ctx
.
template
device_context
<
Place
>().
eigen_device
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
idx
=
i
;
}
}
auto
rows
=
ins
[
0
]
->
dims
()[
0
];
auto
cols
=
ins
[
0
]
->
numel
()
/
rows
;
if
(
idx
==
-
1UL
)
return
;
auto
rows
=
d_ins
[
idx
]
->
dims
()[
0
];
auto
cols
=
d_ins
[
idx
]
->
numel
()
/
rows
;
// copy index to cpu
Tensor
index_t_cpu
;
TensorCopySync
(
*
ids
,
platform
::
CPUPlace
(),
&
index_t_cpu
);
...
...
paddle/fluid/operators/multiplex_op.h
浏览文件 @
2336d5ca
...
...
@@ -52,20 +52,25 @@ class MultiplexGradCPUKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_out
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
ids
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Ids"
);
auto
ins
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"X"
);
auto
d_ins
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
size_t
idx
=
-
1UL
;
for
(
size_t
i
=
0
;
i
<
d_ins
.
size
();
i
++
)
{
if
(
d_ins
[
i
])
{
d_ins
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_ins
[
i
]);
t
.
device
(
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
idx
=
i
;
}
}
auto
rows
=
ins
[
0
]
->
dims
()[
0
];
auto
cols
=
ins
[
0
]
->
numel
()
/
rows
;
if
(
idx
==
-
1UL
)
return
;
auto
rows
=
d_ins
[
idx
]
->
dims
()[
0
];
auto
cols
=
d_ins
[
idx
]
->
numel
()
/
rows
;
auto
*
index
=
ids
->
data
<
int32_t
>
();
platform
::
CPUPlace
place
=
boost
::
get
<
platform
::
CPUPlace
>
(
ctx
.
GetPlace
());
for
(
auto
i
=
0
;
i
<
rows
;
i
++
)
{
...
...
paddle/fluid/operators/pad_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/pad_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -29,7 +30,7 @@ class PadOp : public framework::OperatorWithKernel {
"Output(Out) of PadOp should not be null."
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
auto
&
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
PADDLE_ENFORCE_EQ
(
x_dim
.
size
()
*
2
,
int64_t
(
paddings
.
size
()),
"Size of paddings should be equal to 2 * dimension size "
"of input tensor."
);
...
...
@@ -99,13 +100,20 @@ class PadOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
dout_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
auto
&
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
for
(
int
i
=
0
;
i
<
dout_dims
.
size
();
++
i
)
{
dout_dims
[
i
]
-=
(
paddings
[
i
*
2
]
+
paddings
[
i
*
2
+
1
]);
}
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
x_dims
);
auto
dout_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
auto
&
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
for
(
int
i
=
0
;
i
<
dout_dims
.
size
();
++
i
)
{
dout_dims
[
i
]
-=
(
paddings
[
i
*
2
]
+
paddings
[
i
*
2
+
1
]);
}
ctx
->
SetOutputDim
(
x_grad_name
,
dout_dims
);
}
}
};
...
...
@@ -117,7 +125,6 @@ class PadOpGradMaker : public framework::SingleGradOpDescMaker {
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
bind
=
new
framework
::
OpDesc
();
bind
->
SetInput
(
"X"
,
Input
(
"X"
));
bind
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
bind
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
bind
->
SetAttrMap
(
Attrs
());
...
...
paddle/fluid/operators/psroi_pool_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/psroi_pool_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -154,12 +155,29 @@ class PSROIPoolGradOp : public framework::OperatorWithKernel {
}
};
class
PSROIPoolGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"psroi_pool_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"ROIs"
,
Input
(
"ROIs"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
psroi_pool
,
ops
::
PSROIPoolOp
,
ops
::
PSROIPoolOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
PSROIPoolGradDescMaker
);
REGISTER_OPERATOR
(
psroi_pool_grad
,
ops
::
PSROIPoolGradOp
);
REGISTER_OP_CPU_KERNEL
(
psroi_pool
,
...
...
paddle/fluid/operators/rank_loss_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/rank_loss_op.h"
#include <memory>
#include <string>
namespace
paddle
{
...
...
@@ -116,6 +117,25 @@ class RankLossGradOp : public framework::OperatorWithKernel {
}
};
class
RankLossGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"rank_loss_grad"
);
op
->
SetInput
(
"Label"
,
Input
(
"Label"
));
op
->
SetInput
(
"Left"
,
Input
(
"Left"
));
op
->
SetInput
(
"Right"
,
Input
(
"Right"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Left"
),
InputGrad
(
"Left"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Right"
),
InputGrad
(
"Right"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
...
...
paddle/fluid/operators/roi_align_op.cc
浏览文件 @
2336d5ca
...
...
@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -147,12 +148,29 @@ Thus avoid the misaligned problem.
}
};
class
ROIAlignGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"roi_align_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"ROIs"
,
Input
(
"ROIs"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
roi_align
,
ops
::
ROIAlignOp
,
ops
::
ROIAlignOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
ROIAlignGradDescMaker
);
REGISTER_OPERATOR
(
roi_align_grad
,
ops
::
ROIAlignGradOp
);
REGISTER_OP_CPU_KERNEL
(
roi_align
,
...
...
paddle/fluid/operators/roi_pool_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/roi_pool_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -158,12 +159,30 @@ https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
}
};
class
ROIPoolGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"roi_pool_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"ROIs"
,
Input
(
"ROIs"
));
op
->
SetInput
(
"Argmax"
,
Output
(
"Argmax"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
roi_pool
,
ops
::
ROIPoolOp
,
ops
::
ROIPoolOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
ROIPoolGradDescMaker
);
REGISTER_OPERATOR
(
roi_pool_grad
,
ops
::
ROIPoolGradOp
);
REGISTER_OP_CPU_KERNEL
(
roi_pool
,
...
...
paddle/fluid/operators/scatter_op.cc
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/scatter_op.h"
#include <memory>
#include "paddle/fluid/framework/ddim.h"
namespace
paddle
{
...
...
@@ -63,14 +64,16 @@ class ScatterGradOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Updates"
),
ctx
->
GetInputDim
(
"Updates"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
)));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
type
(),
ctx
.
device_context
());
}
};
...
...
@@ -95,12 +98,34 @@ $$
}
};
class
ScatterGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"scatter_grad"
);
op
->
SetInput
(
"Ids"
,
Input
(
"Ids"
));
op
->
SetInput
(
"Updates"
,
Input
(
"Updates"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Updates"
),
InputGrad
(
"Updates"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE
(
ScatterGradNoNeedBufferVarsInference
,
"Updates"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
scatter
,
ops
::
ScatterOp
,
ops
::
ScatterOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
scatter_grad
,
ops
::
ScatterGradOp
);
ops
::
ScatterGradDescMaker
);
REGISTER_OPERATOR
(
scatter_grad
,
ops
::
ScatterGradOp
,
ops
::
ScatterGradNoNeedBufferVarsInference
);
REGISTER_OP_CPU_KERNEL
(
scatter
,
ops
::
ScatterOpKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
scatter_grad
,
ops
::
ScatterGradientOpKernel
<
float
>
);
paddle/fluid/operators/shuffle_channel_op.cc
浏览文件 @
2336d5ca
...
...
@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/shuffle_channel_op.h"
#include <memory>
namespace
paddle
{
namespace
operators
{
...
...
@@ -91,13 +92,28 @@ class ShuffleChannelGradOp : public framework::OperatorWithKernel {
}
};
class
ShuffleChannelGradDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"shuffle_channel_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
shuffle_channel
,
ops
::
ShuffleChannelOp
,
ops
::
ShuffleChannelOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
ops
::
ShuffleChannelOpMaker
,
ops
::
ShuffleChannelGradDescMaker
);
REGISTER_OPERATOR
(
shuffle_channel_grad
,
ops
::
ShuffleChannelGradOp
);
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
2336d5ca
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_layout_transform.h"
...
...
@@ -39,45 +40,6 @@ class MKLDNNHandler {
return
this
->
AcquireMemory
(
md
,
ptr
,
"@user_src_mem_p"
);
}
// TODO(jczaja): extract common part and make AcquireMemory
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemory
(
const
mkldnn
::
memory
::
primitive_desc
&
mpd
,
void
*
ptr
)
{
auto
local_key
=
key_
+
"@user_src_mem_p"
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
" find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mpd
,
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
mem_p
->
set_data_handle
(
ptr
);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemory
(
const
mkldnn
::
memory
::
primitive_desc
&
mpd
,
void
*
ptr
)
{
auto
local_key
=
key_
+
"@user_weights_mem_p"
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
" find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mpd
,
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
mem_p
->
set_data_handle
(
ptr
);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemory
(
const
mkldnn
::
memory
::
desc
&
md
,
void
*
ptr
,
user_function
custom_func
=
{})
{
...
...
@@ -315,7 +277,37 @@ class TransposeMKLDNNHandler : public MKLDNNHandler {
mkldnn
::
engine
engine
,
const
std
::
string
&
base_key
)
:
platform
::
MKLDNNHandler
(
dev_ctx
,
engine
,
base_key
),
dims_
(
dims
),
axis_
(
axis
)
{}
axis_
(
axis
),
logical_axis_
(
dims
.
size
(),
0
)
{}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemory
(
const
mkldnn
::
memory
::
format
&
fmt
,
void
*
ptr
)
{
auto
local_key
=
key_
+
"@user_src_mem_p"
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
" find mem primitive in device context"
);
if
(
mem_p
==
nullptr
)
{
// Make memory descriptor using input format, unless it
// cannot be trusted (nchw) then make up memory fmt manually
for
(
size_t
i
=
0
;
i
<
logical_axis_
.
size
();
++
i
)
{
logical_axis_
[
i
]
=
i
;
}
auto
src_md
=
fmt
!=
mkldnn
::
memory
::
format
::
nchw
?
platform
::
MKLDNNMemDesc
(
dims_
,
platform
::
MKLDNNGetDataType
<
float
>
(),
fmt
)
:
Axis2MemoryDesc
(
dims_
,
logical_axis_
);
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mkldnn
::
memory
::
primitive_desc
{
src_md
,
engine_
},
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
else
{
mem_p
->
set_data_handle
(
ptr
);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_
=
true
;
}
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemory
(
framework
::
Tensor
*
output
,
platform
::
Place
place
)
{
...
...
@@ -400,6 +392,7 @@ class TransposeMKLDNNHandler : public MKLDNNHandler {
private:
std
::
vector
<
int
>
dims_
;
std
::
vector
<
int
>
axis_
;
std
::
vector
<
int
>
logical_axis_
;
};
template
<
class
forward_t
,
class
backward_data_t
,
class
backward_weights_t
>
...
...
paddle/fluid/platform/mkldnn_utils.h
已删除
100644 → 0
浏览文件 @
f32c125e
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <mkldnn.h>
#include <string>
namespace
paddle
{
namespace
platform
{
inline
mkldnn
::
memory
::
primitive_desc
create_prim_desc_from_dims
(
const
std
::
vector
<
int
>&
ltz
,
mkldnn
::
memory
::
format
fmt
,
mkldnn
::
memory
::
data_type
data_type
=
mkldnn
::
memory
::
data_type
::
f32
)
{
mkldnn_memory_desc_t
mem_fmt
;
mem_fmt
.
primitive_kind
=
mkldnn_memory
;
mem_fmt
.
ndims
=
ltz
.
size
();
for
(
unsigned
int
i
=
0
;
i
<
ltz
.
size
();
++
i
)
{
mem_fmt
.
dims
[
i
]
=
ltz
[
i
];
// logical dimensions (nchw format,
// regardless physical layout)
}
mem_fmt
.
data_type
=
static_cast
<
mkldnn_data_type_t
>
(
data_type
);
mem_fmt
.
format
=
static_cast
<
mkldnn_memory_format_t
>
(
fmt
);
unsigned
int
total_stride
=
1
;
for
(
int
i
=
ltz
.
size
()
-
1
;
i
>=
0
;
--
i
)
{
mem_fmt
.
layout_desc
.
blocking
.
padding_dims
[
i
]
=
ltz
[
i
];
// logical dimensions (nchw format, regardless physical
// layout)
mem_fmt
.
layout_desc
.
blocking
.
block_dims
[
i
]
=
1
;
mem_fmt
.
layout_desc
.
blocking
.
offset_padding_to_data
[
i
]
=
0
;
// no offset
mem_fmt
.
layout_desc
.
blocking
.
strides
[
0
][
i
]
=
total_stride
;
mem_fmt
.
layout_desc
.
blocking
.
strides
[
1
][
i
]
=
1
;
total_stride
*=
ltz
[
i
];
}
mem_fmt
.
layout_desc
.
blocking
.
offset_padding
=
0
;
// no initial offset
auto
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
place
=
paddle
::
platform
::
CPUPlace
();
auto
*
dev_ctx
=
dynamic_cast
<
platform
::
MKLDNNDeviceContext
*>
(
pool
.
Get
(
place
));
auto
&
cpu_engine
=
dev_ctx
->
GetEngine
();
return
mkldnn
::
memory
::
primitive_desc
(
mem_fmt
,
cpu_engine
);
}
inline
mkldnn
::
memory
::
primitive_desc
create_prim_desc_from_format
(
const
std
::
vector
<
int
>&
ltz
,
const
mkldnn
::
memory
::
format
format
,
const
mkldnn
::
memory
::
data_type
data_type
)
{
auto
md
=
mkldnn
::
memory
::
desc
({
ltz
},
data_type
,
format
);
auto
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
place
=
paddle
::
platform
::
CPUPlace
();
auto
dev_ctx
=
dynamic_cast
<
platform
::
MKLDNNDeviceContext
*>
(
pool
.
Get
(
place
));
PADDLE_ENFORCE_NOT_NULL
(
dev_ctx
,
"Could not get valid device"
);
auto
&
cpu_engine
=
dev_ctx
->
GetEngine
();
return
mkldnn
::
memory
::
primitive_desc
(
md
,
cpu_engine
);
}
}
// namespace platform
}
// namespace paddle
paddle/fluid/pybind/pybind.cc
浏览文件 @
2336d5ca
...
...
@@ -1282,6 +1282,15 @@ All parameter, weight, gradient are variables in Paddle.
it will save GPU memory and may make the execution faster.
This options is only available in GPU devices.
Default False)DOC"
)
.
def_property
(
"fuse_all_optimizer_ops"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
fuse_all_optimizer_ops_
;
},
[](
BuildStrategy
&
self
,
bool
b
)
{
PADDLE_ENFORCE
(
!
self
.
IsFinalized
(),
"BuildStrategy is finlaized."
);
self
.
fuse_all_optimizer_ops_
=
b
;
})
.
def_property
(
"sync_batch_norm"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
sync_batch_norm_
;
},
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
2336d5ca
...
...
@@ -26,6 +26,17 @@ __all__ = [
]
def
_init_var_node
(
var_node
,
value
,
scope
,
place
):
assert
isinstance
(
value
,
np
.
ndarray
),
'The type of value should be numpy array.'
assert
scope
is
not
None
,
\
'The scope cannot be set None.'
assert
place
is
not
None
,
\
'The place cannot be set None.'
tensor
=
scope
.
var
(
var_node
.
name
()).
get_tensor
()
tensor
.
set
(
value
,
place
)
class
QuantizationTransformPass
(
object
):
def
__init__
(
self
,
scope
=
None
,
...
...
@@ -88,14 +99,14 @@ class QuantizationTransformPass(object):
assert
activation_quantize_type
!=
'channel_wise_abs_max'
,
"The activation quantization type does not support 'channel_wise_abs_max'."
if
activation_quantize_type
not
in
quant_type
:
raise
ValueError
(
"Unknown activation_quantize_type : '%s'. It can only be "
,
"'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
,
str
(
activation_quantize_type
))
"Unknown activation_quantize_type : '%s'. It can only be "
"'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
%
(
str
(
activation_quantize_type
)
))
if
weight_quantize_type
not
in
quant_type
:
raise
ValueError
(
"Unknown weight_quantize_type: '%s'. It can only be "
,
"'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
,
str
(
weight_quantize_type
))
"Unknown weight_quantize_type: '%s'. It can only be "
"'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
%
(
str
(
weight_quantize_type
)
))
self
.
_activation_quantize_type
=
activation_quantize_type
self
.
_weight_quantize_type
=
weight_quantize_type
...
...
@@ -121,8 +132,6 @@ class QuantizationTransformPass(object):
"""
assert
isinstance
(
graph
,
IrGraph
),
'graph must be the instance of IrGraph.'
#sequential_execution = core.get_pass('sequential_execution_pass')
#sequential_execution.apply(graph.graph)
self
.
_is_test
=
graph
.
is_test
()
# marked the variable which has been dequantized.
dequantized_vars
=
collections
.
OrderedDict
()
...
...
@@ -203,9 +212,12 @@ class QuantizationTransformPass(object):
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
1
],
var_dtype
=
core
.
VarDesc
.
VarType
.
INT64
)
self
.
_init_var_node
(
global_step_in
,
np
.
zeros
(
[
1
],
dtype
=
'int64'
))
_init_var_node
(
global_step_in
,
np
.
zeros
(
[
1
],
dtype
=
'int64'
),
self
.
_scope
,
self
.
_place
)
global_step_out
=
graph
.
create_var_node_from_desc
(
global_step_in
.
var
())
# The attribute of `op_role` is needed by ParallelExecutor.
...
...
@@ -284,7 +296,12 @@ class QuantizationTransformPass(object):
var_dtype
=
var_node
.
dtype
())
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
self
.
_init_var_node
(
scale_in_node
,
np
.
array
([
0.001
],
dtype
=
data_type
))
_init_var_node
(
scale_in_node
,
np
.
array
(
[
0.001
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
scale_out_node
=
graph
.
create_var_node_from_desc
(
scale_in_node
.
var
())
inputs
=
{
'X'
:
var_node
,
'InScale'
:
scale_in_node
}
...
...
@@ -299,9 +316,13 @@ class QuantizationTransformPass(object):
var_dtype
=
var_node
.
dtype
())
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
self
.
_init_var_node
(
scales_node
,
np
.
zeros
(
[
self
.
_window_size
],
dtype
=
data_type
))
_init_var_node
(
scales_node
,
np
.
zeros
(
[
self
.
_window_size
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
inputs
[
'Iter'
]
=
self
.
_global_step
outputs
[
'OutScales'
]
=
scales_node
attrs
=
{
...
...
@@ -343,7 +364,12 @@ class QuantizationTransformPass(object):
var_dtype
=
var_node
.
dtype
())
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
self
.
_init_var_node
(
scale_in_node
,
np
.
array
([
0.001
],
dtype
=
data_type
))
_init_var_node
(
scale_in_node
,
np
.
array
(
[
0.001
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
scale_out_node
=
graph
.
create_var_node_from_desc
(
scale_in_node
.
var
())
ins
=
{
'X'
:
var_node
,
'InScale'
:
scale_in_node
}
...
...
@@ -356,13 +382,23 @@ class QuantizationTransformPass(object):
shape
=
[
1
])
data_type
=
'float64'
if
var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
self
.
_init_var_node
(
scale_in_node
,
np
.
ones
([
1
],
dtype
=
data_type
))
_init_var_node
(
scale_in_node
,
np
.
ones
(
[
1
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
accum_in_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'accum'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
var_dtype
=
var_node
.
dtype
(),
shape
=
[
1
])
self
.
_init_var_node
(
accum_in_node
,
np
.
ones
([
1
],
dtype
=
data_type
))
_init_var_node
(
accum_in_node
,
np
.
ones
(
[
1
],
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
state_out_node
=
graph
.
create_var_node_from_desc
(
state_in_node
.
var
(
))
accum_out_node
=
graph
.
create_var_node_from_desc
(
accum_in_node
.
var
(
...
...
@@ -482,16 +518,6 @@ class QuantizationTransformPass(object):
graph
.
link_to
(
dequant_op_node
,
dequant_var_node
)
return
dequant_var_node
def
_init_var_node
(
self
,
var_node
,
value
):
assert
isinstance
(
value
,
np
.
ndarray
),
'The type of value should be numpy array.'
assert
self
.
_scope
is
not
None
,
\
'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
assert
self
.
_place
is
not
None
,
\
'The place cannot be set None when activation_quantize_type equals to range_abs_max.'
tensor
=
self
.
_scope
.
var
(
var_node
.
name
()).
get_tensor
()
tensor
.
set
(
value
,
self
.
_place
)
def
_quantized_var_name
(
self
,
var_name
):
"""
Return quantized variable name for the input `var_name`.
...
...
@@ -594,8 +620,8 @@ class QuantizationFreezePass(object):
self
.
_weight_bits
)
self
.
_restore_var
(
input_arg_name
,
quantized_param_v
)
else
:
scale_v
=
self
.
_to_node
(
op_node
.
outputs
,
op_node
.
output
(
'OutScale'
)[
0
])
scale_v
=
graph
.
_find_node_by_name
(
op_node
.
outputs
,
op_node
.
output
(
'OutScale'
)[
0
])
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
ops
=
graph
.
all_op_nodes
()
...
...
@@ -627,8 +653,8 @@ class QuantizationFreezePass(object):
return
graph
def
_remove_fake_quant_and_dequant_op
(
self
,
graph
,
op_node
):
k
=
self
.
_to_nod
e
(
op_node
.
outputs
,
op_node
.
output
(
'Out'
)[
0
])
v
=
self
.
_to_nod
e
(
op_node
.
inputs
,
op_node
.
input
(
'X'
)[
0
])
k
=
graph
.
_find_node_by_nam
e
(
op_node
.
outputs
,
op_node
.
output
(
'Out'
)[
0
])
v
=
graph
.
_find_node_by_nam
e
(
op_node
.
inputs
,
op_node
.
input
(
'X'
)[
0
])
if
v
.
node
not
in
self
.
_op_input_rename_map
:
self
.
_op_input_rename_map
[
k
.
node
]
=
v
else
:
...
...
@@ -663,8 +689,8 @@ class QuantizationFreezePass(object):
raise
ValueError
(
"Only support one output, but op %s has"
" more than one output."
%
(
op_node
.
name
()))
output_var_node
=
self
.
_to_node
(
op_node
.
outputs
,
op_node
.
output_arg_names
()[
0
])
output_var_node
=
graph
.
_find_node_by_name
(
op_node
.
outputs
,
op_node
.
output_arg_names
()[
0
])
weight_scale_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'channel_scale'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
...
...
@@ -672,7 +698,9 @@ class QuantizationFreezePass(object):
var_dtype
=
output_var_node
.
dtype
())
data_type
=
'float64'
if
output_var_node
.
dtype
(
)
==
core
.
VarDesc
.
VarType
.
FP64
else
'float32'
self
.
_init_var_node
(
weight_scale_node
,
channel_scale
.
astype
(
data_type
))
_init_var_node
(
weight_scale_node
,
channel_scale
.
astype
(
data_type
),
self
.
_scope
,
self
.
_place
)
dequant_var_node
=
graph
.
create_var_node
(
name
=
self
.
_dequantized_var_name
(
output_var_node
.
name
()),
var_type
=
output_var_node
.
type
(),
...
...
@@ -724,8 +752,8 @@ class QuantizationFreezePass(object):
raise
ValueError
(
"Only support one output, but op %s has"
" more than one output."
%
(
op_node
.
name
()))
output_var_node
=
self
.
_to_node
(
op_node
.
outputs
,
op_node
.
output_arg_names
()[
0
])
output_var_node
=
graph
.
_find_node_by_name
(
op_node
.
outputs
,
op_node
.
output_arg_names
()[
0
])
dequant_var_node
=
graph
.
create_var_node
(
name
=
self
.
_dequantized_var_name
(
output_var_node
.
name
()),
var_type
=
output_var_node
.
type
(),
...
...
@@ -746,24 +774,6 @@ class QuantizationFreezePass(object):
self
.
_op_output_rename_map
[
output_var_node
.
node
]
=
dequant_var_node
return
dequant_var_node
def
_init_var_node
(
self
,
var_node
,
value
):
assert
isinstance
(
value
,
np
.
ndarray
),
'The type of value should be numpy array.'
assert
self
.
_scope
is
not
None
,
\
'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
assert
self
.
_place
is
not
None
,
\
'The place cannot be set None when activation_quantize_type equals to range_abs_max.'
tensor
=
self
.
_scope
.
var
(
var_node
.
name
()).
get_tensor
()
tensor
.
set
(
value
,
self
.
_place
)
def
_to_node
(
self
,
nodes
,
node_name
):
target_node
=
None
for
n
in
nodes
:
if
n
.
name
()
==
node_name
:
target_node
=
n
assert
target_node
is
not
None
,
"Cannot find the target node in the giving set."
return
target_node
def
_load_var
(
self
,
name
):
return
np
.
array
(
self
.
_scope
.
find_var
(
name
).
get_tensor
())
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_strategy.py
浏览文件 @
2336d5ca
...
...
@@ -45,13 +45,14 @@ class QuantizationStrategy(Strategy):
activation_bits
=
8
,
weight_bits
=
8
,
activation_quantize_type
=
'abs_max'
,
weight_quantize_type
=
'abs_max'
,
save_in_nodes
=
None
,
save_out_nodes
=
None
):
"""
Args:
start_epoch(int): The 'on_epoch_begin' function will be called in start_epoch. default: 0
end_epoch(int): The 'on_epoch_end' function will be called in end_epoch. default: 0
float_model_save_path(str): The path to save model with float weights.
float_model_save_path(str): The path to save model with float weights.
None means it doesn't save float model. defalut: None.
mobile_model_save_path(str): The path to save model for paddle-mobile execution.
None means it doesn't save mobile model. defalut: None.
...
...
@@ -66,9 +67,11 @@ class QuantizationStrategy(Strategy):
dynamically each step in both training and testing period. If use
'range_abs_max', a static quantization scale will be calculated
during training and used in inference.
save_in_nodes(list<str>): A list of variable names used to prune graph
weight_quantize_type (str): quantization type for weights, support 'abs_max' and 'channel_wise_abs_max'.
The 'range_abs_max' usually is not used for weight, since weights are fixed once the model is well trained.
save_in_nodes(list<str>): A list of variable names used to prune graph
for saving inference model.
save_out_nodes(list<str>): A list of variable names used to prune graph
save_out_nodes(list<str>): A list of variable names used to prune graph
for saving inference model.
"""
...
...
@@ -81,6 +84,7 @@ class QuantizationStrategy(Strategy):
self
.
activation_bits
=
activation_bits
self
.
weight_bits
=
weight_bits
self
.
activation_quantize_type
=
activation_quantize_type
self
.
weight_quantize_type
=
weight_quantize_type
self
.
save_out_nodes
=
save_out_nodes
self
.
save_in_nodes
=
save_in_nodes
...
...
@@ -100,7 +104,8 @@ class QuantizationStrategy(Strategy):
place
=
context
.
place
,
weight_bits
=
self
.
weight_bits
,
activation_bits
=
self
.
activation_bits
,
activation_quantize_type
=
self
.
activation_quantize_type
)
activation_quantize_type
=
self
.
activation_quantize_type
,
weight_quantize_type
=
self
.
weight_quantize_type
)
transform_pass
.
apply
(
train_ir_graph
)
transform_pass
.
apply
(
test_ir_graph
)
...
...
@@ -134,7 +139,8 @@ class QuantizationStrategy(Strategy):
scope
=
context
.
scope
,
place
=
context
.
place
,
weight_bits
=
self
.
weight_bits
,
activation_bits
=
self
.
activation_bits
)
activation_bits
=
self
.
activation_bits
,
weight_quantize_type
=
self
.
weight_quantize_type
)
freeze_pass
.
apply
(
test_ir_graph
)
# for other strategies
...
...
python/paddle/fluid/contrib/slim/tests/quantization/compress.yaml
浏览文件 @
2336d5ca
...
...
@@ -35,6 +35,8 @@ strategies:
start_epoch
:
0
end_epoch
:
0
float_model_save_path
:
'
./output/float'
mobile_model_save_path
:
'
./output/mobile'
int8_model_save_path
:
'
./output/int8'
weight_bits
:
8
activation_bits
:
8
weight_quantize_type
:
'
abs_max'
...
...
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
浏览文件 @
2336d5ca
...
...
@@ -256,8 +256,6 @@ class TestQuantizationFreezePass(unittest.TestCase):
place
=
place
,
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quant_type
)
#transform_pass = QuantizationTransformPass(
# scope=scope, place=place, activation_quantize_type=activation_quant_type)
transform_pass
.
apply
(
main_graph
)
transform_pass
.
apply
(
test_graph
)
dev_name
=
'_gpu_'
if
use_cuda
else
'_cpu_'
...
...
@@ -315,7 +313,6 @@ class TestQuantizationFreezePass(unittest.TestCase):
# Freeze graph for inference, but the weight of fc/conv is still float type.
freeze_pass
=
QuantizationFreezePass
(
scope
=
scope
,
place
=
place
,
weight_quantize_type
=
weight_quant_type
)
#freeze_pass = QuantizationFreezePass(scope=scope, place=place)
freeze_pass
.
apply
(
test_graph
)
if
not
for_ci
:
marked_nodes
=
set
()
...
...
python/paddle/fluid/framework.py
浏览文件 @
2336d5ca
...
...
@@ -2347,40 +2347,6 @@ class IrGraph(object):
"""
return
{
IrOpNode
(
node
)
for
node
in
self
.
graph
.
nodes
()
if
node
.
is_op
()}
def
_find_var_node
(
self
,
key
):
"""
Get a variable node by the `key` from this graph. The key
can be a node name or a node id.
WARNS:
There are some nodes may have the same name. So, be
cautious about using this method when you find the
target var node by its name.
Args:
key(str|int): The str type denotes that the target variable node's name.
And the int type denotes that the target variable node's id.
Raises:
ValueError: If this graph doesn't have a variable with the giving name or id.
Returns:
IrVarNode: the variable node with the giving name or id.
"""
target_var_node
=
None
var_nodes
=
self
.
all_var_nodes
()
if
isinstance
(
key
,
six
.
string_types
):
for
var_node
in
var_nodes
:
if
var_node
.
name
()
==
key
:
target_var_node
=
var_node
elif
isinstance
(
key
,
int
):
for
var_node
in
var_nodes
:
if
var_node
.
id
()
==
key
:
target_var_node
=
var_node
if
target_var_node
is
None
:
raise
ValueError
(
"var_node %s not in this graph"
%
key
)
return
target_var_node
def
create_persistable_node
(
self
,
name
,
var_type
,
shape
,
var_dtype
):
"""
Create a persistable variable node in the graph. In IrGraph,
...
...
@@ -2525,14 +2491,6 @@ class IrGraph(object):
core
.
graph_safe_remove_nodes
(
self
.
graph
,
original_nodes
)
def
resolve_hazard
(
self
):
def
_to_node
(
nodes
,
node_name
):
target_node
=
None
for
n
in
nodes
:
if
n
.
name
()
==
node_name
:
target_node
=
n
assert
target_node
is
not
None
,
"Cannot find the target node in the giving set."
return
target_node
ordered_nodes
=
core
.
topology_sort
(
self
.
graph
)
var_nodes
=
dict
()
for
node
in
ordered_nodes
:
...
...
@@ -2540,16 +2498,17 @@ class IrGraph(object):
for
each_var_name
in
node
.
op
().
input_arg_names
():
if
each_var_name
not
in
var_nodes
:
var_nodes
[
each_var_name
]
=
[
_to_nod
e
(
node
.
inputs
,
each_var_name
)
self
.
_find_node_by_nam
e
(
node
.
inputs
,
each_var_name
)
]
for
each_var_name
in
node
.
op
().
output_arg_names
():
if
each_var_name
not
in
var_nodes
:
var_nodes
[
each_var_name
]
=
[
_to_nod
e
(
node
.
outputs
,
each_var_name
)
self
.
_find_node_by_nam
e
(
node
.
outputs
,
each_var_name
)
]
else
:
var_nodes
[
each_var_name
].
append
(
_to_node
(
node
.
outputs
,
each_var_name
))
self
.
_find_node_by_name
(
node
.
outputs
,
each_var_name
))
self
.
graph
.
resolve_hazard
(
var_nodes
)
def
has_circle
(
self
):
...
...
@@ -2662,6 +2621,17 @@ class IrGraph(object):
program
=
Program
.
_construct_from_desc
(
desc
)
return
program
def
_find_node_by_name
(
self
,
nodes
,
node_name
):
"""
Find a node in the giving nodes set by the name.
"""
target_node
=
None
for
n
in
nodes
:
if
n
.
name
()
==
node_name
:
target_node
=
n
assert
target_node
is
not
None
,
"Cannot find the target node in the giving set."
return
target_node
def
_update_desc_attr
(
self
,
desc
,
name
,
val
):
"""
Update the value of desc's attribute by attribute's name.
...
...
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
2336d5ca
...
...
@@ -43,6 +43,7 @@ class TestParallelExecutorBase(unittest.TestCase):
use_ir_memory_optimize
=
True
,
enable_inplace
=
True
,
fuse_elewise_add_act_ops
=
False
,
fuse_all_optimizer_ops
=
False
,
fuse_all_reduce_ops
=
False
,
fuse_relu_depthwise_conv
=
False
,
optimizer
=
fluid
.
optimizer
.
Adam
,
...
...
@@ -81,6 +82,7 @@ class TestParallelExecutorBase(unittest.TestCase):
build_strategy
.
fuse_elewise_add_act_ops
=
fuse_elewise_add_act_ops
build_strategy
.
fuse_relu_depthwise_conv
=
fuse_relu_depthwise_conv
build_strategy
.
memory_optimize
=
False
if
memory_opt
else
use_ir_memory_optimize
build_strategy
.
fuse_all_optimizer_ops
=
fuse_all_optimizer_ops
build_strategy
.
fuse_all_reduce_ops
=
fuse_all_reduce_ops
# python memory optimization is conflict with inplace pass.
# Use ir graph memory optimization after inplace pass is the correct way.
...
...
python/paddle/fluid/tests/unittests/test_alloc_continuous_space_op.py
浏览文件 @
2336d5ca
...
...
@@ -16,8 +16,10 @@ from __future__ import print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
paddle.fluid
import
core
alignment
=
256
class
TestAllocContinuousSpace
(
OpTest
):
...
...
@@ -29,11 +31,11 @@ class TestAllocContinuousSpace(OpTest):
self
.
constant
=
attrs
[
"constant"
]
self
.
set_constant
=
attrs
[
"set_constant"
]
self
.
Inputs
=
self
.
init_input
()
self
.
FusedOutput
=
self
.
init_output
(
self
.
Inputs
,
self
.
set_constant
,
self
.
constant
)
self
.
Outputs
,
self
.
FusedOutput
=
self
.
init_output
(
self
.
Inputs
,
self
.
set_constant
,
self
.
constant
)
self
.
inputs
=
{
'Input'
:
self
.
Inputs
}
self
.
attrs
=
attrs
self
.
outputs
=
{
'Output'
:
self
.
In
puts
,
'FusedOutput'
:
self
.
FusedOutput
}
self
.
outputs
=
{
'Output'
:
self
.
Out
puts
,
'FusedOutput'
:
self
.
FusedOutput
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
...
...
@@ -52,14 +54,31 @@ class TestAllocContinuousSpace(OpTest):
return
{
"copy_data"
:
True
,
"set_constant"
:
False
,
"constant"
:
0.0
}
def
init_output
(
self
,
input_list
,
set_constant
,
constant
):
inputs
=
[
input
[
1
].
flatten
()
for
input
in
input_list
]
output
=
np
.
concatenate
(
inputs
)
inputs
=
[]
outputs
=
input_list
for
input
in
input_list
:
length
=
len
(
input
[
1
].
flatten
())
aligned_len
=
(
length
+
alignment
)
/
alignment
*
alignment
out
=
np
.
zeros
(
int
(
aligned_len
))
out
[
0
:
length
]
=
input
[
1
].
flatten
()
inputs
.
append
(
out
)
alloc_continuous_space_var
=
np
.
concatenate
([
input
for
input
in
inputs
])
if
set_constant
:
output
=
np
.
ones
((
len
(
output
)))
*
constant
return
output
alloc_continuous_space_var
=
np
.
ones
(
(
len
(
alloc_continuous_space_var
)))
*
constant
outputs
=
[(
out
[
0
],
np
.
ones
(
out
[
1
].
shape
).
astype
(
self
.
dtype
)
*
constant
)
for
out
in
outputs
]
return
outputs
,
alloc_continuous_space_var
def
test_check_output
(
self
):
self
.
check_output
()
if
core
.
is_compiled_with_cuda
():
self
.
check_output_with_place
(
place
=
core
.
CUDAPlace
(
0
),
no_check_set
=
[
"FusedOutput"
],
atol
=
1e-5
)
class
TestAllocContinuousSpace2
(
TestAllocContinuousSpace
):
...
...
@@ -67,7 +86,11 @@ class TestAllocContinuousSpace2(TestAllocContinuousSpace):
return
{
"copy_data"
:
False
,
"set_constant"
:
True
,
"constant"
:
0.5
}
def
test_check_output
(
self
):
self
.
check_output
(
no_check_set
=
[
"Output"
])
if
core
.
is_compiled_with_cuda
():
self
.
check_output_with_place
(
place
=
core
.
CUDAPlace
(
0
),
no_check_set
=
[
"FusedOutput"
],
atol
=
1e-5
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_fuse_optimizer_pass.py
0 → 100644
浏览文件 @
2336d5ca
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
parallel_executor_test_base
import
TestParallelExecutorBase
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
numpy
as
np
import
paddle
import
paddle.dataset.mnist
as
mnist
import
unittest
import
os
def
simple_fc_net
(
use_feed
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
4
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
def
fc_with_batchnorm
(
use_feed
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
2
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
hidden
=
fluid
.
layers
.
batch_norm
(
input
=
hidden
)
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestFuseAdamOps
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
def
_init_data
(
self
,
random
=
True
):
np
.
random
.
seed
(
5
)
if
random
:
img
=
np
.
random
.
random
(
size
=
[
32
,
784
]).
astype
(
np
.
float32
)
else
:
img
=
np
.
ones
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
return
img
,
label
def
_compare_fused_optimizer_ops
(
self
,
model
,
use_cuda
,
random_data
=
True
,
optimizer
=
fluid
.
optimizer
.
Adam
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
img
,
label
=
self
.
_init_data
(
random_data
)
not_fuse_op_first_loss
,
not_fuse_op_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
fuse_all_optimizer_ops
=
False
,
memory_opt
=
False
,
# avoid the gradient's name changed in Python side.
optimizer
=
optimizer
)
fuse_op_first_loss
,
fuse_op_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
use_cuda
,
fuse_all_optimizer_ops
=
True
,
memory_opt
=
False
,
# avoid the gradient's name changed in Python side.
optimizer
=
optimizer
)
for
loss
in
zip
(
not_fuse_op_first_loss
,
fuse_op_first_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-6
)
for
loss
in
zip
(
not_fuse_op_last_loss
,
fuse_op_last_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-6
)
def
test_simple_fc_with_fuse_op
(
self
):
self
.
_compare_fused_optimizer_ops
(
simple_fc_net
,
True
)
self
.
_compare_fused_optimizer_ops
(
simple_fc_net
,
False
)
def
test_batchnorm_fc_with_fuse_op
(
self
):
self
.
_compare_fused_optimizer_ops
(
fc_with_batchnorm
,
True
)
# self._compare_fused_optimizer_ops(fc_with_batchnorm, False)
class
TestFuseSGDOps
(
TestFuseAdamOps
):
def
sgd_optimizer
(
self
,
learning_rate
=
1e-4
):
return
fluid
.
optimizer
.
SGD
(
learning_rate
=
learning_rate
)
def
test_simple_fc_with_fuse_op
(
self
):
self
.
_compare_fused_optimizer_ops
(
simple_fc_net
,
True
,
optimizer
=
self
.
sgd_optimizer
)
self
.
_compare_fused_optimizer_ops
(
simple_fc_net
,
False
,
optimizer
=
self
.
sgd_optimizer
)
def
test_batchnorm_fc_with_fuse_op
(
self
):
self
.
_compare_fused_optimizer_ops
(
fc_with_batchnorm
,
True
,
optimizer
=
self
.
sgd_optimizer
)
self
.
_compare_fused_optimizer_ops
(
fc_with_batchnorm
,
False
,
optimizer
=
self
.
sgd_optimizer
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_executor_crf.py
浏览文件 @
2336d5ca
...
...
@@ -61,6 +61,11 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
param_attr
=
fluid
.
ParamAttr
(
name
=
embedding_name
,
trainable
=
False
))
for
x
in
word_input
]
# TODO(zcd): if the parameter is not trainable, the
# parameter's gradient should not generated.
for
emb_layer
in
emb_layers
:
emb_layer
.
stop_gradient
=
True
emb_layers
.
append
(
predicate_embedding
)
emb_layers
.
append
(
mark_embedding
)
...
...
@@ -113,60 +118,62 @@ class TestCRFModel(unittest.TestCase):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
word
=
fluid
.
layers
.
data
(
name
=
'word_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
predicate
=
fluid
.
layers
.
data
(
name
=
'verb_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_n2
=
fluid
.
layers
.
data
(
name
=
'ctx_n2_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_n1
=
fluid
.
layers
.
data
(
name
=
'ctx_n1_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_0
=
fluid
.
layers
.
data
(
name
=
'ctx_0_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_p1
=
fluid
.
layers
.
data
(
name
=
'ctx_p1_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_p2
=
fluid
.
layers
.
data
(
name
=
'ctx_p2_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
mark
=
fluid
.
layers
.
data
(
name
=
'mark_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
feature_out
=
db_lstm
(
**
locals
())
target
=
fluid
.
layers
.
data
(
name
=
'target'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
crf_cost
=
fluid
.
layers
.
linear_chain_crf
(
input
=
feature_out
,
label
=
target
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
1e-1
))
avg_cost
=
fluid
.
layers
.
mean
(
crf_cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
0.01
,
decay_steps
=
100000
,
decay_rate
=
0.5
,
staircase
=
True
))
sgd_optimizer
.
minimize
(
avg_cost
)
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
16
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
train_cp
=
compiler
.
CompiledProgram
(
main
).
with_data_parallel
(
loss_name
=
avg_cost
.
name
,
build_strategy
=
build_strategy
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
word
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
predicate
,
mark
,
target
],
place
=
fluid
.
CPUPlace
())
scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
main
,
startup
):
word
=
fluid
.
layers
.
data
(
name
=
'word_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
predicate
=
fluid
.
layers
.
data
(
name
=
'verb_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_n2
=
fluid
.
layers
.
data
(
name
=
'ctx_n2_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_n1
=
fluid
.
layers
.
data
(
name
=
'ctx_n1_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_0
=
fluid
.
layers
.
data
(
name
=
'ctx_0_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_p1
=
fluid
.
layers
.
data
(
name
=
'ctx_p1_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
ctx_p2
=
fluid
.
layers
.
data
(
name
=
'ctx_p2_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
mark
=
fluid
.
layers
.
data
(
name
=
'mark_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
feature_out
=
db_lstm
(
**
locals
())
target
=
fluid
.
layers
.
data
(
name
=
'target'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
crf_cost
=
fluid
.
layers
.
linear_chain_crf
(
input
=
feature_out
,
label
=
target
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
1e-1
))
avg_cost
=
fluid
.
layers
.
mean
(
crf_cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
0.01
,
decay_steps
=
100000
,
decay_rate
=
0.5
,
staircase
=
True
))
sgd_optimizer
.
minimize
(
avg_cost
)
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
16
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
train_cp
=
compiler
.
CompiledProgram
(
main
).
with_data_parallel
(
loss_name
=
avg_cost
.
name
,
build_strategy
=
build_strategy
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
word
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
predicate
,
mark
,
target
],
place
=
fluid
.
CPUPlace
())
data
=
train_data
()
for
i
in
range
(
10
):
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_dry_run.py
浏览文件 @
2336d5ca
...
...
@@ -41,14 +41,15 @@ class TestBase(unittest.TestCase):
fluid
.
CUDAPlace
(
0
)
if
use_gpu
else
fluid
.
CPUPlace
())
exe
.
run
(
startup_prog
)
for
_
in
six
.
moves
.
xrange
(
iter
):
exe_strategy
=
fluid
.
ExecutionStrategy
()
exe_strategy
.
_dry_run
=
True
exe_strategy
.
use_experimental_executor
=
use_experimental_executor
train_cp
=
compiler
.
CompiledProgram
(
main_prog
).
with_data_parallel
(
loss_name
=
loss
.
name
,
exec_strategy
=
exe_strategy
)
for
_
in
six
.
moves
.
xrange
(
iter_per_pe
):
exe
.
run
(
train_cp
)
exe_strategy
=
fluid
.
ExecutionStrategy
()
exe_strategy
.
_dry_run
=
True
exe_strategy
.
use_experimental_executor
=
use_experimental_executor
train_cp
=
compiler
.
CompiledProgram
(
main_prog
).
with_data_parallel
(
loss_name
=
loss
.
name
,
exec_strategy
=
exe_strategy
)
for
_
in
six
.
moves
.
xrange
(
iter
):
for
_
in
six
.
moves
.
xrange
(
iter_per_pe
):
exe
.
run
(
train_cp
)
class
TestMNISTDryRun
(
TestBase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录