Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2318fb0e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2318fb0e
编写于
11月 05, 2020
作者:
S
Shang Zhizhou
提交者:
GitHub
11月 05, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick
ea851796
in develop (#28390)
上级
e9651068
变更
25
隐藏空白更改
内联
并排
Showing
25 changed file
with
895 addition
and
76 deletion
+895
-76
paddle/fluid/inference/analysis/argument.h
paddle/fluid/inference/analysis/argument.h
+1
-0
paddle/fluid/inference/analysis/ir_pass_manager.cc
paddle/fluid/inference/analysis/ir_pass_manager.cc
+1
-0
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+14
-1
paddle/fluid/inference/api/analysis_config.cc
paddle/fluid/inference/api/analysis_config.cc
+3
-0
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+2
-1
paddle/fluid/inference/api/paddle_analysis_config.h
paddle/fluid/inference/api/paddle_analysis_config.h
+17
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+1
-1
paddle/fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
...fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
+85
-9
paddle/fluid/inference/tensorrt/convert/matmul_op.cc
paddle/fluid/inference/tensorrt/convert/matmul_op.cc
+90
-0
paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc
...e/fluid/inference/tensorrt/convert/multihead_matmul_op.cc
+130
-27
paddle/fluid/inference/tensorrt/convert/skip_layernorm.cc
paddle/fluid/inference/tensorrt/convert/skip_layernorm.cc
+39
-6
paddle/fluid/inference/tensorrt/convert/slice_op.cc
paddle/fluid/inference/tensorrt/convert/slice_op.cc
+23
-7
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+10
-2
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+18
-0
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
+1
-1
paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.cu
...e/fluid/inference/tensorrt/plugin/special_slice_plugin.cu
+177
-0
paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.h
...le/fluid/inference/tensorrt/plugin/special_slice_plugin.h
+96
-0
paddle/fluid/inference/tests/api/trt_dynamic_shape_ernie_deserialize_test.cc
...nce/tests/api/trt_dynamic_shape_ernie_deserialize_test.cc
+3
-3
paddle/fluid/inference/tests/api/trt_dynamic_shape_ernie_test.cc
...fluid/inference/tests/api/trt_dynamic_shape_ernie_test.cc
+7
-6
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+3
-1
paddle/fluid/platform/dynload/tensorrt.cc
paddle/fluid/platform/dynload/tensorrt.cc
+27
-10
paddle/fluid/platform/dynload/tensorrt.h
paddle/fluid/platform/dynload/tensorrt.h
+30
-1
paddle/fluid/pybind/inference_api.cc
paddle/fluid/pybind/inference_api.cc
+2
-0
python/paddle/fluid/tests/unittests/ir/inference/inference_pass_test.py
...fluid/tests/unittests/ir/inference/inference_pass_test.py
+4
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_matmul.py
...dle/fluid/tests/unittests/ir/inference/test_trt_matmul.py
+111
-0
未找到文件。
paddle/fluid/inference/analysis/argument.h
浏览文件 @
2318fb0e
...
...
@@ -207,6 +207,7 @@ struct Argument {
DECL_ARGUMENT_FIELD
(
tensorrt_use_static_engine
,
TensorRtUseStaticEngine
,
bool
);
DECL_ARGUMENT_FIELD
(
tensorrt_use_calib_mode
,
TensorRtUseCalibMode
,
bool
);
DECL_ARGUMENT_FIELD
(
tensorrt_use_oss
,
TensorRtUseOSS
,
bool
);
DECL_ARGUMENT_FIELD
(
lite_passes_filter
,
LitePassesFilter
,
std
::
vector
<
std
::
string
>
);
...
...
paddle/fluid/inference/analysis/ir_pass_manager.cc
浏览文件 @
2318fb0e
...
...
@@ -95,6 +95,7 @@ void IRPassManager::CreatePasses(Argument *argument,
bool
use_calib_mode
=
argument
->
tensorrt_use_calib_mode
();
pass
->
Set
(
"enable_int8"
,
new
bool
(
enable_int8
));
pass
->
Set
(
"use_calib_mode"
,
new
bool
(
use_calib_mode
));
pass
->
Set
(
"use_oss"
,
new
bool
(
argument
->
tensorrt_use_oss
()));
pass
->
Set
(
"precision_mode"
,
new
AnalysisConfig
::
Precision
(
precision_mode
));
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
2318fb0e
...
...
@@ -117,11 +117,20 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
block_desc
.
Proto
()
->
set_idx
(
0
);
LOG
(
INFO
)
<<
"--- detect a sub-graph with "
<<
subgraph
.
size
()
<<
" nodes"
;
bool
has_fused_embedding_eltwise_layernorm
=
false
;
bool
has_multihead_matmul
=
false
;
for
(
auto
*
node
:
subgraph
)
{
auto
*
new_block_op
=
new_block
->
AppendOp
();
auto
*
op
=
block_desc
.
AppendOp
();
*
new_block_op
->
Proto
()
=
*
node
->
Op
()
->
Proto
();
*
op
->
Proto
()
=
*
node
->
Op
()
->
Proto
();
if
(
!
has_fused_embedding_eltwise_layernorm
&&
op
->
Type
()
==
"fused_embedding_eltwise_layernorm"
)
{
has_fused_embedding_eltwise_layernorm
=
true
;
}
if
(
!
has_multihead_matmul
&&
op
->
Type
()
==
"multihead_matmul"
)
{
has_multihead_matmul
=
true
;
}
}
// Then, we will use the input_names_with_id and output_names_with_id to
...
...
@@ -308,6 +317,9 @@ void TensorRtSubgraphPass::CreateTensorRTOp(
precision_mode
,
calibrator
.
get
(),
Get
<
int
>
(
"gpu_device_id"
),
min_input_shape
,
max_input_shape
,
opt_input_shape
,
disable_trt_plugin_fp16
);
trt_engine
->
SetUseOSS
(
Get
<
bool
>
(
"use_oss"
));
trt_engine
->
SetWithErnie
(
has_multihead_matmul
&&
has_fused_embedding_eltwise_layernorm
);
bool
need_serialize
=
(
use_static_engine
&&
!
load_from_memory
);
if
(
need_serialize
)
{
...
...
@@ -386,4 +398,5 @@ REGISTER_PASS_CAPABILITY(tensorrt_subgraph_pass)
.
EQ
(
"instance_norm"
,
0
)
.
EQ
(
"gelu"
,
0
)
.
EQ
(
"layer_norm"
,
0
)
.
EQ
(
"scale"
,
0
));
.
EQ
(
"scale"
,
0
)
.
EQ
(
"matmul"
,
0
));
paddle/fluid/inference/api/analysis_config.cc
浏览文件 @
2318fb0e
...
...
@@ -121,6 +121,7 @@ AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
CP_MEMBER
(
tensorrt_precision_mode_
);
CP_MEMBER
(
trt_use_static_engine_
);
CP_MEMBER
(
trt_use_calib_mode_
);
CP_MEMBER
(
trt_use_oss_
);
// MKLDNN related.
CP_MEMBER
(
use_mkldnn_
);
CP_MEMBER
(
mkldnn_enabled_op_types_
);
...
...
@@ -274,6 +275,8 @@ void AnalysisConfig::SetTRTDynamicShapeInfo(
disable_trt_plugin_fp16_
=
disable_trt_plugin_fp16
;
}
void
AnalysisConfig
::
EnableTensorRtOSS
()
{
trt_use_oss_
=
true
;
}
// TODO(Superjomn) refactor this, buggy.
void
AnalysisConfig
::
Update
()
{
auto
info
=
SerializeInfoCache
();
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
2318fb0e
...
...
@@ -470,6 +470,7 @@ void AnalysisPredictor::PrepareArgument() {
argument_
.
SetTensorRtPrecisionMode
(
config_
.
tensorrt_precision_mode_
);
argument_
.
SetTensorRtUseStaticEngine
(
config_
.
trt_use_static_engine_
);
argument_
.
SetTensorRtUseCalibMode
(
config_
.
trt_use_calib_mode_
);
argument_
.
SetTensorRtUseOSS
(
config_
.
trt_use_oss_
);
argument_
.
SetMinInputShape
(
config_
.
min_input_shape_
);
argument_
.
SetMaxInputShape
(
config_
.
max_input_shape_
);
argument_
.
SetOptimInputShape
(
config_
.
optim_input_shape_
);
...
...
@@ -1055,7 +1056,7 @@ USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER
(
elementwise_max_tensor
);
USE_TRT_CONVERTER
(
elementwise_min_tensor
);
USE_TRT_CONVERTER
(
elementwise_pow_tensor
);
USE_TRT_CONVERTER
(
mul
);
USE_TRT_CONVERTER
(
m
atm
ul
);
USE_TRT_CONVERTER
(
conv2d
);
USE_TRT_CONVERTER
(
relu
);
USE_TRT_CONVERTER
(
sigmoid
);
...
...
paddle/fluid/inference/api/paddle_analysis_config.h
浏览文件 @
2318fb0e
...
...
@@ -312,6 +312,22 @@ struct PD_INFER_DECL AnalysisConfig {
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
,
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
optim_input_shape
,
bool
disable_trt_plugin_fp16
=
false
);
///
/// \brief Replace some TensorRT plugins to TensorRT OSS(
/// https://github.com/NVIDIA/TensorRT), with which some models's inference
/// may
/// be more high-performance. Libnvinfer_plugin.so greater than V7.2.1 is
/// needed.
///
void
EnableTensorRtOSS
();
///
/// \brief A boolean state telling whether to use the TensorRT OSS.
///
/// \return bool Whether to use the TensorRT OSS.
///
bool
tensorrt_oss_enabled
()
{
return
trt_use_oss_
;
}
///
/// \brief Turn on the usage of Lite sub-graph engine.
///
...
...
@@ -569,6 +585,7 @@ struct PD_INFER_DECL AnalysisConfig {
Precision
tensorrt_precision_mode_
{
Precision
::
kFloat32
};
bool
trt_use_static_engine_
{
false
};
bool
trt_use_calib_mode_
{
true
};
bool
trt_use_oss_
{
false
};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape_
{};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape_
{};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
optim_input_shape_
{};
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
2318fb0e
# Add TRT tests
nv_library
(
tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
SRCS m
atm
ul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc
pad_op.cc split_op.cc prelu_op.cc leaky_relu_op.cc gelu_op.cc layer_norm_op.cc multihead_matmul_op.cc
shuffle_channel_op.cc swish_op.cc instance_norm_op.cc stack_op.cc
...
...
paddle/fluid/inference/tensorrt/convert/emb_eltwise_layernorm.cc
浏览文件 @
2318fb0e
...
...
@@ -49,6 +49,9 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
input_ids
.
push_back
(
engine_
->
GetITensor
(
id_names
[
i
]));
}
// input_embs[0]: word_embedding
// input_embs[1]: pos_embedding
// input_embs[2]: sent_embedding
std
::
vector
<
float
*>
input_embs
;
std
::
vector
<
int
>
emb_sizes
;
...
...
@@ -85,15 +88,91 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
get_persistable_data
(
op_desc
.
Input
(
"Scale"
).
front
(),
&
scale_dims
);
int64_t
bias_size
=
framework
::
product
(
bias_dims
);
int64_t
scale_size
=
framework
::
product
(
scale_dims
);
float
eps
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"epsilon"
));
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
auto
use_fp16
=
engine_
->
WithFp16
();
auto
plugin
=
new
plugin
::
EmbEltwiseLayernormPluginDynamic
(
input_embs
,
bias
,
scale
,
emb_sizes
,
bias_size
,
scale_size
,
hidden
,
eps
,
use_fp16
);
layer
=
engine_
->
AddPluginV2
(
input_ids
.
data
(),
input_num
,
plugin
);
if
(
engine_
->
use_oss
())
{
int
output_fp16
=
static_cast
<
int
>
((
engine_
->
WithFp16
()
==
1
)
?
1
:
0
);
PADDLE_ENFORCE_EQ
(
output_fp16
,
1
,
platform
::
errors
::
InvalidArgument
(
"Only Precision::KHalf(fp16) is supported when infering "
"ernie(bert) model with config.EnableTensorRtOSS(). "
"But Precision::KFloat32 is setted."
));
const
std
::
vector
<
nvinfer1
::
PluginField
>
fields
{
{
"bert_embeddings_layernorm_beta"
,
bias
,
nvinfer1
::
PluginFieldType
::
kFLOAT32
,
static_cast
<
int32_t
>
(
bias_size
)},
{
"bert_embeddings_layernorm_gamma"
,
scale
,
nvinfer1
::
PluginFieldType
::
kFLOAT32
,
static_cast
<
int32_t
>
(
scale_size
)},
{
"bert_embeddings_word_embeddings"
,
input_embs
[
0
],
nvinfer1
::
PluginFieldType
::
kFLOAT32
,
static_cast
<
int32_t
>
(
emb_sizes
[
0
])},
{
"bert_embeddings_token_type_embeddings"
,
input_embs
[
2
],
nvinfer1
::
PluginFieldType
::
kFLOAT32
,
static_cast
<
int32_t
>
(
emb_sizes
[
2
])},
{
"bert_embeddings_position_embeddings"
,
input_embs
[
1
],
nvinfer1
::
PluginFieldType
::
kFLOAT32
,
static_cast
<
int32_t
>
(
emb_sizes
[
1
])},
{
"output_fp16"
,
&
output_fp16
,
nvinfer1
::
PluginFieldType
::
kINT32
,
1
},
};
// remember to free
nvinfer1
::
PluginFieldCollection
*
plugin_ptr
=
static_cast
<
nvinfer1
::
PluginFieldCollection
*>
(
malloc
(
sizeof
(
*
plugin_ptr
)
+
fields
.
size
()
*
sizeof
(
nvinfer1
::
PluginField
)));
plugin_ptr
->
nbFields
=
static_cast
<
int
>
(
fields
.
size
());
plugin_ptr
->
fields
=
fields
.
data
();
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
;
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
0
)
->
getName
()));
// word_embedding,
// eval_placeholder_0
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
1
)
->
getName
()));
// sent_embedding,
// eval_placeholder_1
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
2
)
->
getName
()));
// cu_seqlens,
// eval_placeholder_2
auto
max_seqlen_tensor
=
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
3
)
->
getName
());
auto
*
shuffle_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
max_seqlen_tensor
));
nvinfer1
::
Dims
shape_dim
;
shape_dim
.
nbDims
=
1
;
shape_dim
.
d
[
0
]
=
-
1
;
shuffle_layer
->
setReshapeDimensions
(
shape_dim
);
plugin_inputs
.
emplace_back
(
shuffle_layer
->
getOutput
(
0
));
// max_seqlen, eval_placeholder_3
auto
creator
=
GetPluginRegistry
()
->
getPluginCreator
(
"CustomEmbLayerNormPluginDynamic"
,
"2"
);
auto
plugin_obj
=
creator
->
createPlugin
(
"CustomEmbLayerNormPluginDynamic"
,
plugin_ptr
);
auto
plugin_layer
=
engine_
->
network
()
->
addPluginV2
(
plugin_inputs
.
data
(),
plugin_inputs
.
size
(),
*
plugin_obj
);
layer
=
plugin_layer
;
free
(
plugin_ptr
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"emb_eltwise_layernorm"
,
{
output_name
,
std
::
string
(
"qkv_plugin_mask"
)},
test_mode
);
}
else
{
bool
use_fp16
=
engine_
->
WithFp16
();
float
eps
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"epsilon"
));
plugin
::
DynamicPluginTensorRT
*
plugin
=
nullptr
;
plugin
=
new
plugin
::
EmbEltwiseLayernormPluginDynamic
(
input_embs
,
bias
,
scale
,
emb_sizes
,
bias_size
,
scale_size
,
hidden
,
eps
,
use_fp16
);
layer
=
engine_
->
AddPluginV2
(
input_ids
.
data
(),
input_num
,
plugin
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"emb_eltwise_layernorm"
,
{
output_name
},
test_mode
);
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the Ernie(Bert) model in static"
...
...
@@ -102,9 +181,6 @@ class EmbEltwiseLayerNormOpConverter : public OpConverter {
" to set the shape information to run the dynamic shape mode."
));
}
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"emb_eltwise_layernorm"
,
{
output_name
},
test_mode
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
...
...
paddle/fluid/inference/tensorrt/convert/mul_op.cc
→
paddle/fluid/inference/tensorrt/convert/m
atm
ul_op.cc
浏览文件 @
2318fb0e
...
...
@@ -28,25 +28,54 @@ namespace inference {
namespace
tensorrt
{
/*
* MulOp, IMatrixMultiplyLayer in TRT. This Layer doesn't has weights.
* M
atM
ulOp, IMatrixMultiplyLayer in TRT. This Layer doesn't has weights.
*/
class
MulOpConverter
:
public
OpConverter
{
class
M
atM
ulOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"convert a fluid mul op to tensorrt mul layer without bias"
;
VLOG
(
3
)
<<
"convert a fluid m
atm
ul op to tensorrt mul layer without bias"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
auto
*
input1
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
*
input2
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Y"
)[
0
]);
// Both the input1 and input2 do not need transpose.
bool
transpose_X
=
BOOST_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"transpose_X"
));
bool
transpose_Y
=
BOOST_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"transpose_Y"
));
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
MatrixMultiply
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input1
),
false
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input2
),
false
);
engine_
,
MatrixMultiply
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input1
),
transpose_X
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input2
),
transpose_Y
);
float
alpha
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"alpha"
));
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
fabs
(
alpha
-
1.0
)
<
std
::
numeric_limits
<
float
>::
epsilon
())
{
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
}
else
{
auto
create_weights
=
[
&
](
float
data
,
const
std
::
string
&
type
)
->
float
*
{
std
::
unique_ptr
<
framework
::
Tensor
>
tmp_tensor
(
new
framework
::
Tensor
());
tmp_tensor
->
Resize
({
1
});
auto
*
tmp_data
=
tmp_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
tmp_data
[
0
]
=
data
;
engine_
->
SetWeights
(
output_name
+
"_add_scale_op_"
+
type
,
std
::
move
(
tmp_tensor
));
return
tmp_data
;
};
float
*
alpha_data
=
create_weights
(
alpha
,
"alpha"
);
float
*
shift_data
=
create_weights
(
0.0
,
"shift"
);
float
*
power_data
=
create_weights
(
1.0
,
"power"
);
TensorRTEngine
::
Weight
nv_alpha
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
alpha_data
),
1
};
TensorRTEngine
::
Weight
nv_shift
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
shift_data
),
1
};
TensorRTEngine
::
Weight
nv_power
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
power_data
),
1
};
auto
*
scale_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Scale
,
*
layer
->
getOutput
(
0
),
nvinfer1
::
ScaleMode
::
kUNIFORM
,
nv_shift
.
get
(),
nv_alpha
.
get
(),
nv_power
.
get
());
engine_
->
SetITensor
(
output_name
,
scale_layer
->
getOutput
(
0
));
}
if
(
test_mode
)
{
// the test framework can not determine which is the
// output, so place the declaration inside.
engine_
->
DeclareOutput
(
output_name
);
...
...
@@ -58,4 +87,4 @@ class MulOpConverter : public OpConverter {
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
m
ul
,
MulOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
m
atmul
,
Mat
MulOpConverter
);
paddle/fluid/inference/tensorrt/convert/multihead_matmul_op.cc
浏览文件 @
2318fb0e
...
...
@@ -30,7 +30,6 @@ class MultiheadMatMulOpConverter : public OpConverter {
// Declare inputs
// Shouble be a 5 dims tensor.
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Input"
).
front
());
auto
*
input_bias_qk
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"BiasQK"
).
front
());
// fc weights and fc bias
auto
weight_name
=
op_desc
.
Input
(
"W"
).
front
();
...
...
@@ -50,7 +49,7 @@ class MultiheadMatMulOpConverter : public OpConverter {
memcpy
(
weight_data_tmp
.
data
(),
weight_data
,
weight_t
->
numel
()
*
sizeof
(
float
));
//
(hidden, 3, all_head_size)
// (hidden, 3, all_head_size)
auto
weight_dims
=
weight_t
->
dims
();
int
hidden
=
weight_dims
[
0
];
// channels_in
...
...
@@ -65,36 +64,140 @@ class MultiheadMatMulOpConverter : public OpConverter {
}
}
};
// transpose weight_data from m * n to n * m
tranpose_weight
(
weight_data_tmp
.
data
(),
weight_data
,
m
,
n
);
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
weight_t
->
numel
())};
weight
.
dims
.
assign
({
n
,
m
});
TensorRTEngine
::
Weight
bias
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
bias_data
),
static_cast
<
size_t
>
(
bias_t
->
numel
())};
auto
*
fc_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
FullyConnected
,
*
input
,
n
,
weight
.
get
(),
bias
.
get
());
auto
*
fc_out
=
fc_layer
->
getOutput
(
0
);
// add qkv to context
int
head_number
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"head_number"
));
int
head_size
=
all_head_size
/
head_number
;
float
scale
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"alpha"
));
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
;
plugin_inputs
.
push_back
(
fc_out
);
plugin_inputs
.
push_back
(
input_bias_qk
);
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
bool
ban_fp16
=
engine_
->
disable_trt_plugin_fp16
();
plugin
::
DynamicPluginTensorRT
*
plugin
=
new
plugin
::
QkvToContextPluginDynamic
(
hidden
,
head_number
,
head_size
,
scale
,
ban_fp16
);
layer
=
engine_
->
AddPluginV2
(
plugin_inputs
.
data
(),
2
,
plugin
);
if
(
engine_
->
use_oss
())
{
int
head_size
=
hidden
/
head_number
;
// [3, Nout, Hout, Nin, Hin] -> [Nout, 3, Hout, Nin, Hin]
auto
transpose_weight_v2
=
[](
const
float
*
src
,
float
*
dst
,
int
N
,
int
H
)
{
const
int
HNH
=
H
*
N
*
H
;
for
(
int
i
=
0
;
i
<
3
;
++
i
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
hnh
=
0
;
hnh
<
HNH
;
++
hnh
)
{
dst
[
n
*
3
*
HNH
+
i
*
HNH
+
hnh
]
=
src
[
i
*
N
*
HNH
+
n
*
HNH
+
hnh
];
}
}
}
};
// [3, N, H] -> [N, 3, H]
auto
transpose_bias_v2
=
[](
const
float
*
src
,
float
*
dst
,
int
N
,
int
H
)
{
for
(
int
i
=
0
;
i
<
3
;
++
i
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
h
=
0
;
h
<
H
;
++
h
)
{
dst
[
n
*
3
*
H
+
i
*
H
+
h
]
=
src
[
i
*
N
*
H
+
n
*
H
+
h
];
}
}
}
};
memcpy
(
weight_data_tmp
.
data
(),
weight_data
,
weight_t
->
numel
()
*
sizeof
(
float
));
transpose_weight_v2
(
weight_data_tmp
.
data
(),
weight_data
,
head_number
,
head_size
);
nvinfer1
::
Weights
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
int32_t
>
(
weight_t
->
numel
())};
std
::
vector
<
float
>
bias_data_tmp
;
bias_data_tmp
.
reserve
(
bias_t
->
numel
());
memcpy
(
bias_data_tmp
.
data
(),
bias_data
,
bias_t
->
numel
()
*
sizeof
(
float
));
transpose_bias_v2
(
bias_data_tmp
.
data
(),
bias_data
,
head_number
,
head_size
);
nvinfer1
::
Weights
bias
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
bias_data
),
static_cast
<
int32_t
>
(
bias_t
->
numel
())};
auto
*
fc_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
FullyConnected
,
*
input
,
n
,
weight
,
bias
);
auto
mask_tensor
=
engine_
->
GetITensor
(
"qkv_plugin_mask"
);
auto
creator
=
GetPluginRegistry
()
->
getPluginCreator
(
"CustomQKVToContextPluginDynamic"
,
"2"
);
assert
(
creator
!=
nullptr
);
int
type
=
static_cast
<
int
>
((
engine_
->
WithFp16
()
==
1
)
?
nvinfer1
::
DataType
::
kHALF
:
nvinfer1
::
DataType
::
kFLOAT
);
bool
has_mask
=
true
;
int
var_seqlen
=
1
;
const
std
::
vector
<
nvinfer1
::
PluginField
>
fields
{
{
"type_id"
,
&
type
,
nvinfer1
::
PluginFieldType
::
kINT32
,
1
},
{
"hidden_size"
,
&
hidden
,
nvinfer1
::
PluginFieldType
::
kINT32
,
1
},
{
"num_heads"
,
&
head_number
,
nvinfer1
::
PluginFieldType
::
kINT32
,
1
},
{
"has_mask"
,
&
has_mask
,
nvinfer1
::
PluginFieldType
::
kINT32
,
1
},
{
"var_seqlen"
,
&
var_seqlen
,
nvinfer1
::
PluginFieldType
::
kINT32
,
1
},
};
nvinfer1
::
PluginFieldCollection
*
plugin_collection
=
static_cast
<
nvinfer1
::
PluginFieldCollection
*>
(
malloc
(
sizeof
(
*
plugin_collection
)
+
fields
.
size
()
*
sizeof
(
nvinfer1
::
PluginField
)));
// remember to free
plugin_collection
->
nbFields
=
static_cast
<
int
>
(
fields
.
size
());
plugin_collection
->
fields
=
fields
.
data
();
auto
plugin
=
creator
->
createPlugin
(
"CustomQKVToContextPluginDynamic"
,
plugin_collection
);
free
(
plugin_collection
);
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
;
plugin_inputs
.
emplace_back
(
fc_layer
->
getOutput
(
0
));
plugin_inputs
.
emplace_back
(
mask_tensor
);
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
2
)
->
getName
()));
// cu_seqlens,
// eval_placeholder_2
auto
max_seqlen_tensor
=
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
3
)
->
getName
());
auto
*
shuffle_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
max_seqlen_tensor
));
nvinfer1
::
Dims
shape_dim
;
shape_dim
.
nbDims
=
1
;
shape_dim
.
d
[
0
]
=
-
1
;
shuffle_layer
->
setReshapeDimensions
(
shape_dim
);
plugin_inputs
.
emplace_back
(
shuffle_layer
->
getOutput
(
0
));
// max_seqlen, eval_placeholder_3
auto
plugin_layer
=
engine_
->
network
()
->
addPluginV2
(
plugin_inputs
.
data
(),
plugin_inputs
.
size
(),
*
plugin
);
layer
=
plugin_layer
;
}
else
{
// transpose weight_data from m * n to n * m
auto
*
input_bias_qk
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"BiasQK"
).
front
());
TensorRTEngine
::
Weight
weight
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
weight_data
),
static_cast
<
size_t
>
(
weight_t
->
numel
())};
weight
.
dims
.
assign
({
n
,
m
});
TensorRTEngine
::
Weight
bias
{
nvinfer1
::
DataType
::
kFLOAT
,
static_cast
<
void
*>
(
bias_data
),
static_cast
<
size_t
>
(
bias_t
->
numel
())};
auto
*
fc_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
FullyConnected
,
*
input
,
n
,
weight
.
get
(),
bias
.
get
());
auto
*
fc_out
=
fc_layer
->
getOutput
(
0
);
// add qkv to context
int
head_size
=
all_head_size
/
head_number
;
float
scale
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"alpha"
));
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
;
plugin_inputs
.
push_back
(
fc_out
);
plugin_inputs
.
push_back
(
input_bias_qk
);
bool
ban_fp16
=
engine_
->
disable_trt_plugin_fp16
();
plugin
::
DynamicPluginTensorRT
*
plugin
=
new
plugin
::
QkvToContextPluginDynamic
(
hidden
,
head_number
,
head_size
,
scale
,
ban_fp16
);
layer
=
engine_
->
AddPluginV2
(
plugin_inputs
.
data
(),
2
,
plugin
);
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the Ernie(Bert) model in static shape mode, which "
...
...
paddle/fluid/inference/tensorrt/convert/skip_layernorm.cc
浏览文件 @
2318fb0e
...
...
@@ -47,17 +47,50 @@ class SkipLayerNormOpConverter : public OpConverter {
framework
::
DDim
bias_dims
,
scale_dims
;
auto
*
bias
=
get_persistable_data
(
"Bias"
,
&
bias_dims
);
auto
*
scale
=
get_persistable_data
(
"Scale"
,
&
scale_dims
);
float
eps
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"epsilon"
));
int
bias_size
=
framework
::
product
(
bias_dims
);
int
scale_size
=
framework
::
product
(
scale_dims
);
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
bool
ban_fp16
=
engine_
->
disable_trt_plugin_fp16
();
plugin
::
SkipLayerNormPluginDynamic
*
plugin
=
new
plugin
::
SkipLayerNormPluginDynamic
(
bias
,
scale
,
bias_size
,
scale_size
,
eps
,
ban_fp16
);
layer
=
engine_
->
AddPluginV2
(
inputs
.
data
(),
2
,
plugin
);
if
(
engine_
->
use_oss
())
{
auto
creator
=
GetPluginRegistry
()
->
getPluginCreator
(
"CustomSkipLayerNormPluginDynamic"
,
"2"
);
assert
(
creator
!=
nullptr
);
int
type
=
static_cast
<
int
>
((
engine_
->
WithFp16
()
==
1
)
?
nvinfer1
::
DataType
::
kHALF
:
nvinfer1
::
DataType
::
kFLOAT
);
int
ld
=
input1
->
getDimensions
().
d
[
2
];
// hidden dimension
assert
(
ld
>
0
);
const
std
::
vector
<
nvinfer1
::
PluginField
>
fields
{
{
"type_id"
,
&
type
,
nvinfer1
::
PluginFieldType
::
kINT32
,
1
},
{
"ld"
,
&
ld
,
nvinfer1
::
PluginFieldType
::
kINT32
,
1
},
{
"beta"
,
bias
,
nvinfer1
::
PluginFieldType
::
kFLOAT32
,
bias_size
},
{
"gamma"
,
scale
,
nvinfer1
::
PluginFieldType
::
kFLOAT32
,
scale_size
},
};
nvinfer1
::
PluginFieldCollection
*
pluginPtr
=
static_cast
<
nvinfer1
::
PluginFieldCollection
*>
(
malloc
(
sizeof
(
*
pluginPtr
)
+
fields
.
size
()
*
sizeof
(
nvinfer1
::
PluginField
)));
// remember to free
pluginPtr
->
nbFields
=
static_cast
<
int
>
(
fields
.
size
());
pluginPtr
->
fields
=
fields
.
data
();
auto
pluginObj
=
creator
->
createPlugin
(
"CustomSkipLayerNormPluginDynamic"
,
pluginPtr
);
auto
plugin_layer
=
engine_
->
network
()
->
addPluginV2
(
inputs
.
data
(),
inputs
.
size
(),
*
pluginObj
);
assert
(
plugin_layer
!=
nullptr
);
layer
=
plugin_layer
;
}
else
{
float
eps
=
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"epsilon"
));
bool
ban_fp16
=
engine_
->
disable_trt_plugin_fp16
();
plugin
::
SkipLayerNormPluginDynamic
*
plugin
=
new
plugin
::
SkipLayerNormPluginDynamic
(
bias
,
scale
,
bias_size
,
scale_size
,
eps
,
ban_fp16
);
layer
=
engine_
->
AddPluginV2
(
inputs
.
data
(),
2
,
plugin
);
}
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the Ernie(Bert) model in static"
...
...
paddle/fluid/inference/tensorrt/convert/slice_op.cc
浏览文件 @
2318fb0e
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -77,16 +78,31 @@ class SliceOpConverter : public OpConverter {
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
if
(
engine_
->
use_oss
()
&&
engine_
->
with_ernie
())
{
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
;
// plugin_inputs.emplace_back(trans_layer->getOutput(0));
plugin_inputs
.
emplace_back
(
input
);
plugin_inputs
.
emplace_back
(
engine_
->
GetITensor
(
engine_
->
network
()
->
getInput
(
2
)
->
getName
()));
// cu_seqlens,
// eval_placeholder_2
// bool ban_fp16 = engine_->disable_trt_plugin_fp16();
plugin
::
SpecialSlicePluginDynamic
*
plugin
=
new
plugin
::
SpecialSlicePluginDynamic
();
layer
=
engine_
->
AddPluginV2
(
plugin_inputs
.
data
(),
plugin_inputs
.
size
(),
plugin
);
}
else
{
#if IS_TRT_VERSION_GE(6000)
bool
ban_fp16
=
engine_
->
disable_trt_plugin_fp16
();
plugin
::
SlicePluginDynamic
*
plugin
=
new
plugin
::
SlicePluginDynamic
(
starts
,
ends
,
axes
,
ban_fp16
);
layer
=
engine_
->
AddPluginV2
(
&
input
,
1
,
plugin
);
bool
ban_fp16
=
engine_
->
disable_trt_plugin_fp16
();
plugin
::
SlicePluginDynamic
*
plugin
=
new
plugin
::
SlicePluginDynamic
(
starts
,
ends
,
axes
,
ban_fp16
);
layer
=
engine_
->
AddPluginV2
(
&
input
,
1
,
plugin
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
#endif
}
}
else
{
bool
ban_fp16
=
engine_
->
disable_trt_plugin_fp16
();
plugin
::
SlicePlugin
*
plugin
=
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
2318fb0e
...
...
@@ -71,9 +71,9 @@ TRT_DT FluidDataType2TRT(FluidDT type) {
template
<
typename
T
>
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
T
>&
shape
,
std
::
string
input
,
bool
with_dynamic_shape
=
false
)
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
1
UL
,
PADDLE_ENFORCE_GT
(
shape
.
size
(),
0
UL
,
platform
::
errors
::
InvalidArgument
(
"TensorRT's tensor input requires at least
2
"
"TensorRT's tensor input requires at least
1
"
"dimensions, but input %s has %d dims."
,
input
,
shape
.
size
()));
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4UL
,
...
...
@@ -174,6 +174,7 @@ class TensorRTEngine {
"version should be at least 6."
;
#endif
}
dy
::
initLibNvInferPlugins
(
&
logger
,
""
);
}
~
TensorRTEngine
()
{}
...
...
@@ -285,6 +286,9 @@ class TensorRTEngine {
suffix_counter
+=
1
;
}
void
SetUseOSS
(
bool
use_oss
)
{
use_oss_
=
use_oss
;
}
void
SetWithErnie
(
bool
with_ernie
)
{
with_ernie_
=
with_ernie
;
}
void
ClearWeights
()
{
for
(
auto
&
weight_pair
:
weight_map
)
{
weight_pair
.
second
.
reset
(
nullptr
);
...
...
@@ -312,6 +316,8 @@ class TensorRTEngine {
ShapeMapType
min_input_shape
()
{
return
min_input_shape_
;
}
ShapeMapType
max_input_shape
()
{
return
max_input_shape_
;
}
ShapeMapType
optim_input_shape
()
{
return
optim_input_shape_
;
}
bool
use_oss
()
{
return
use_oss_
;
}
bool
with_ernie
()
{
return
with_ernie_
;
}
bool
disable_trt_plugin_fp16
()
{
return
disable_trt_plugin_fp16_
;
}
bool
with_dynamic_shape
()
{
return
with_dynamic_shape_
;
}
...
...
@@ -347,6 +353,8 @@ class TensorRTEngine {
ShapeMapType
max_input_shape_
;
ShapeMapType
optim_input_shape_
;
bool
disable_trt_plugin_fp16_
{
false
};
bool
use_oss_
{
false
};
bool
with_ernie_
{
false
};
nvinfer1
::
ILogger
&
logger_
;
// max data size for the buffers.
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
2318fb0e
...
...
@@ -13,6 +13,8 @@
// limitations under the License.
#include "paddle/fluid/inference/tensorrt/op_teller.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/var_desc.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -70,6 +72,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"hard_swish"
};
std
::
unordered_set
<
std
::
string
>
teller_set
{
"mul"
,
"matmul"
,
"conv2d"
,
"pool2d"
,
"relu"
,
...
...
@@ -122,6 +125,21 @@ bool OpTeller::Tell(const std::string& op_type, const framework::OpDesc& desc,
(
padding_algorithm
==
"SAME"
&&
op_type
!=
"pool2d"
))
return
false
;
}
if
(
op_type
==
"matmul"
)
{
auto
*
block
=
desc
.
Block
();
for
(
auto
&
param_name
:
desc
.
Inputs
())
{
for
(
auto
&
var_name
:
param_name
.
second
)
{
auto
*
var_desc
=
block
->
FindVar
(
var_name
);
const
auto
shape
=
var_desc
->
GetShape
();
if
(
shape
.
size
()
<
3
)
{
VLOG
(
1
)
<<
"matmul op dims < 3 not supported in tensorrt, but got dims "
<<
shape
.
size
()
<<
", so jump it."
;
return
false
;
}
}
}
}
if
((
*
teller
)(
op_type
,
desc
,
use_no_calib_int8
))
return
true
;
}
return
false
;
...
...
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
浏览文件 @
2318fb0e
...
...
@@ -4,5 +4,5 @@ nv_library(tensorrt_plugin
pool_op_plugin.cu swish_op_plugin.cu layer_norm_op_plugin.cu
instance_norm_op_plugin.cu emb_eltwise_layernorm_plugin.cu
qkv_to_context_plugin.cu skip_layernorm_op_plugin.cu slice_op_plugin.cu
hard_swish_op_plugin.cu stack_op_plugin.cu
hard_swish_op_plugin.cu stack_op_plugin.cu
special_slice_plugin.cu
DEPS enforce tensorrt_engine prelu tensor bert_encoder_functor
)
paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.cu
0 → 100644
浏览文件 @
2318fb0e
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cassert>
#include <cstring>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
#if IS_TRT_VERSION_GE(6000)
SpecialSlicePluginDynamic
::
SpecialSlicePluginDynamic
()
{}
SpecialSlicePluginDynamic
::
SpecialSlicePluginDynamic
(
void
const
*
serial_data
,
size_t
serial_length
)
{}
SpecialSlicePluginDynamic
::~
SpecialSlicePluginDynamic
()
{}
nvinfer1
::
IPluginV2DynamicExt
*
SpecialSlicePluginDynamic
::
clone
()
const
{
return
new
SpecialSlicePluginDynamic
();
}
const
char
*
SpecialSlicePluginDynamic
::
getPluginType
()
const
{
return
"special_slice_plugin"
;
}
int
SpecialSlicePluginDynamic
::
getNbOutputs
()
const
{
return
1
;
}
int
SpecialSlicePluginDynamic
::
initialize
()
{
return
0
;
}
size_t
SpecialSlicePluginDynamic
::
getSerializationSize
()
const
{
size_t
serialize_size
=
0
;
return
serialize_size
;
}
void
SpecialSlicePluginDynamic
::
serialize
(
void
*
buffer
)
const
{}
nvinfer1
::
DimsExprs
SpecialSlicePluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
{
nvinfer1
::
DimsExprs
output
(
inputs
[
0
]);
auto
one
=
expr_builder
.
constant
(
1
);
output
.
d
[
0
]
=
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUB
,
*
inputs
[
1
].
d
[
0
],
*
one
);
return
output
;
}
void
SpecialSlicePluginDynamic
::
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
{}
size_t
SpecialSlicePluginDynamic
::
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
{
return
0
;
}
void
SpecialSlicePluginDynamic
::
destroy
()
{
delete
this
;
}
void
SpecialSlicePluginDynamic
::
terminate
()
{}
bool
SpecialSlicePluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
desc
,
int
nb_inputs
,
int
nb_outputs
)
{
if
(
pos
==
0
)
// slice tensor
return
(
desc
[
pos
].
type
==
nvinfer1
::
DataType
::
kHALF
&&
desc
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
// || desc[pos].type ==
// nvinfer1::DataType::kFLOAT);
if
(
pos
==
1
)
// cu_seqlen
return
(
desc
[
pos
].
type
==
nvinfer1
::
DataType
::
kINT32
&&
desc
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
return
(
desc
[
pos
].
type
==
nvinfer1
::
DataType
::
kHALF
&&
desc
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
// || desc[pos].type ==
// nvinfer1::DataType::kFLOAT);
}
nvinfer1
::
DataType
SpecialSlicePluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The index should be equal to 0"
));
return
input_types
[
0
];
}
template
<
typename
T
>
__global__
void
SpecialSliceKernel
(
const
T
*
slice_input
,
const
int32_t
*
cu_seqlens
,
T
*
output
)
{
const
int
hidden
=
blockDim
.
x
;
const
int
batch
=
blockIdx
.
x
;
output
[
batch
*
hidden
+
threadIdx
.
x
]
=
slice_input
[
cu_seqlens
[
batch
]
*
hidden
+
threadIdx
.
x
];
}
int
SpecialSlicePluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
input_dims
=
input_desc
[
0
].
dims
;
// (sum(S), 768, 1, 1)
auto
out_dims
=
output_desc
[
0
].
dims
;
// (batch, 768, 1, 1)
assert
(
input_desc
[
0
].
type
==
nvinfer1
::
DataType
::
kHALF
);
const
int32_t
hidden
=
input_dims
.
d
[
1
];
const
int
num_blocks
=
out_dims
.
d
[
0
];
// batch size
const
int
num_threads
=
hidden
;
const
half
*
slice_input
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
const
int32_t
*
cu_seqlens
=
static_cast
<
const
int32_t
*>
(
inputs
[
1
]);
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
SpecialSliceKernel
<<<
num_blocks
,
num_threads
,
0
,
stream
>>>
(
slice_input
,
cu_seqlens
,
output
);
return
cudaGetLastError
()
!=
cudaSuccess
;
}
SpecialSlicePluginDynamicCreator
::
SpecialSlicePluginDynamicCreator
()
{}
const
char
*
SpecialSlicePluginDynamicCreator
::
getPluginName
()
const
{
return
"special_slice_plugin"
;
}
const
char
*
SpecialSlicePluginDynamicCreator
::
getPluginVersion
()
const
{
return
"1"
;
}
const
nvinfer1
::
PluginFieldCollection
*
SpecialSlicePluginDynamicCreator
::
getFieldNames
()
{
return
&
field_collection_
;
}
nvinfer1
::
IPluginV2
*
SpecialSlicePluginDynamicCreator
::
createPlugin
(
const
char
*
name
,
const
nvinfer1
::
PluginFieldCollection
*
fc
)
{
return
new
SpecialSlicePluginDynamic
();
}
nvinfer1
::
IPluginV2
*
SpecialSlicePluginDynamicCreator
::
deserializePlugin
(
const
char
*
name
,
const
void
*
serial_data
,
size_t
serial_length
)
{
auto
plugin
=
new
SpecialSlicePluginDynamic
(
serial_data
,
serial_length
);
return
plugin
;
}
void
SpecialSlicePluginDynamicCreator
::
setPluginNamespace
(
const
char
*
lib_namespace
)
{
plugin_namespace_
=
lib_namespace
;
}
const
char
*
SpecialSlicePluginDynamicCreator
::
getPluginNamespace
()
const
{
return
plugin_namespace_
.
c_str
();
}
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.h
0 → 100644
浏览文件 @
2318fb0e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdio.h>
#include <cassert>
#include <string>
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
#if IS_TRT_VERSION_GE(6000)
class
SpecialSlicePluginDynamic
:
public
DynamicPluginTensorRT
{
public:
SpecialSlicePluginDynamic
();
SpecialSlicePluginDynamic
(
void
const
*
serial_data
,
size_t
serial_length
);
~
SpecialSlicePluginDynamic
();
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
override
;
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
outputIndex
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nbInputs
,
nvinfer1
::
IExprBuilder
&
exprBuilder
)
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
inOut
,
int
nbInputs
,
int
nbOutputs
)
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
override
;
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
override
;
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
inputTypes
,
int
nbInputs
)
const
override
;
const
char
*
getPluginType
()
const
override
;
int
getNbOutputs
()
const
override
;
int
initialize
()
override
;
void
terminate
()
override
;
size_t
getSerializationSize
()
const
override
;
void
serialize
(
void
*
buffer
)
const
override
;
void
destroy
()
override
;
private:
int
axis_
;
int
num_stack_
;
};
class
SpecialSlicePluginDynamicCreator
:
public
nvinfer1
::
IPluginCreator
{
public:
SpecialSlicePluginDynamicCreator
();
const
char
*
getPluginName
()
const
override
;
const
char
*
getPluginVersion
()
const
override
;
const
nvinfer1
::
PluginFieldCollection
*
getFieldNames
()
override
;
nvinfer1
::
IPluginV2
*
createPlugin
(
const
char
*
name
,
const
nvinfer1
::
PluginFieldCollection
*
fc
)
override
;
nvinfer1
::
IPluginV2
*
deserializePlugin
(
const
char
*
name
,
const
void
*
serial_data
,
size_t
serial_length
)
override
;
void
setPluginNamespace
(
const
char
*
lib_namespace
)
override
;
const
char
*
getPluginNamespace
()
const
override
;
private:
std
::
string
plugin_namespace_
;
nvinfer1
::
PluginFieldCollection
field_collection_
{
0
,
nullptr
};
std
::
vector
<
nvinfer1
::
PluginField
>
plugin_attributes_
;
};
REGISTER_TRT_PLUGIN_V2
(
SpecialSlicePluginDynamicCreator
);
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/api/trt_dynamic_shape_ernie_deserialize_test.cc
浏览文件 @
2318fb0e
...
...
@@ -126,17 +126,17 @@ void trt_ernie(bool with_fp16, std::vector<float> result) {
{
"read_file_0.tmp_0"
,
min_shape
},
{
"read_file_0.tmp_1"
,
min_shape
},
{
"read_file_0.tmp_2"
,
min_shape
},
{
"
matmul_0.tmp_0"
,
{
batch
,
min_seq_len
,
min_seq_len
}
}};
{
"
read_file_0.tmp_4"
,
min_shape
}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"read_file_0.tmp_0"
,
max_shape
},
{
"read_file_0.tmp_1"
,
max_shape
},
{
"read_file_0.tmp_2"
,
max_shape
},
{
"
matmul_0.tmp_0"
,
{
batch
,
max_seq_len
,
max_seq_len
}
}};
{
"
read_file_0.tmp_4"
,
max_shape
}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
opt_input_shape
=
{
{
"read_file_0.tmp_0"
,
opt_shape
},
{
"read_file_0.tmp_1"
,
opt_shape
},
{
"read_file_0.tmp_2"
,
opt_shape
},
{
"
matmul_0.tmp_0"
,
{
batch
,
opt_seq_len
,
opt_seq_len
}
}};
{
"
read_file_0.tmp_4"
,
opt_shape
}};
auto
precision
=
AnalysisConfig
::
Precision
::
kFloat32
;
if
(
with_fp16
)
{
...
...
paddle/fluid/inference/tests/api/trt_dynamic_shape_ernie_test.cc
浏览文件 @
2318fb0e
...
...
@@ -86,16 +86,16 @@ void run(const AnalysisConfig& config, std::vector<float>* out_data) {
void
trt_ernie
(
bool
with_fp16
,
std
::
vector
<
float
>
result
)
{
AnalysisConfig
config
;
std
::
string
model_dir
=
FLAGS_infer_model
;
SetConfig
(
&
config
,
model_dir
,
true
/* use_gpu */
);
SetConfig
(
&
config
,
model_dir
,
true
);
config
.
SwitchUseFeedFetchOps
(
false
);
int
batch
=
1
;
int
batch
=
32
;
int
min_seq_len
=
1
;
int
max_seq_len
=
128
;
int
opt_seq_len
=
128
;
std
::
vector
<
int
>
min_shape
=
{
batch
,
min_seq_len
,
1
};
std
::
vector
<
int
>
min_shape
=
{
1
,
min_seq_len
,
1
};
std
::
vector
<
int
>
max_shape
=
{
batch
,
max_seq_len
,
1
};
std
::
vector
<
int
>
opt_shape
=
{
batch
,
opt_seq_len
,
1
};
// Set the input's min, max, opt shape
...
...
@@ -103,17 +103,17 @@ void trt_ernie(bool with_fp16, std::vector<float> result) {
{
"read_file_0.tmp_0"
,
min_shape
},
{
"read_file_0.tmp_1"
,
min_shape
},
{
"read_file_0.tmp_2"
,
min_shape
},
{
"
matmul_0.tmp_0"
,
{
batch
,
min_seq_len
,
min_seq_len
}
}};
{
"
read_file_0.tmp_4"
,
min_shape
}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"read_file_0.tmp_0"
,
max_shape
},
{
"read_file_0.tmp_1"
,
max_shape
},
{
"read_file_0.tmp_2"
,
max_shape
},
{
"
matmul_0.tmp_0"
,
{
batch
,
max_seq_len
,
max_seq_len
}
}};
{
"
read_file_0.tmp_4"
,
max_shape
}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
opt_input_shape
=
{
{
"read_file_0.tmp_0"
,
opt_shape
},
{
"read_file_0.tmp_1"
,
opt_shape
},
{
"read_file_0.tmp_2"
,
opt_shape
},
{
"
matmul_0.tmp_0"
,
{
batch
,
opt_seq_len
,
opt_seq_len
}
}};
{
"
read_file_0.tmp_4"
,
opt_shape
}};
auto
precision
=
AnalysisConfig
::
Precision
::
kFloat32
;
if
(
with_fp16
)
{
...
...
@@ -124,6 +124,7 @@ void trt_ernie(bool with_fp16, std::vector<float> result) {
opt_input_shape
);
std
::
vector
<
float
>
out_data
;
run
(
config
,
&
out_data
);
for
(
size_t
i
=
0
;
i
<
out_data
.
size
();
i
++
)
{
EXPECT_NEAR
(
result
[
i
],
out_data
[
i
],
1e-5
);
}
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
2318fb0e
...
...
@@ -278,9 +278,11 @@ class TensorRTEngineOp : public framework::OperatorBase {
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
t
.
data
<
float
>
());
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT64
)
{
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
t
.
data
<
int64_t
>
());
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT32
)
{
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
t
.
data
<
int32_t
>
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The TRT Engine OP only support float
and
int64_t input."
));
"The TRT Engine OP only support float
/int32_t/
int64_t input."
));
}
}
...
...
paddle/fluid/platform/dynload/tensorrt.cc
浏览文件 @
2318fb0e
...
...
@@ -22,19 +22,15 @@ namespace dynload {
std
::
once_flag
tensorrt_dso_flag
;
void
*
tensorrt_dso_handle
;
std
::
once_flag
tensorrt_plugin_dso_flag
;
void
*
tensorrt_plugin_dso_handle
;
#define DEFINE_WRAP(__name) DynLoad__##__name __name
TENSORRT_RAND_ROUTINE_EACH
(
DEFINE_WRAP
);
TENSORRT_PLUGIN_RAND_ROUTINE_EACH
(
DEFINE_WRAP
);
void
*
GetTensorRtHandle
()
{
#if defined(__APPLE__) || defined(__OSX__)
std
::
string
dso_name
=
"libnvinfer.dylib"
;
#elif defined(_WIN32)
std
::
string
dso_name
=
"nvinfer.dll"
;
#else
std
::
string
dso_name
=
"libnvinfer.so"
;
#endif
void
*
GetDsoHandle
(
const
std
::
string
&
dso_name
)
{
#if !defined(_WIN32)
int
dynload_flags
=
RTLD_LAZY
|
RTLD_LOCAL
;
#else
...
...
@@ -49,10 +45,31 @@ void* GetTensorRtHandle() {
"library is not found. Ignore this if TensorRT is not needed."
;
std
::
cerr
<<
error_msg
;
}
return
dso_handle
;
}
void
*
GetTensorRtHandle
()
{
#if defined(__APPLE__) || defined(__OSX__)
std
::
string
dso_name
=
"libnvinfer.dylib"
;
#elif defined(_WIN32)
std
::
string
dso_name
=
"nvinfer.dll"
;
#else
std
::
string
dso_name
=
"libnvinfer.so"
;
#endif
return
GetDsoHandle
(
dso_name
);
}
void
*
GetTensorRtPluginHandle
()
{
#if defined(__APPLE__) || defined(__OSX__)
std
::
string
dso_name
=
"libnvinfer_plugin.dylib"
;
#elif defined(_WIN32)
std
::
string
dso_name
=
"nvinfer_plugin.dll"
;
#else
std
::
string
dso_name
=
"libnvinfer_plugin.so"
;
#endif
return
GetDsoHandle
(
dso_name
);
}
}
// namespace dynload
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/dynload/tensorrt.h
浏览文件 @
2318fb0e
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <NvInfer.h>
#include <NvInferPlugin.h>
#if !defined(_WIN32)
#include <dlfcn.h>
#endif
...
...
@@ -32,6 +33,10 @@ void* GetTensorRtHandle();
extern
std
::
once_flag
tensorrt_dso_flag
;
extern
void
*
tensorrt_dso_handle
;
void
*
GetTensorRtPluginHandle
();
extern
std
::
once_flag
tensorrt_plugin_dso_flag
;
extern
void
*
tensorrt_plugin_dso_handle
;
#define DECLARE_DYNAMIC_LOAD_TENSORRT_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
...
...
@@ -50,7 +55,26 @@ extern void* tensorrt_dso_handle;
}; \
extern DynLoad__##__name __name
#define DECLARE_DYNAMIC_LOAD_TENSORRT_PLUGIN_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> DECLARE_TYPE(__name, args...) { \
std::call_once(tensorrt_plugin_dso_flag, []() { \
tensorrt_plugin_dso_handle = \
paddle::platform::dynload::GetTensorRtPluginHandle(); \
}); \
static void* p_##__name = dlsym(tensorrt_plugin_dso_handle, #__name); \
PADDLE_ENFORCE_NOT_NULL(p_##__name, \
platform::errors::Unavailable( \
"Load tensorrt plugin %s failed", #__name)); \
using tensorrt_plugin_func = decltype(&::__name); \
return reinterpret_cast<tensorrt_plugin_func>(p_##__name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#ifdef NV_TENSORRT_MAJOR
#if (NV_TENSORRT_MAJOR >= 6)
#define TENSORRT_RAND_ROUTINE_EACH(__macro) \
__macro(createInferBuilder_INTERNAL); \
...
...
@@ -62,8 +86,13 @@ extern void* tensorrt_dso_handle;
__macro(createInferRuntime_INTERNAL);
#endif
#define TENSORRT_PLUGIN_RAND_ROUTINE_EACH(__macro) \
__macro(initLibNvInferPlugins);
TENSORRT_RAND_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_TENSORRT_WRAP
)
#endif
TENSORRT_PLUGIN_RAND_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_TENSORRT_PLUGIN_WRAP
)
#endif // end of NV_TENSORRT_MAJOR
}
// namespace dynload
}
// namespace platform
...
...
paddle/fluid/pybind/inference_api.cc
浏览文件 @
2318fb0e
...
...
@@ -481,6 +481,8 @@ void BindAnalysisConfig(py::module *m) {
py
::
arg
(
"optim_input_shape"
)
=
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
({}),
py
::
arg
(
"disable_trt_plugin_fp16"
)
=
false
)
.
def
(
"enable_tensorrt_oss"
,
&
AnalysisConfig
::
EnableTensorRtOSS
)
.
def
(
"tensorrt_oss_enabled"
,
&
AnalysisConfig
::
tensorrt_oss_enabled
)
.
def
(
"tensorrt_engine_enabled"
,
&
AnalysisConfig
::
tensorrt_engine_enabled
)
.
def
(
"enable_lite_engine"
,
&
AnalysisConfig
::
EnableLiteEngine
,
py
::
arg
(
"precision_mode"
)
=
AnalysisConfig
::
Precision
::
kFloat32
,
...
...
python/paddle/fluid/tests/unittests/ir/inference/inference_pass_test.py
浏览文件 @
2318fb0e
...
...
@@ -20,6 +20,7 @@ import random
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.core
import
PaddleTensor
...
...
@@ -34,6 +35,7 @@ from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
class
InferencePassTest
(
unittest
.
TestCase
):
def
__init__
(
self
,
methodName
=
'runTest'
):
paddle
.
enable_static
()
super
(
InferencePassTest
,
self
).
__init__
(
methodName
)
self
.
main_program
=
fluid
.
Program
()
self
.
startup_program
=
fluid
.
Program
()
...
...
@@ -211,6 +213,7 @@ class InferencePassTest(unittest.TestCase):
if
flatten
:
out
=
out
.
flatten
()
analysis_output
=
analysis_output
.
flatten
()
self
.
assertTrue
(
np
.
allclose
(
out
,
analysis_output
,
atol
=
atol
),
...
...
@@ -232,6 +235,7 @@ class InferencePassTest(unittest.TestCase):
if
flatten
:
out
=
out
.
flatten
()
tensorrt_output
=
tensorrt_output
.
flatten
()
self
.
assertTrue
(
np
.
allclose
(
out
,
tensorrt_output
,
atol
=
atol
),
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_matmul.py
0 → 100644
浏览文件 @
2318fb0e
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
inference_pass_test
import
InferencePassTest
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.core
import
PassVersionChecker
from
paddle.fluid.core
import
AnalysisConfig
class
TensorRTMatMulDims2Test
(
InferencePassTest
):
def
setUp
(
self
):
self
.
set_params
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
24
,
24
],
dtype
=
"float32"
)
matmul_out
=
fluid
.
layers
.
matmul
(
x
=
data
,
y
=
data
,
transpose_x
=
self
.
transpose_x
,
transpose_y
=
self
.
transpose_y
,
alpha
=
self
.
alpha
)
out
=
fluid
.
layers
.
batch_norm
(
matmul_out
,
is_test
=
True
)
self
.
feeds
=
{
"data"
:
np
.
ones
([
24
,
24
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTMatMulDims2Test
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
out
]
def
set_params
(
self
):
self
.
transpose_x
=
True
self
.
transpose_y
=
True
self
.
alpha
=
2.0
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTMatMulTest
(
InferencePassTest
):
def
setUp
(
self
):
self
.
set_params
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
6
,
24
,
24
],
dtype
=
"float32"
)
matmul_out
=
fluid
.
layers
.
matmul
(
x
=
data
,
y
=
data
,
transpose_x
=
self
.
transpose_x
,
transpose_y
=
self
.
transpose_y
,
alpha
=
self
.
alpha
)
out
=
fluid
.
layers
.
batch_norm
(
matmul_out
,
is_test
=
True
)
self
.
feeds
=
{
"data"
:
np
.
ones
([
1
,
6
,
24
,
24
]).
astype
(
"float32"
),
}
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTMatMulTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
AnalysisConfig
.
Precision
.
Float32
,
False
,
False
)
self
.
fetch_list
=
[
out
]
def
set_params
(
self
):
self
.
transpose_x
=
False
self
.
transpose_y
=
False
self
.
alpha
=
1.0
def
test_check_output
(
self
):
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTMatMulTransposeXTest
(
TensorRTMatMulTest
):
def
set_params
(
self
):
self
.
transpose_x
=
True
self
.
transpose_y
=
False
self
.
alpha
=
1.0
class
TensorRTMatMulTransposeYTest
(
TensorRTMatMulTest
):
def
set_params
(
self
):
self
.
transpose_x
=
False
self
.
transpose_y
=
True
self
.
alpha
=
1.0
class
TensorRTMatMulScaleTest
(
TensorRTMatMulTest
):
def
set_params
(
self
):
self
.
transpose_x
=
False
self
.
transpose_y
=
False
self
.
alpha
=
2.0
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录