Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
22125eba
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
22125eba
编写于
11月 09, 2018
作者:
T
tensor-tang
提交者:
GitHub
11月 09, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14321 from tensor-tang/fea/jit/vscal
Fea jitcode vscal vaddbias
上级
f1046d7e
5e64244f
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
193 addition
and
161 deletion
+193
-161
paddle/fluid/operators/math/jit_code.cc
paddle/fluid/operators/math/jit_code.cc
+33
-11
paddle/fluid/operators/math/jit_code.h
paddle/fluid/operators/math/jit_code.h
+24
-11
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+4
-3
paddle/fluid/operators/math/jit_kernel_blas.cc
paddle/fluid/operators/math/jit_kernel_blas.cc
+113
-121
paddle/fluid/operators/math/jit_kernel_exp.cc
paddle/fluid/operators/math/jit_kernel_exp.cc
+12
-9
paddle/fluid/operators/math/jit_kernel_test.cc
paddle/fluid/operators/math/jit_kernel_test.cc
+7
-6
未找到文件。
paddle/fluid/operators/math/jit_code.cc
浏览文件 @
22125eba
...
...
@@ -24,21 +24,30 @@ namespace gen {
using
namespace
platform
::
jit
;
// NOLINT
bool
V
VVJitCode
::
init
(
int
d
)
{
bool
V
XXJitCode
::
init
(
int
d
,
int
scalar_index
)
{
// It's not necessary to use avx512 since it would slow down the frequency
// and this kernel is not compute bound.
return
MayIUse
(
avx
);
return
MayIUse
(
avx
)
&&
scalar_index
>=
0
&&
scalar_index
<=
2
;
}
void
V
VV
JitCode
::
generate
()
{
void
V
XX
JitCode
::
generate
()
{
// do not need push stack, and do not need save avx512reg if do not use avx512
int
offset
=
0
;
if
(
with_relu_
)
{
vxorps
(
ymm_zero
,
ymm_zero
,
ymm_zero
);
}
if
(
scalar_index_
==
1
)
{
vbroadcastss
(
ymm_src1
,
ptr
[
param1
]);
}
else
if
(
scalar_index_
==
2
)
{
vbroadcastss
(
ymm_src2
,
ptr
[
param2
]);
}
for
(
int
i
=
0
;
i
<
num_
/
AVX_FLOAT_BLOCK
;
++
i
)
{
vmovups
(
ymm_src1
,
ptr
[
param1
+
offset
]);
vmovups
(
ymm_src2
,
ptr
[
param2
+
offset
]);
if
(
scalar_index_
!=
1
)
{
vmovups
(
ymm_src1
,
ptr
[
param1
+
offset
]);
}
if
(
scalar_index_
!=
2
)
{
vmovups
(
ymm_src2
,
ptr
[
param2
+
offset
]);
}
if
(
type_
==
operand_type
::
mul
)
{
vmulps
(
ymm_dst
,
ymm_src1
,
ymm_src2
);
}
else
if
(
type_
==
operand_type
::
add
)
{
...
...
@@ -52,8 +61,12 @@ void VVVJitCode::generate() {
}
int
rest
=
num_
%
AVX_FLOAT_BLOCK
;
if
(
rest
>=
4
)
{
vmovups
(
xmm_src1
,
ptr
[
param1
+
offset
]);
vmovups
(
xmm_src2
,
ptr
[
param2
+
offset
]);
if
(
scalar_index_
!=
1
)
{
vmovups
(
xmm_src1
,
ptr
[
param1
+
offset
]);
}
if
(
scalar_index_
!=
2
)
{
vmovups
(
xmm_src2
,
ptr
[
param2
+
offset
]);
}
if
(
type_
==
operand_type
::
mul
)
{
vmulps
(
xmm_dst
,
xmm_src1
,
xmm_src2
);
}
else
if
(
type_
==
operand_type
::
add
)
{
...
...
@@ -67,8 +80,12 @@ void VVVJitCode::generate() {
rest
-=
4
;
}
if
(
rest
>=
2
)
{
vmovq
(
xmm_src1
,
ptr
[
param1
+
offset
]);
vmovq
(
xmm_src2
,
ptr
[
param2
+
offset
]);
if
(
scalar_index_
!=
1
)
{
vmovups
(
xmm_src1
,
ptr
[
param1
+
offset
]);
}
if
(
scalar_index_
!=
2
)
{
vmovups
(
xmm_src2
,
ptr
[
param2
+
offset
]);
}
if
(
type_
==
operand_type
::
mul
)
{
vmulps
(
xmm_dst
,
xmm_src1
,
xmm_src2
);
}
else
if
(
type_
==
operand_type
::
add
)
{
...
...
@@ -82,8 +99,12 @@ void VVVJitCode::generate() {
rest
-=
2
;
}
if
(
rest
>
0
)
{
vmovss
(
xmm_src1
,
ptr
[
param1
+
offset
]);
vmovss
(
xmm_src2
,
ptr
[
param2
+
offset
]);
if
(
scalar_index_
!=
1
)
{
vmovups
(
xmm_src1
,
ptr
[
param1
+
offset
]);
}
if
(
scalar_index_
!=
2
)
{
vmovups
(
xmm_src2
,
ptr
[
param2
+
offset
]);
}
if
(
type_
==
operand_type
::
mul
)
{
vmulss
(
xmm_dst
,
xmm_src1
,
xmm_src2
);
}
else
if
(
type_
==
operand_type
::
add
)
{
...
...
@@ -96,6 +117,7 @@ void VVVJitCode::generate() {
}
ret
();
}
}
// namespace gen
}
// namespace jitkernel
}
// namespace math
...
...
paddle/fluid/operators/math/jit_code.h
浏览文件 @
22125eba
...
...
@@ -29,33 +29,46 @@ using ymm_t = const Xbyak::Ymm;
using
zmm_t
=
const
Xbyak
::
Zmm
;
using
Label
=
Xbyak
::
Label
;
// function: vec = Operand(vec, vec) (maybe with relu)
typedef
enum
{
mul
=
0
,
add
}
operand_type
;
class
VVVJitCode
:
public
JitCode
{
// function: vec = Operand(vec(or scalar), vec(or scalar)) (maybe with relu)
class
VXXJitCode
:
public
JitCode
{
public:
const
char
*
name
()
const
override
{
std
::
string
base
=
"VVVJitCode"
;
std
::
string
base
=
"VXXJitCode"
;
if
(
scalar_index_
==
1
)
{
base
+=
"_Scalar"
;
}
else
{
base
+=
"_Vec"
;
}
if
(
type_
==
operand_type
::
mul
)
{
base
+=
"_Mul"
;
}
else
if
(
type_
==
operand_type
::
add
)
{
base
+=
"_Add"
;
}
base
+=
(
with_relu_
?
"_relu"
:
""
);
if
(
scalar_index_
==
2
)
{
base
+=
"_Scalar"
;
}
else
{
base
+=
"_Vec"
;
}
base
+=
(
with_relu_
?
"_Relu"
:
""
);
return
base
.
c_str
();
}
explicit
VVVJitCode
(
int
d
,
operand_type
type
,
bool
with_relu
,
size_t
code_size
=
256
*
1024
,
void
*
code_ptr
=
nullptr
)
explicit
VXXJitCode
(
int
d
,
operand_type
type
,
int
scalar_index
,
bool
with_relu
,
size_t
code_size
=
256
*
1024
,
void
*
code_ptr
=
nullptr
)
:
JitCode
(
code_size
,
code_ptr
),
num_
(
d
),
type_
(
type
),
scalar_index_
(
scalar_index
),
with_relu_
(
with_relu
)
{}
static
bool
init
(
int
d
);
static
bool
init
(
int
d
,
int
scalar_index
=
0
);
void
generate
()
override
;
private:
int
num_
;
operand_type
type_
;
int
scalar_index_
;
bool
with_relu_
;
reg64_t
param1
{
abi_param1
};
reg64_t
param2
{
abi_param2
};
...
...
@@ -63,13 +76,13 @@ class VVVJitCode : public JitCode {
xmm_t
xmm_src1
=
xmm_t
(
0
);
xmm_t
xmm_src2
=
xmm_t
(
1
);
xmm_t
xmm_dst
=
xmm_t
(
1
);
xmm_t
xmm_zero
=
xmm_t
(
2
);
xmm_t
xmm_dst
=
xmm_t
(
2
);
xmm_t
xmm_zero
=
xmm_t
(
3
);
ymm_t
ymm_src1
=
ymm_t
(
0
);
ymm_t
ymm_src2
=
ymm_t
(
1
);
ymm_t
ymm_dst
=
ymm_t
(
1
);
ymm_t
ymm_zero
=
ymm_t
(
2
);
ymm_t
ymm_dst
=
ymm_t
(
2
);
ymm_t
ymm_zero
=
ymm_t
(
3
);
};
}
// namespace gen
...
...
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
22125eba
...
...
@@ -83,14 +83,15 @@ class VAddReluKernel : public Kernel {
template
<
typename
T
>
class
VScalKernel
:
public
Kernel
{
public:
virtual
void
Compute
(
const
T
a
,
const
T
*
x
,
T
*
y
)
const
=
0
;
v
irtual
void
Compute
(
const
T
a
,
T
*
x
)
const
=
0
;
// y = a.*x
v
oid
(
*
Compute
)(
const
T
*
,
const
T
*
,
T
*
,
int
)
;
};
template
<
typename
T
>
class
VAddBiasKernel
:
public
Kernel
{
public:
virtual
void
Compute
(
const
T
a
,
const
T
*
x
,
T
*
y
)
const
=
0
;
// y = a.+x
void
(
*
Compute
)(
const
T
*
,
const
T
*
,
T
*
,
int
);
};
template
<
typename
T
>
...
...
paddle/fluid/operators/math/jit_kernel_blas.cc
浏览文件 @
22125eba
...
...
@@ -57,6 +57,20 @@ void VAddReluRefer(const T* x, const T* y, T* z, int n) {
}
}
template
<
typename
T
>
void
VScalRefer
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
a
[
0
]
*
x
[
i
];
}
}
template
<
typename
T
>
void
VAddBiasRefer
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
a
[
0
]
+
x
[
i
];
}
}
#ifdef PADDLE_WITH_MKLML
template
<
typename
T
>
void
VMulMKL
(
const
T
*
x
,
const
T
*
y
,
T
*
z
,
int
n
);
...
...
@@ -83,6 +97,28 @@ template <>
void
VAddMKL
<
double
>
(
const
double
*
x
,
const
double
*
y
,
double
*
z
,
int
n
)
{
platform
::
dynload
::
vdAdd
(
n
,
x
,
y
,
z
);
}
template
<
typename
T
>
void
VScalMKL
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
);
template
<
>
void
VScalMKL
<
float
>
(
const
float
*
a
,
const
float
*
x
,
float
*
y
,
int
n
)
{
if
(
x
==
y
)
{
platform
::
dynload
::
cblas_sscal
(
n
,
*
a
,
y
,
1
);
}
else
{
VScalRefer
<
float
>
(
a
,
x
,
y
,
n
);
}
}
template
<
>
void
VScalMKL
<
double
>
(
const
double
*
a
,
const
double
*
x
,
double
*
y
,
int
n
)
{
if
(
x
==
y
)
{
platform
::
dynload
::
cblas_dscal
(
n
,
*
a
,
y
,
1
);
}
else
{
VScalRefer
<
double
>
(
a
,
x
,
y
,
n
);
}
}
#endif
#define DECLARE_STATIC_FUNC \
...
...
@@ -102,7 +138,7 @@ class VMulKernelImpl : public VMulKernel<T> {
if
(
useJIT
(
d
))
{
// roughly estimate the size of code
size_t
sz
=
96
+
d
/
AVX_FLOAT_BLOCK
*
4
*
8
;
jitcode_
.
reset
(
new
gen
::
V
VVJitCode
(
d
,
gen
::
operand_type
::
mul
,
false
,
jitcode_
.
reset
(
new
gen
::
V
XXJitCode
(
d
,
gen
::
operand_type
::
mul
,
0
,
false
,
sz
>
4096
?
sz
:
4096
));
this
->
Compute
=
jitcode_
->
getCode
<
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
)
>
();
...
...
@@ -121,14 +157,14 @@ class VMulKernelImpl : public VMulKernel<T> {
#ifdef PADDLE_WITH_XBYAK
private:
std
::
unique_ptr
<
gen
::
V
VV
JitCode
>
jitcode_
{
nullptr
};
std
::
unique_ptr
<
gen
::
V
XX
JitCode
>
jitcode_
{
nullptr
};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template
<
>
bool
VMulKernelImpl
<
float
>::
useJIT
(
int
d
)
{
return
gen
::
V
VV
JitCode
::
init
(
d
);
return
gen
::
V
XX
JitCode
::
init
(
d
);
}
#endif
...
...
@@ -153,7 +189,7 @@ class VAddKernelImpl : public VAddKernel<T> {
#ifdef PADDLE_WITH_XBYAK
if
(
useJIT
(
d
))
{
size_t
sz
=
96
+
d
/
AVX_FLOAT_BLOCK
*
4
*
8
;
jitcode_
.
reset
(
new
gen
::
V
VVJitCode
(
d
,
gen
::
operand_type
::
add
,
false
,
jitcode_
.
reset
(
new
gen
::
V
XXJitCode
(
d
,
gen
::
operand_type
::
add
,
0
,
false
,
sz
>
4096
?
sz
:
4096
));
this
->
Compute
=
jitcode_
->
getCode
<
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
)
>
();
...
...
@@ -171,14 +207,14 @@ class VAddKernelImpl : public VAddKernel<T> {
#ifdef PADDLE_WITH_XBYAK
private:
std
::
unique_ptr
<
gen
::
V
VV
JitCode
>
jitcode_
{
nullptr
};
std
::
unique_ptr
<
gen
::
V
XX
JitCode
>
jitcode_
{
nullptr
};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template
<
>
bool
VAddKernelImpl
<
float
>::
useJIT
(
int
d
)
{
return
gen
::
V
VV
JitCode
::
init
(
d
);
return
gen
::
V
XX
JitCode
::
init
(
d
);
}
#endif
...
...
@@ -203,7 +239,7 @@ class VAddReluKernelImpl : public VAddReluKernel<T> {
#ifdef PADDLE_WITH_XBYAK
if
(
useJIT
(
d
))
{
size_t
sz
=
96
+
d
/
AVX_FLOAT_BLOCK
*
4
*
8
;
jitcode_
.
reset
(
new
gen
::
V
VVJitCode
(
d
,
gen
::
operand_type
::
add
,
true
,
jitcode_
.
reset
(
new
gen
::
V
XXJitCode
(
d
,
gen
::
operand_type
::
add
,
0
,
true
,
sz
>
4096
?
sz
:
4096
));
this
->
Compute
=
jitcode_
->
getCode
<
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
)
>
();
...
...
@@ -215,148 +251,106 @@ class VAddReluKernelImpl : public VAddReluKernel<T> {
#ifdef PADDLE_WITH_XBYAK
private:
std
::
unique_ptr
<
gen
::
V
VV
JitCode
>
jitcode_
{
nullptr
};
std
::
unique_ptr
<
gen
::
V
XX
JitCode
>
jitcode_
{
nullptr
};
#endif
};
#ifdef PADDLE_WITH_XBYAK
template
<
>
bool
VAddReluKernelImpl
<
float
>::
useJIT
(
int
d
)
{
return
gen
::
V
VV
JitCode
::
init
(
d
);
return
gen
::
V
XX
JitCode
::
init
(
d
);
}
#endif
#undef DECLARE_STATIC_FUNC
REGISTER_JITKERNEL
(
vmul
,
VMulKernel
);
REGISTER_JITKERNEL
(
vadd
,
VAddKernel
);
REGISTER_JITKERNEL
(
vaddrelu
,
VAddReluKernel
);
/* VSCAL JitKernel */
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
/* VScal JitKernel */
template
<
typename
T
>
class
VScalKernelImpl
:
public
VScalKernel
<
T
>
{
public:
explicit
VScalKernelImpl
(
int
d
)
:
VScalKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
a
,
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
a
*
x
[
i
];
}
}
void
Compute
(
const
T
a
,
T
*
x
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
x
[
i
]
=
a
*
x
[
i
];
DECLARE_STATIC_FUNC
;
explicit
VScalKernelImpl
(
int
d
)
:
VScalKernel
<
T
>
()
{
#ifdef PADDLE_WITH_XBYAK
if
(
useJIT
(
d
))
{
size_t
sz
=
96
+
d
/
AVX_FLOAT_BLOCK
*
4
*
8
;
jitcode_
.
reset
(
new
gen
::
VXXJitCode
(
d
,
gen
::
operand_type
::
mul
,
1
,
false
,
sz
>
4096
?
sz
:
4096
));
this
->
Compute
=
jitcode_
->
getCode
<
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
)
>
();
return
;
}
}
};
#endif
#ifdef PADDLE_WITH_MKLML
#define MKL_FLOAT(isa, block) \
template <> \
void VScalKernelImpl<float, isa, block>::Compute(const float a, float* x) \
const { \
platform::dynload::cblas_sscal(this->num_, a, x, 1); \
}
#define MKL_DOUBLE(isa, block) \
template <> \
void VScalKernelImpl<double, isa, block>::Compute(const double a, double* x) \
const { \
platform::dynload::cblas_dscal(this->num_, a, x, 1); \
}
FOR_EACH_ISA
(
MKL_FLOAT
,
kGT16
);
FOR_EACH_ISA_BLOCK
(
MKL_DOUBLE
);
if
(
useMKL
(
d
))
{
this
->
Compute
=
VScalMKL
<
T
>
;
return
;
}
#endif
#define INTRI8_FLOAT(isa) \
template <> \
void VScalKernelImpl<float, isa, kEQ8>::Compute( \
const float a, const float* x, float* y) const { \
__m256 tmp; \
__m256 scalar = _mm256_set1_ps(a); \
tmp = _mm256_loadu_ps(x); \
tmp = _mm256_mul_ps(tmp, scalar); \
_mm256_storeu_ps(y, tmp); \
}
#define INTRI8_INPLACE_FLOAT(isa) \
template <> \
void VScalKernelImpl<float, isa, kEQ8>::Compute(const float a, float* x) \
const { \
__m256 tmp; \
__m256 scalar = _mm256_set1_ps(a); \
tmp = _mm256_loadu_ps(x); \
tmp = _mm256_mul_ps(tmp, scalar); \
_mm256_storeu_ps(x, tmp); \
this
->
Compute
=
VScalRefer
<
T
>
;
}
#ifdef PADDLE_WITH_XBYAK
#ifdef __AVX__
INTRI8_FLOAT
(
jit
::
avx
);
INTRI8_INPLACE_FLOAT
(
jit
::
avx
);
#endif
#ifdef __AVX2__
INTRI8_FLOAT
(
jit
::
avx2
);
INTRI8_INPLACE_FLOAT
(
jit
::
avx2
);
private:
std
::
unique_ptr
<
gen
::
VXXJitCode
>
jitcode_
{
nullptr
};
#endif
#ifdef __AVX512F__
INTRI8_FLOAT
(
jit
::
avx512f
);
INTRI8_INPLACE_FLOAT
(
jit
::
avx512f
);
};
#ifdef PADDLE_WITH_XBYAK
template
<
>
bool
VScalKernelImpl
<
float
>::
useJIT
(
int
d
)
{
return
gen
::
VXXJitCode
::
init
(
d
,
1
);
}
#endif
// TODO(TJ): eq16 test and complete avx512
#undef INTRI8_FLOAT
#undef INTRI8_INPLACE_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
#ifdef PADDLE_WITH_MKLML
template
<
>
bool
VScalKernelImpl
<
float
>::
useMKL
(
int
d
)
{
return
d
>
512
;
}
template
<
>
bool
VScalKernelImpl
<
double
>::
useMKL
(
int
d
)
{
return
true
;
}
#endif
/* VAddBias JitKernel */
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
template
<
typename
T
>
class
VAddBiasKernelImpl
:
public
VAddBiasKernel
<
T
>
{
public:
explicit
VAddBiasKernelImpl
(
int
d
)
:
VAddBiasKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
a
,
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
x
[
i
]
+
a
;
DECLARE_STATIC_FUNC
;
explicit
VAddBiasKernelImpl
(
int
d
)
:
VAddBiasKernel
<
T
>
()
{
#ifdef PADDLE_WITH_XBYAK
if
(
useJIT
(
d
))
{
size_t
sz
=
96
+
d
/
AVX_FLOAT_BLOCK
*
4
*
8
;
jitcode_
.
reset
(
new
gen
::
VXXJitCode
(
d
,
gen
::
operand_type
::
add
,
1
,
false
,
sz
>
4096
?
sz
:
4096
));
this
->
Compute
=
jitcode_
->
getCode
<
void
(
*
)(
const
T
*
,
const
T
*
,
T
*
,
int
)
>
();
return
;
}
}
};
#define INTRI8_FLOAT(isa) \
template <> \
void VAddBiasKernelImpl<float, isa, kEQ8>::Compute( \
const float a, const float* x, float* y) const { \
__m256 tmp = _mm256_loadu_ps(x); \
tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a)); \
_mm256_storeu_ps(y, tmp); \
}
#endif
#define INTRI16_FLOAT(isa) \
template <> \
void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
const float a, const float* x, float* y) const { \
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \
tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a)); \
tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a)); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \
this
->
Compute
=
VAddBiasRefer
<
T
>
;
}
#ifdef PADDLE_WITH_XBYAK
#ifdef __AVX__
INTRI8_FLOAT
(
jit
::
avx
);
INTRI16_FLOAT
(
jit
::
avx
);
#endif
#ifdef __AVX2__
INTRI8_FLOAT
(
jit
::
avx2
);
INTRI16_FLOAT
(
jit
::
avx2
);
private:
std
::
unique_ptr
<
gen
::
VXXJitCode
>
jitcode_
{
nullptr
};
#endif
#ifdef __AVX512F__
INTRI8_FLOAT
(
jit
::
avx512f
);
INTRI16_FLOAT
(
jit
::
avx512f
);
};
#ifdef PADDLE_WITH_XBYAK
template
<
>
bool
VAddBiasKernelImpl
<
float
>::
useJIT
(
int
d
)
{
return
gen
::
VXXJitCode
::
init
(
d
,
1
);
}
#endif
// TODO(TJ): eq16 test and complete avx512
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef DECLARE_STATIC_FUNC
REGISTER_JITKERNEL
(
vmul
,
VMulKernel
);
REGISTER_JITKERNEL
(
vadd
,
VAddKernel
);
REGISTER_JITKERNEL
(
vaddrelu
,
VAddReluKernel
);
REGISTER_JITKERNEL
(
vscal
,
VScalKernel
);
REGISTER_JITKERNEL
(
vaddbias
,
VAddBiasKernel
);
/* VRelu JitKernel */
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
...
...
@@ -467,8 +461,6 @@ class VIdentityKernelImpl : public VIdentityKernel<T> {
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{}
};
REGISTER_JITKERNEL_DEPRECATED
(
vscal
,
VScalKernel
);
REGISTER_JITKERNEL_DEPRECATED
(
vaddb
,
VAddBiasKernel
);
REGISTER_JITKERNEL_DEPRECATED
(
vrelu
,
VReluKernel
);
REGISTER_JITKERNEL_DEPRECATED
(
videntity
,
VIdentityKernel
);
...
...
paddle/fluid/operators/math/jit_kernel_exp.cc
浏览文件 @
22125eba
...
...
@@ -409,10 +409,11 @@ class VTanhKernelImpl : public VTanhKernel<T> {
vaddbias_
=
KernelPool
::
Instance
().
template
Get
<
VAddBiasKernel
<
T
>
>
(
d
);
}
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{
vscal_
->
Compute
(
static_cast
<
T
>
(
2
),
x
,
y
);
const
T
a
=
static_cast
<
T
>
(
2
),
b
=
static_cast
<
T
>
(
-
1
);
vscal_
->
Compute
(
&
a
,
x
,
y
,
this
->
num_
);
vsigmoid_
->
Compute
(
y
,
y
);
vscal_
->
Compute
(
static_cast
<
T
>
(
2
),
y
);
vaddbias_
->
Compute
(
static_cast
<
T
>
(
-
1
),
y
,
y
);
vscal_
->
Compute
(
&
a
,
y
,
y
,
this
->
num_
);
vaddbias_
->
Compute
(
&
b
,
y
,
y
,
this
->
num_
);
}
private:
...
...
@@ -472,10 +473,11 @@ class VTanhKernelImpl : public VTanhKernel<T> {
_mm256_storeu_ps(y, tmp); \
x += AVX_FLOAT_BLOCK; \
y += AVX_FLOAT_BLOCK; \
vscal_->Compute(2.f, x, y); \
const float a = 2.f, b = -1.f; \
vscal_->Compute(&a, x, y, this->num_); \
vsigmoid_->Compute(y, y); \
vscal_->Compute(
2.f, y);
\
vaddbias_->Compute(
-1.f, y, y);
\
vscal_->Compute(
&a, y, y, this->num_);
\
vaddbias_->Compute(
&b, y, y, this->num_);
\
}
#define INTRI_GT16_FLOAT(isa, expisa) \
...
...
@@ -502,10 +504,11 @@ class VTanhKernelImpl : public VTanhKernel<T> {
} \
x += this->end_; \
y += this->end_; \
vscal_->Compute(2.f, x, y); \
const float a = 2.f, b = -1.f; \
vscal_->Compute(&a, x, y, this->num_); \
vsigmoid_->Compute(y, y); \
vscal_->Compute(
2.f, y);
\
vaddbias_->Compute(
-1.f, y, y);
\
vscal_->Compute(
&a, y, y, this->num_);
\
vaddbias_->Compute(
&b, y, y, this->num_);
\
}
#ifdef __AVX__
...
...
paddle/fluid/operators/math/jit_kernel_test.cc
浏览文件 @
22125eba
...
...
@@ -128,7 +128,7 @@ TEST(JitKernel, vaddbias) {
auto
trefe
=
GetCurrentUS
();
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
a
,
x_data
,
ztgt_data
);
ker
->
Compute
(
&
a
,
x_data
,
ztgt_data
,
d
);
}
auto
ttgte
=
GetCurrentUS
();
...
...
@@ -281,10 +281,11 @@ void vtanh_better(
const
paddle
::
operators
::
math
::
jitkernel
::
VAddBiasKernel
<
float
>>&
vaddbias
,
const
int
n
,
const
float
*
x
,
float
*
y
)
{
vscal
->
Compute
(
2.
f
,
x
,
y
);
const
float
a
=
2.
f
,
b
=
-
1.
f
;
vscal
->
Compute
(
&
a
,
x
,
y
,
n
);
vsigmoid
->
Compute
(
y
,
y
);
vscal
->
Compute
(
2.
f
,
y
);
vaddbias
->
Compute
(
-
1.
f
,
y
,
y
);
vscal
->
Compute
(
&
a
,
y
,
y
,
n
);
vaddbias
->
Compute
(
&
b
,
y
,
y
,
n
);
}
TEST
(
JitKernel
,
vtanh
)
{
...
...
@@ -531,12 +532,12 @@ TEST(JitKernel, vscal) {
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
a
,
x_data
,
ztgt_data
);
ker
->
Compute
(
&
a
,
x_data
,
ztgt_data
,
d
);
}
auto
ttgte
=
GetCurrentUS
();
auto
ttgts1
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
a
,
y_data
);
ker
->
Compute
(
&
a
,
y_data
,
y_data
,
d
);
}
auto
ttgte1
=
GetCurrentUS
();
VLOG
(
3
)
<<
"Vec size "
<<
d
<<
": refer takes: "
<<
(
trefe
-
trefs
)
/
repeat
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录