Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
21071f71
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
21071f71
编写于
2月 11, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
no create trainer var on listen_and_serv
上级
b0096361
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
16 addition
and
41 deletion
+16
-41
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+3
-1
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+13
-17
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+0
-23
未找到文件。
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
21071f71
...
...
@@ -85,7 +85,7 @@ class ListenAndServOp : public framework::OperatorBase {
rpc_service_
->
SetScope
(
&
recv_scope
);
rpc_service_
->
SetDevCtx
(
&
dev_ctx
);
auto
ins
=
Inputs
(
"X"
);
auto
fan_in
=
ins
.
size
(
);
auto
fan_in
=
Attr
<
int
>
(
"Fanin"
);
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
kOptimizeBlock
);
auto
*
program
=
block
->
Program
();
...
...
@@ -163,6 +163,8 @@ from send_op and send back variables to recv_op.
.
AddCustomChecker
([](
const
std
::
string
&
ip
)
{
return
!
ip
.
empty
();
});
AddAttr
<
framework
::
BlockDesc
*>
(
kOptimizeBlock
,
"BlockID to run on server side."
);
AddAttr
<
int
>
(
"Fanin"
,
"How many clients send to this server."
)
.
SetDefault
(
1
);
}
};
...
...
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
21071f71
...
...
@@ -14,7 +14,7 @@
from
__future__
import
print_function
import
framework
from
framework
import
Program
,
default_main_program
,
Parameter
,
Variable
from
framework
import
Program
,
default_main_program
,
default_startup_program
,
Parameter
,
Variable
import
optimizer
from
layer_helper
import
LayerHelper
from
distributed_spliter
import
*
...
...
@@ -97,7 +97,7 @@ class DistributeTranspiler:
parameter servers.
:param optimize_ops: op list of optimization, should be the
return value of Optimizer.minimize
return value of Optimizer.minimize
:type optimize_ops: list
:param params_grads: list of tuple(weight, gradient)
:type params_grads: list
...
...
@@ -131,6 +131,7 @@ class DistributeTranspiler:
# 4. append concat_op to trainer to update local weights.
# 5. create new program for parameter server.
# 6. create parameter server program by split_method generated endpoint->VarBlock
# 7. update startup_program, rename variables to variables with trainer_id
pserver_endpoints
=
pservers
.
split
(
","
)
...
...
@@ -175,7 +176,6 @@ class DistributeTranspiler:
shape
=
[
0
])
# create send_op
print
(
"send inputs: "
,
send_inputs
)
send_op
=
program
.
global_block
().
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
send_inputs
},
...
...
@@ -194,6 +194,15 @@ class DistributeTranspiler:
outputs
=
{
"Out"
:
[
orig_param
]},
attrs
=
{
"axis"
:
0
})
# step 7
startup_prog
=
default_startup_program
()
for
varname
in
startup_prog
.
global_block
().
vars
.
keys
():
if
varname
in
param_var_mapping
and
\
len
(
param_var_mapping
[
varname
])
==
1
:
new_var_name
=
"%s.trainer_%d"
%
\
(
varname
,
self
.
trainer_id
)
startup_prog
.
global_block
().
rename_var
(
varname
,
new_var_name
)
def
_create_vars_from_blocklist
(
self
,
program
,
block_list
):
# Create respective variables using the block_list
block_map
=
dict
()
...
...
@@ -210,7 +219,6 @@ class DistributeTranspiler:
new_var_name
=
"%s.trainer_%d"
%
\
(
orig_var
.
name
,
self
.
trainer_id
)
program
.
global_block
().
rename_var
(
varname
,
new_var_name
)
print
(
"renaming OK..."
,
varname
,
new_var_name
)
var_mapping
[
varname
]
=
\
[
program
.
global_block
().
var
(
new_var_name
)]
continue
...
...
@@ -377,10 +385,7 @@ class DistributeTranspiler:
new_inputs
=
dict
()
# update param/grad shape first, then other inputs like
# moment can use the updated shape
print
(
"mark1"
)
for
key
in
opt_op
.
input_names
:
# print("opt type: ", opt_op.type)
# print("opt op input: ", key)
if
key
==
"Grad"
:
grad_block
=
None
for
g
in
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]:
...
...
@@ -427,7 +432,6 @@ class DistributeTranspiler:
new_inputs
[
key
]
=
tmpvar
print
(
"mark2"
)
for
key
in
opt_op
.
input_names
:
if
key
in
[
"Param"
,
"Grad"
]:
continue
...
...
@@ -451,7 +455,6 @@ class DistributeTranspiler:
inputs
=
new_inputs
,
outputs
=
outputs
,
attrs
=
opt_op
.
attrs
)
print
(
"mark3"
)
def
_append_pserver_non_opt_ops
(
self
,
optimize_block
,
opt_op
):
program
=
optimize_block
.
program
...
...
@@ -505,8 +508,6 @@ class DistributeTranspiler:
suff_idx
=
v
.
name
.
find
(
".trainer_"
)
if
suff_idx
>=
0
:
orig_var_name
=
v
.
name
[:
suff_idx
]
print
(
"create variable for program: %s.trainer_%d"
%
(
orig_var_name
,
trainer_id
))
var
=
pserver_program
.
global_block
().
create_var
(
name
=
"%s.trainer_%d"
%
(
orig_var_name
,
trainer_id
),
persistable
=
True
,
...
...
@@ -517,11 +518,6 @@ class DistributeTranspiler:
optimize_block
=
pserver_program
.
create_block
(
0
)
# Iterate through the ops and append ops as needed
for
idx
,
opt_op
in
enumerate
(
self
.
optimize_ops
):
print
(
"mark0"
)
print
(
opt_op
.
inputs
.
keys
())
for
v
in
opt_op
.
inputs
.
values
():
print
(
v
.
name
)
print
(
v
.
shape
)
is_op_on_pserver
=
self
.
_is_op_on_pserver
(
endpoint
,
self
.
optimize_ops
,
idx
)
if
not
is_op_on_pserver
:
...
...
@@ -547,7 +543,7 @@ class DistributeTranspiler:
# p.name
# for p in self.param_grad_ep_mapping[endpoint]["grads"]
# ],
#
"Fanin": self.trainers
"Fanin"
:
self
.
trainers
})
pserver_program
.
sync_with_cpp
()
return
pserver_program
...
...
python/paddle/v2/fluid/framework.py
浏览文件 @
21071f71
...
...
@@ -761,17 +761,6 @@ class Block(object):
else
:
raise
ValueError
(
"unsupported var type: %s"
,
type
(
v
))
def
_clear_op_io_for_var
(
name
):
for
op
in
self
.
ops
:
for
k
in
op
.
inputs
.
keys
():
if
op
.
inputs
[
k
].
name
==
name
:
op
.
inputs
[
k
]
=
None
for
k
in
op
.
outputs
.
keys
():
if
op
.
outputs
[
k
].
name
==
name
:
op
.
outputs
[
k
]
=
None
_clear_op_io_for_var
(
name
)
self
.
desc
.
rename_var
(
name
,
new_name
)
d
=
self
.
desc
.
find_var
(
new_name
)
var
=
None
...
...
@@ -797,17 +786,6 @@ class Block(object):
# rename the python side, sync_with_cpp will only add
# new vars/ops to python side.
self
.
vars
[
new_name
]
=
var
for
op
in
self
.
ops
:
print
(
"### rename op i/o "
,
name
,
op
.
inputs
)
if
op
.
inputs
:
for
k
in
op
.
inputs
.
keys
():
if
op
.
inputs
[
k
]
==
None
:
print
(
"rename input: "
,
name
,
var
)
op
.
inputs
[
k
]
=
var
if
op
.
outputs
:
for
k
in
op
.
outputs
.
keys
():
if
op
.
outputs
[
k
]
==
None
:
op
.
outputs
[
k
]
=
var
del
self
.
vars
[
name
]
self
.
sync_with_cpp
()
...
...
@@ -901,7 +879,6 @@ class Block(object):
for
p
in
other
.
iter_parameters
():
assert
isinstance
(
p
,
Parameter
)
v
=
self
.
vars
.
get
(
p
.
name
,
None
)
print
(
"var shape to copy"
,
v
,
p
)
if
v
is
None
:
raise
ValueError
(
"copy_param_info_from should be invoked with "
"same topology"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录