提交 20ead9e6 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into imperative_fix_growing_dict

test=develop
...@@ -13,6 +13,7 @@ paddle.fluid.name_scope (ArgSpec(args=['prefix'], varargs=None, keywords=None, d ...@@ -13,6 +13,7 @@ paddle.fluid.name_scope (ArgSpec(args=['prefix'], varargs=None, keywords=None, d
paddle.fluid.cuda_places (ArgSpec(args=['device_ids'], varargs=None, keywords=None, defaults=(None,)), ('document', '7d9a51fc9cf3c5245b5227080a8064c3')) paddle.fluid.cuda_places (ArgSpec(args=['device_ids'], varargs=None, keywords=None, defaults=(None,)), ('document', '7d9a51fc9cf3c5245b5227080a8064c3'))
paddle.fluid.cpu_places (ArgSpec(args=['device_count'], varargs=None, keywords=None, defaults=(None,)), ('document', '4c0cd83f0b401fc2ff84c70974e5d210')) paddle.fluid.cpu_places (ArgSpec(args=['device_count'], varargs=None, keywords=None, defaults=(None,)), ('document', '4c0cd83f0b401fc2ff84c70974e5d210'))
paddle.fluid.cuda_pinned_places (ArgSpec(args=['device_count'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd0c3ebd813c39958c92b78e3eef7e912')) paddle.fluid.cuda_pinned_places (ArgSpec(args=['device_count'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd0c3ebd813c39958c92b78e3eef7e912'))
paddle.fluid.in_dygraph_mode (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'f06314a1cb30c96b5808dde2219c2dae'))
paddle.fluid.Executor.__init__ (ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.Executor.__init__ (ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.Executor.close (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'f5369953dd0c443961cf79f7a00e1a03')) paddle.fluid.Executor.close (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'f5369953dd0c443961cf79f7a00e1a03'))
paddle.fluid.Executor.infer_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100)), ('document', '9c7decb955b9c4f718114179c8985581')) paddle.fluid.Executor.infer_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100)), ('document', '9c7decb955b9c4f718114179c8985581'))
...@@ -155,10 +156,10 @@ paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon' ...@@ -155,10 +156,10 @@ paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon'
paddle.fluid.layers.roi_pool (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)), ('document', 'c317aa595deb31649083c8faa91cdb97')) paddle.fluid.layers.roi_pool (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)), ('document', 'c317aa595deb31649083c8faa91cdb97'))
paddle.fluid.layers.roi_align (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)), ('document', '12c5bbb8b38c42e623fbc47611d766e1')) paddle.fluid.layers.roi_align (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)), ('document', '12c5bbb8b38c42e623fbc47611d766e1'))
paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)), ('document', '1ba0508d573f65feecf3564dce22aa1d')) paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)), ('document', '1ba0508d573f65feecf3564dce22aa1d'))
paddle.fluid.layers.image_resize (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1)), ('document', '7a1966d7c3a48f1fc0881cdaf5d83b0b')) paddle.fluid.layers.image_resize (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1)), ('document', 'd1b08c11bb9277386fcf6ae70b6622d1'))
paddle.fluid.layers.image_resize_short (ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)), ('document', '06211aefc50c5a3e940d7204d859cdf7')) paddle.fluid.layers.image_resize_short (ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)), ('document', '06211aefc50c5a3e940d7204d859cdf7'))
paddle.fluid.layers.resize_bilinear (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1)), ('document', 'e4fb4ed511b2293b8f04f7e872afbfd7')) paddle.fluid.layers.resize_bilinear (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1)), ('document', 'c45591fbc4f64a178fbca219e1546a58'))
paddle.fluid.layers.resize_nearest (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners'], varargs=None, keywords=None, defaults=(None, None, None, None, True)), ('document', '735fa9758a6d7ff3b47d7b827f961c1d')) paddle.fluid.layers.resize_nearest (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners'], varargs=None, keywords=None, defaults=(None, None, None, None, True)), ('document', 'ae6d73cdc7f3a138d8a338ecdb33c1ae'))
paddle.fluid.layers.gather (ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None), ('document', '98f1c86716b9b7f4dda83f20e2adeee2')) paddle.fluid.layers.gather (ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None), ('document', '98f1c86716b9b7f4dda83f20e2adeee2'))
paddle.fluid.layers.scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '65f8e9d8ddfd0b412f940579c4faa342')) paddle.fluid.layers.scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '65f8e9d8ddfd0b412f940579c4faa342'))
paddle.fluid.layers.sequence_scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '15b522457dfef103f0c20ca9d397678b')) paddle.fluid.layers.sequence_scatter (ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '15b522457dfef103f0c20ca9d397678b'))
......
...@@ -305,6 +305,12 @@ void InplacePass::TryInplaceOpInputOutput(ir::Node* op, ...@@ -305,6 +305,12 @@ void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
VLOG(4) << "Try to inplace " << in_var_name << " with " << out_var_name; VLOG(4) << "Try to inplace " << in_var_name << " with " << out_var_name;
if (var_nodes_[in_var_name].back() != in_node) {
VLOG(4) << "SKIP since " << in_var_name
<< " is also used as output by other ops";
continue;
}
bool can_replace = true; bool can_replace = true;
if (in_var_name == out_var_name) { if (in_var_name == out_var_name) {
can_replace = false; can_replace = false;
...@@ -527,6 +533,9 @@ void GraphView::Build(ir::Graph* g) { ...@@ -527,6 +533,9 @@ void GraphView::Build(ir::Graph* g) {
}; };
for (auto& node : g->Nodes()) { for (auto& node : g->Nodes()) {
if (!node->IsOp()) continue; if (!node->IsOp()) continue;
// avoid optimize the variable used in sub-blocks
if (OpHasSubBlock(node->Op())) update_skip_set(node);
if (node->Name() == "send") update_skip_set(node); if (node->Name() == "send") update_skip_set(node);
if (node->Name() == "recv") update_skip_set(node); if (node->Name() == "recv") update_skip_set(node);
if (node->Name() == "prefetch") update_skip_set(node); if (node->Name() == "prefetch") update_skip_set(node);
......
...@@ -233,6 +233,12 @@ struct OpInfoFiller<T, kNoNeedBufferVarsInference> { ...@@ -233,6 +233,12 @@ struct OpInfoFiller<T, kNoNeedBufferVarsInference> {
} }
}; };
// A fake OpInfoFiller of void
template <>
struct OpInfoFiller<void, kUnknown> {
void operator()(const char* op_type, OpInfo* info) const {}
};
} // namespace details } // namespace details
} // namespace framework } // namespace framework
......
...@@ -123,8 +123,8 @@ CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) { ...@@ -123,8 +123,8 @@ CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
// will enhance this pass later. // will enhance this pass later.
"runtime_context_cache_pass", // "runtime_context_cache_pass", //
"attention_lstm_fuse_pass", // "attention_lstm_fuse_pass", //
"seqpool_concat_fuse_pass", //
"seqconv_eltadd_relu_fuse_pass", // "seqconv_eltadd_relu_fuse_pass", //
// "seqpool_concat_fuse_pass", //
// "embedding_fc_lstm_fuse_pass", // // "embedding_fc_lstm_fuse_pass", //
"fc_lstm_fuse_pass", // "fc_lstm_fuse_pass", //
"mul_lstm_fuse_pass", // "mul_lstm_fuse_pass", //
......
...@@ -150,6 +150,9 @@ void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) { ...@@ -150,6 +150,9 @@ void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
if (use_mkldnn) { if (use_mkldnn) {
cfg->EnableMKLDNN(); cfg->EnableMKLDNN();
} }
// Enable seqpool_concat_fuse_pass, disabled by default since it takes much
// time
cfg->pass_builder()->InsertPass(2, "seqpool_concat_fuse_pass");
} }
void profile(bool use_mkldnn = false) { void profile(bool use_mkldnn = false) {
......
abs
acos
asin
atan
attention_lstm attention_lstm
brelu
conv_shift conv_shift
cos
cos_sim cos_sim
dequantize dequantize
elu
fc fc
flatten flatten
fsp fsp
...@@ -21,13 +14,8 @@ fusion_seqconv_eltadd_relu ...@@ -21,13 +14,8 @@ fusion_seqconv_eltadd_relu
fusion_seqexpand_concat_fc fusion_seqexpand_concat_fc
fusion_seqpool_concat fusion_seqpool_concat
fusion_squared_mat_sub fusion_squared_mat_sub
gelu
gru gru
hard_shrink
hierarchical_sigmoid hierarchical_sigmoid
leaky_relu
log
logsigmoid
lrn lrn
lstm_unit lstm_unit
lstmp lstmp
...@@ -38,7 +26,6 @@ modified_huber_loss ...@@ -38,7 +26,6 @@ modified_huber_loss
nce nce
pool2d pool2d
pool3d pool3d
pow
prelu prelu
quantize quantize
rank_loss rank_loss
...@@ -50,20 +37,10 @@ reduce_sum ...@@ -50,20 +37,10 @@ reduce_sum
requantize requantize
reshape reshape
rnn_memory_helper rnn_memory_helper
round
sequence_softmax sequence_softmax
sin
softplus
softshrink
softsign
spp spp
square
squeeze squeeze
stanh
swish
tanh_shrink
tensor_array_to_tensor tensor_array_to_tensor
thresholded_relu
transpose transpose
unpool unpool
unsqueeze unsqueeze
...@@ -12,6 +12,9 @@ ...@@ -12,6 +12,9 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/platform/cudnn_desc.h" #include "paddle/fluid/platform/cudnn_desc.h"
...@@ -82,6 +85,8 @@ template <typename T> ...@@ -82,6 +85,8 @@ template <typename T>
struct CudnnReluGradFunctor : public CudnnActivationGradFunctor<T> { struct CudnnReluGradFunctor : public CudnnActivationGradFunctor<T> {
explicit CudnnReluGradFunctor(const CUDADeviceContext& ctx) explicit CudnnReluGradFunctor(const CUDADeviceContext& ctx)
: CudnnActivationGradFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_RELU) {} : CudnnActivationGradFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_RELU) {}
static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
}; };
template <typename T> template <typename T>
...@@ -94,6 +99,8 @@ struct CudnnRelu6GradFunctor : public CudnnActivationGradFunctor<T> { ...@@ -94,6 +99,8 @@ struct CudnnRelu6GradFunctor : public CudnnActivationGradFunctor<T> {
explicit CudnnRelu6GradFunctor(const CUDADeviceContext& ctx) explicit CudnnRelu6GradFunctor(const CUDADeviceContext& ctx)
: CudnnActivationGradFunctor<T>(ctx, 6.0, CUDNN_ACTIVATION_CLIPPED_RELU) { : CudnnActivationGradFunctor<T>(ctx, 6.0, CUDNN_ACTIVATION_CLIPPED_RELU) {
} }
static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
}; };
template <typename T> template <typename T>
...@@ -105,6 +112,8 @@ template <typename T> ...@@ -105,6 +112,8 @@ template <typename T>
struct CudnnSigmoidGradFunctor : public CudnnActivationGradFunctor<T> { struct CudnnSigmoidGradFunctor : public CudnnActivationGradFunctor<T> {
explicit CudnnSigmoidGradFunctor(const CUDADeviceContext& ctx) explicit CudnnSigmoidGradFunctor(const CUDADeviceContext& ctx)
: CudnnActivationGradFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_SIGMOID) {} : CudnnActivationGradFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_SIGMOID) {}
static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
}; };
template <typename T> template <typename T>
...@@ -116,6 +125,8 @@ template <typename T> ...@@ -116,6 +125,8 @@ template <typename T>
struct CudnnTanhGradFunctor : public CudnnActivationGradFunctor<T> { struct CudnnTanhGradFunctor : public CudnnActivationGradFunctor<T> {
explicit CudnnTanhGradFunctor(const CUDADeviceContext& ctx) explicit CudnnTanhGradFunctor(const CUDADeviceContext& ctx)
: CudnnActivationGradFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_TANH) {} : CudnnActivationGradFunctor<T>(ctx, 0.0, CUDNN_ACTIVATION_TANH) {}
static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
}; };
template <typename Functor> template <typename Functor>
...@@ -140,10 +151,13 @@ class CudnnActivationGradKernel ...@@ -140,10 +151,13 @@ class CudnnActivationGradKernel
public: public:
using T = typename Functor::ELEMENT_TYPE; using T = typename Functor::ELEMENT_TYPE;
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
static_assert(Functor::FwdDeps() == kDepOut, "Forward deps must be Out.");
const framework::Tensor *X, *Out, *dOut; const framework::Tensor *X, *Out, *dOut;
X = Out = dOut = nullptr; X = Out = dOut = nullptr;
framework::Tensor* dX = nullptr; framework::Tensor* dX = nullptr;
ExtractActivationGradTensor(context, &X, &Out, &dOut, &dX); ExtractActivationGradTensor<Functor::FwdDeps()>(context, &X, &Out, &dOut,
&dX);
dX->mutable_data<T>(context.GetPlace()); dX->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<CUDADeviceContext>(); auto& dev_ctx = context.template device_context<CUDADeviceContext>();
Functor functor(dev_ctx); Functor functor(dev_ctx);
......
...@@ -15,7 +15,9 @@ limitations under the License. */ ...@@ -15,7 +15,9 @@ limitations under the License. */
#include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/activation_op.h"
#include <memory> #include <memory>
#include <string> #include <string>
#include <type_traits>
#include <unordered_map> #include <unordered_map>
#include <vector>
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h" #include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
#include "paddle/fluid/platform/port.h" #include "paddle/fluid/platform/port.h"
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
...@@ -27,6 +29,25 @@ namespace operators { ...@@ -27,6 +29,25 @@ namespace operators {
using paddle::framework::Tensor; using paddle::framework::Tensor;
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}
std::unique_ptr<std::unordered_set<std::string>> GetInplaceOpSet() {
std::unique_ptr<std::unordered_set<std::string>> ret(
new std::unordered_set<std::string>());
#define INSERT_INTO_INPLACE_OP_SET(op_type, __omitted, fwd_functor, \
bwd_functor) \
if (CanInplaceAct<bwd_functor<float>>()) { \
ret->insert(#op_type); \
}
FOR_EACH_ACTIVATION_OP(INSERT_INTO_INPLACE_OP_SET);
#undef INSERT_INTO_INPLACE_OP_SET
return ret;
}
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT) \ #define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT) \
class OP_NAME##OpMaker \ class OP_NAME##OpMaker \
: public ::paddle::framework::OpProtoAndCheckerMaker { \ : public ::paddle::framework::OpProtoAndCheckerMaker { \
...@@ -50,26 +71,32 @@ using paddle::framework::Tensor; ...@@ -50,26 +71,32 @@ using paddle::framework::Tensor;
} \ } \
} }
#define REGISTER_ACTIVATION_OP_GRAD_MAKER(OP_NAME, KERNEL_TYPE) \ template <ActBwdOpFwdDeps kDepValue>
class OP_NAME##GradMaker \ class ActivationGradOpDescMaker : public framework::SingleGradOpDescMaker {
: public ::paddle::framework::SingleGradOpDescMaker { \ public:
public: \ using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker; \
\ protected:
protected: \ std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<::paddle::framework::OpDesc> Apply() const override { \ std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
auto* op = new ::paddle::framework::OpDesc(); \ op->SetType(ForwardOpType() + "_grad");
op->SetType(#KERNEL_TYPE "_grad"); \ op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetInput("Out", Output("Out")); \ op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
op->SetInput(::paddle::framework::GradVarName("Out"), \ op->SetAttrMap(Attrs());
OutputGrad("Out")); \
\ if (static_cast<int>(kDepValue) &
op->SetAttrMap(Attrs()); \ static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
\ op->SetInput("X", Input("X"));
op->SetOutput(::paddle::framework::GradVarName("X"), InputGrad("X")); \ }
return std::unique_ptr<::paddle::framework::OpDesc>(op); \
} \ if (static_cast<int>(kDepValue) &
static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
op->SetInput("Out", Output("Out"));
}
return op;
} }
};
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx, framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
const framework::OperatorWithKernel& oper, const framework::OperatorWithKernel& oper,
...@@ -129,14 +156,15 @@ class ActivationOpGrad : public framework::OperatorWithKernel { ...@@ -129,14 +156,15 @@ class ActivationOpGrad : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override { void InferShape(framework::InferShapeContext* ctx) const override {
ctx->ShareDim("Out", framework::GradVarName("X")); auto out_grad_name = framework::GradVarName("Out");
ctx->ShareLoD("Out", framework::GradVarName("X")); ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
} }
protected: protected:
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return GetKernelType(ctx, *this, "Out"); return GetKernelType(ctx, *this, framework::GradVarName("Out"));
} }
}; };
...@@ -558,79 +586,27 @@ REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc); ...@@ -558,79 +586,27 @@ REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc); REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc); REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc); REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Sigmoid, sigmoid);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Relu, relu);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Gelu, gelu);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Exp, exp);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Tanh, tanh);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Ceil, ceil);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Floor, floor);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Sqrt, sqrt);
REGISTER_ACTIVATION_OP_GRAD_MAKER(SoftRelu, soft_relu);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Relu6, relu6);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Reciprocal, reciprocal);
REGISTER_ACTIVATION_OP_GRAD_MAKER(HardSigmoid, hard_sigmoid);
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
#define FOR_EACH_INPLACE_OP_FUNCTOR(__macro) \ #define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
__macro(Sigmoid, sigmoid); \ REGISTER_OPERATOR( \
__macro(Relu, relu); \ KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker, \
__macro(Exp, exp); \ ops::ActivationOpInferVarType, \
__macro(Tanh, tanh); \ ops::ActivationGradOpDescMaker<ops::grad_functor<float>::FwdDeps()>, \
__macro(Ceil, ceil); \ std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(), \
__macro(Floor, floor); \ ::paddle::framework::SingleOpInplaceInToOut, \
__macro(Sqrt, sqrt); \ void>::type); \
__macro(SoftRelu, soft_relu); \ REGISTER_OPERATOR( \
__macro(Relu6, relu6); \ KERNEL_TYPE##_grad, ops::ActivationOpGrad, \
__macro(Reciprocal, reciprocal); \ std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(), \
__macro(HardSigmoid, hard_sigmoid); ::paddle::framework::SingleOpInplaceInToOut, \
void>::type)
#define FOR_EACH_OP_FUNCTOR(__macro) \
__macro(LogSigmoid, logsigmoid); \ #define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor, \
__macro(SoftShrink, softshrink); \ grad_functor) \
__macro(Abs, abs); \
__macro(Cos, cos); \
__macro(Acos, acos); \
__macro(Sin, sin); \
__macro(Asin, asin); \
__macro(Atan, atan); \
__macro(Round, round); \
__macro(Log, log); \
__macro(Square, square); \
__macro(Gelu, gelu); \
__macro(BRelu, brelu); \
__macro(Pow, pow); \
__macro(STanh, stanh); \
__macro(Softplus, softplus); \
__macro(Softsign, softsign); \
__macro(LeakyRelu, leaky_relu); \
__macro(TanhShrink, tanh_shrink); \
__macro(ELU, elu); \
__macro(HardShrink, hard_shrink); \
__macro(Swish, swish); \
__macro(ThresholdedRelu, thresholded_relu);
#define REGISTER_INPLACE_ACTIVATION_OP(OP_NAME, KERNEL_TYPE) \
REGISTER_OPERATOR(KERNEL_TYPE, ::paddle::operators::ActivationOp, \
::paddle::operators::OP_NAME##OpMaker, \
::paddle::operators::ActivationOpInferVarType, \
::paddle::operators::OP_NAME##GradMaker, \
::paddle::framework::SingleOpInplaceInToOut); \
REGISTER_OPERATOR(KERNEL_TYPE##_grad, ::paddle::operators::ActivationOpGrad, \
::paddle::framework::SingleOpInplaceInToOut)
#define REGISTER_ACTIVATION_OP(OP_NAME, KERNEL_TYPE) \
REGISTER_OPERATOR(KERNEL_TYPE, ::paddle::operators::ActivationOp, \
::paddle::operators::OP_NAME##OpMaker, \
::paddle::operators::ActivationOpInferVarType, \
::paddle::framework::DefaultGradOpDescMaker<true>); \
REGISTER_OPERATOR(KERNEL_TYPE##_grad, ::paddle::operators::ActivationOpGrad)
#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \
REGISTER_OP_CPU_KERNEL( \ REGISTER_OP_CPU_KERNEL( \
act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \ act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
ops::functor<float>>, \ ops::functor<float>>, \
...@@ -643,6 +619,5 @@ namespace ops = paddle::operators; ...@@ -643,6 +619,5 @@ namespace ops = paddle::operators;
ops::ActivationGradKernel<paddle::platform::CPUDeviceContext, \ ops::ActivationGradKernel<paddle::platform::CPUDeviceContext, \
ops::grad_functor<double>>); ops::grad_functor<double>>);
FOR_EACH_OP_FUNCTOR(REGISTER_ACTIVATION_OP); FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_INPLACE_OP_FUNCTOR(REGISTER_INPLACE_ACTIVATION_OP); FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL);
...@@ -15,7 +15,8 @@ limitations under the License. */ ...@@ -15,7 +15,8 @@ limitations under the License. */
namespace ops = paddle::operators; namespace ops = paddle::operators;
namespace plat = paddle::platform; namespace plat = paddle::platform;
#define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, functor, grad_functor) \ #define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, op_name, functor, \
grad_functor) \
REGISTER_OP_CUDA_KERNEL( \ REGISTER_OP_CUDA_KERNEL( \
act_type, \ act_type, \
ops::ActivationKernel<plat::CUDADeviceContext, ops::functor<float>>, \ ops::ActivationKernel<plat::CUDADeviceContext, ops::functor<float>>, \
...@@ -30,4 +31,4 @@ namespace plat = paddle::platform; ...@@ -30,4 +31,4 @@ namespace plat = paddle::platform;
ops::ActivationGradKernel<plat::CUDADeviceContext, \ ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::grad_functor<plat::float16>>); ops::grad_functor<plat::float16>>);
FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CUDA_KERNEL); FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CUDA_KERNEL);
...@@ -16,6 +16,7 @@ limitations under the License. */ ...@@ -16,6 +16,7 @@ limitations under the License. */
#include <nccl.h> #include <nccl.h>
#endif #endif
#include <limits> #include <limits>
#include <memory>
#include <thread> // NOLINT #include <thread> // NOLINT
#include "google/protobuf/io/coded_stream.h" #include "google/protobuf/io/coded_stream.h"
...@@ -104,8 +105,10 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, ...@@ -104,8 +105,10 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
payload->memory_size()); payload->memory_size());
if (payload->memory_size() >= std::numeric_limits<int>::max()) { if (payload->memory_size() >= std::numeric_limits<int>::max()) {
LOG(FATAL) << "AppendZeroCopy varname:" << name LOG(FATAL) << "FATAL error: varname:" << name
<< ", vlen:" << payload->memory_size(); << ", vlen:" << payload->memory_size()
<< " >= std::numeric_limits<int>::max():"
<< std::numeric_limits<int>::max() << ", so exit!";
} }
// steal reference of tensor data // steal reference of tensor data
::grpc::Slice slices[4]; // metadata, tensor, rows meta, rows ::grpc::Slice slices[4]; // metadata, tensor, rows meta, rows
......
...@@ -37,10 +37,19 @@ class InterpolateOp : public framework::OperatorWithKernel { ...@@ -37,10 +37,19 @@ class InterpolateOp : public framework::OperatorWithKernel {
"Interpolation method can only be \"bilinear\" or \"nearest\"."); "Interpolation method can only be \"bilinear\" or \"nearest\".");
auto dim_x = ctx->GetInputDim("X"); // NCHW format auto dim_x = ctx->GetInputDim("X"); // NCHW format
int out_h = ctx->Attrs().Get<int>("out_h");
int out_w = ctx->Attrs().Get<int>("out_w");
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4"); PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");
int out_h, out_w;
float scale = ctx->Attrs().Get<float>("scale");
if (scale > 0) {
// round down
out_h = static_cast<int>(dim_x[2] * scale);
out_w = static_cast<int>(dim_x[3] * scale);
} else {
out_h = ctx->Attrs().Get<int>("out_h");
out_w = ctx->Attrs().Get<int>("out_w");
}
if (ctx->HasInput("OutSize") && ctx->IsRuntime()) { if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
auto out_size_dim = ctx->GetInputDim("OutSize"); auto out_size_dim = ctx->GetInputDim("OutSize");
PADDLE_ENFORCE_EQ(out_size_dim.size(), 1, PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
...@@ -77,6 +86,7 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -77,6 +86,7 @@ class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<int>("out_h", "output height of interpolate op."); AddAttr<int>("out_h", "output height of interpolate op.");
AddAttr<int>("out_w", "output width of interpolate op."); AddAttr<int>("out_w", "output width of interpolate op.");
AddAttr<float>("scale", "scale factor of interpolate op.").SetDefault(0.);
AddAttr<std::string>("interp_method", AddAttr<std::string>("interp_method",
"(string, default \"bilinear\"), interpolation " "(string, default \"bilinear\"), interpolation "
"method, can be \"bilinear\" for " "method, can be \"bilinear\" for "
......
...@@ -192,9 +192,21 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> { ...@@ -192,9 +192,21 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
auto* output = ctx.Output<Tensor>("Out"); auto* output = ctx.Output<Tensor>("Out");
auto* input_data = input->data<T>(); auto* input_data = input->data<T>();
int n = input->dims()[0];
int c = input->dims()[1];
int in_h = input->dims()[2];
int in_w = input->dims()[3];
auto interp_method = ctx.Attr<std::string>("interp_method"); auto interp_method = ctx.Attr<std::string>("interp_method");
int out_h = ctx.Attr<int>("out_h"); int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w"); int out_w = ctx.Attr<int>("out_w");
float scale = ctx.Attr<float>("scale");
if (scale > 0) {
out_h = in_h * scale;
out_w = in_w * scale;
}
auto out_size = ctx.Input<Tensor>("OutSize"); auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) { if (out_size != nullptr) {
Tensor sizes; Tensor sizes;
...@@ -207,11 +219,6 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> { ...@@ -207,11 +219,6 @@ class InterpolateOpCUDAKernel : public framework::OpKernel<T> {
bool align_corners = ctx.Attr<bool>("align_corners"); bool align_corners = ctx.Attr<bool>("align_corners");
int align_mode = ctx.Attr<int>("align_mode"); int align_mode = ctx.Attr<int>("align_mode");
int n = input->dims()[0];
int c = input->dims()[1];
int in_h = input->dims()[2];
int in_w = input->dims()[3];
auto* output_data = auto* output_data =
output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace()); output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
...@@ -268,14 +275,20 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> { ...@@ -268,14 +275,20 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
math::SetConstant<platform::CUDADeviceContext, T> zero; math::SetConstant<platform::CUDADeviceContext, T> zero;
zero(device_ctx, input_grad, static_cast<T>(0.0)); zero(device_ctx, input_grad, static_cast<T>(0.0));
int n = input_grad->dims()[0];
int c = input_grad->dims()[1];
int in_h = input_grad->dims()[2];
int in_w = input_grad->dims()[3];
auto interp_method = ctx.Attr<std::string>("interp_method"); auto interp_method = ctx.Attr<std::string>("interp_method");
int out_h = ctx.Attr<int>("out_h"); int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w"); int out_w = ctx.Attr<int>("out_w");
float scale = ctx.Attr<float>("scale");
if (scale > 0) {
out_h = in_h * scale;
out_w - in_w* scale;
}
auto out_size = ctx.Input<Tensor>("OutSize"); auto out_size = ctx.Input<Tensor>("OutSize");
bool align_corners = ctx.Attr<bool>("align_corners");
int align_mode = ctx.Attr<int>("align_mode");
if (out_size != nullptr) { if (out_size != nullptr) {
Tensor sizes; Tensor sizes;
framework::TensorCopy(*out_size, platform::CPUPlace(), &sizes); framework::TensorCopy(*out_size, platform::CPUPlace(), &sizes);
...@@ -284,10 +297,8 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> { ...@@ -284,10 +297,8 @@ class InterpolateGradOpCUDAKernel : public framework::OpKernel<T> {
out_w = size_data[1]; out_w = size_data[1];
} }
int n = input_grad->dims()[0]; bool align_corners = ctx.Attr<bool>("align_corners");
int c = input_grad->dims()[1]; int align_mode = ctx.Attr<int>("align_mode");
int in_h = input_grad->dims()[2];
int in_w = input_grad->dims()[3];
int in_hw = in_h * in_w; int in_hw = in_h * in_w;
int out_hw = out_h * out_w; int out_hw = out_h * out_w;
......
...@@ -163,9 +163,21 @@ class InterpolateKernel : public framework::OpKernel<T> { ...@@ -163,9 +163,21 @@ class InterpolateKernel : public framework::OpKernel<T> {
auto* input = ctx.Input<Tensor>("X"); auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out"); auto* output = ctx.Output<Tensor>("Out");
const int n = input->dims()[0];
const int c = input->dims()[1];
const int in_h = input->dims()[2];
const int in_w = input->dims()[3];
std::string interp_method = ctx.Attr<std::string>("interp_method"); std::string interp_method = ctx.Attr<std::string>("interp_method");
int out_h = ctx.Attr<int>("out_h"); int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w"); int out_w = ctx.Attr<int>("out_w");
float scale = ctx.Attr<float>("scale");
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
auto out_size = ctx.Input<Tensor>("OutSize"); auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) { if (out_size != nullptr) {
auto out_size_data = out_size->data<int>(); auto out_size_data = out_size->data<int>();
...@@ -175,11 +187,6 @@ class InterpolateKernel : public framework::OpKernel<T> { ...@@ -175,11 +187,6 @@ class InterpolateKernel : public framework::OpKernel<T> {
bool align_corners = ctx.Attr<bool>("align_corners"); bool align_corners = ctx.Attr<bool>("align_corners");
int align_mode = ctx.Attr<int>("align_mode"); int align_mode = ctx.Attr<int>("align_mode");
const int n = input->dims()[0];
const int c = input->dims()[1];
const int in_h = input->dims()[2];
const int in_w = input->dims()[3];
output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace()); output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
auto& device_ctx = auto& device_ctx =
ctx.template device_context<platform::CPUDeviceContext>(); ctx.template device_context<platform::CPUDeviceContext>();
...@@ -221,23 +228,31 @@ class InterpolateGradKernel : public framework::OpKernel<T> { ...@@ -221,23 +228,31 @@ class InterpolateGradKernel : public framework::OpKernel<T> {
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X")); auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out")); auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
const int n = input->dims()[0];
const int c = input->dims()[1];
const int in_h = input->dims()[2];
const int in_w = input->dims()[3];
std::string interp_method = ctx.Attr<std::string>("interp_method"); std::string interp_method = ctx.Attr<std::string>("interp_method");
int out_h = ctx.Attr<int>("out_h"); int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w"); int out_w = ctx.Attr<int>("out_w");
float scale = ctx.Attr<float>("scale");
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
auto out_size = ctx.Input<Tensor>("OutSize"); auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) { if (out_size != nullptr) {
auto out_size_data = out_size->data<int>(); auto out_size_data = out_size->data<int>();
out_h = out_size_data[0]; out_h = out_size_data[0];
out_w = out_size_data[1]; out_w = out_size_data[1];
} }
bool align_corners = ctx.Attr<bool>("align_corners"); bool align_corners = ctx.Attr<bool>("align_corners");
int align_mode = ctx.Attr<int>("align_mode"); int align_mode = ctx.Attr<int>("align_mode");
const int n = input->dims()[0];
const int c = input->dims()[1];
const int in_h = input->dims()[2];
const int in_w = input->dims()[3];
input_grad->mutable_data<T>({n, c, in_h, in_w}, ctx.GetPlace()); input_grad->mutable_data<T>({n, c, in_h, in_w}, ctx.GetPlace());
auto& device_ctx = auto& device_ctx =
ctx.template device_context<platform::CPUDeviceContext>(); ctx.template device_context<platform::CPUDeviceContext>();
......
...@@ -291,8 +291,12 @@ function build() { ...@@ -291,8 +291,12 @@ function build() {
Building in /paddle/build ... Building in /paddle/build ...
============================================ ============================================
EOF EOF
parallel_number=`nproc`
if [[ "$1" != "" ]]; then
parallel_number=$1
fi
make clean make clean
make -j `nproc` make -j ${parallel_number}
make install -j `nproc` make install -j `nproc`
} }
...@@ -737,9 +741,13 @@ function gen_fluid_lib() { ...@@ -737,9 +741,13 @@ function gen_fluid_lib() {
Generating fluid library for train and inference ... Generating fluid library for train and inference ...
======================================== ========================================
EOF EOF
parallel_number=`nproc`
if [[ "$1" != "" ]]; then
parallel_number=$1
fi
cmake .. -DWITH_DISTRIBUTE=OFF -DON_INFER=ON cmake .. -DWITH_DISTRIBUTE=OFF -DON_INFER=ON
make -j `nproc` fluid_lib_dist make -j ${parallel_number} fluid_lib_dist
make -j `nproc` inference_lib_dist make -j ${parallel_number} inference_lib_dist
} }
function tar_fluid_lib() { function tar_fluid_lib() {
...@@ -770,11 +778,22 @@ EOF ...@@ -770,11 +778,22 @@ EOF
function main() { function main() {
local CMD=$1 local CMD=$1
local parallel_number=$2
init init
case $CMD in case $CMD in
build_only)
cmake_gen ${PYTHON_ABI:-""}
build ${parallel_number}
;;
build_and_check)
cmake_gen ${PYTHON_ABI:-""}
build ${parallel_number}
assert_api_not_changed ${PYTHON_ABI:-""}
assert_api_spec_approvals
;;
build) build)
cmake_gen ${PYTHON_ABI:-""} cmake_gen ${PYTHON_ABI:-""}
build build ${parallel_number}
gen_dockerfile ${PYTHON_ABI:-""} gen_dockerfile ${PYTHON_ABI:-""}
;; ;;
test) test)
...@@ -797,7 +816,7 @@ function main() { ...@@ -797,7 +816,7 @@ function main() {
;; ;;
fluid_inference_lib) fluid_inference_lib)
cmake_gen ${PYTHON_ABI:-""} cmake_gen ${PYTHON_ABI:-""}
gen_fluid_lib gen_fluid_lib ${parallel_number}
tar_fluid_lib tar_fluid_lib
test_fluid_lib test_fluid_lib
;; ;;
...@@ -806,16 +825,16 @@ function main() { ...@@ -806,16 +825,16 @@ function main() {
;; ;;
cicheck) cicheck)
cmake_gen ${PYTHON_ABI:-""} cmake_gen ${PYTHON_ABI:-""}
build build ${parallel_number}
assert_api_not_changed ${PYTHON_ABI:-""} assert_api_not_changed ${PYTHON_ABI:-""}
run_test run_test
gen_fluid_lib gen_fluid_lib ${parallel_number}
test_fluid_lib test_fluid_lib
assert_api_spec_approvals assert_api_spec_approvals
;; ;;
cicheck_brpc) cicheck_brpc)
cmake_gen ${PYTHON_ABI:-""} cmake_gen ${PYTHON_ABI:-""}
build build ${parallel_number}
run_brpc_test run_brpc_test
;; ;;
assert_api) assert_api)
...@@ -823,7 +842,7 @@ function main() { ...@@ -823,7 +842,7 @@ function main() {
assert_api_spec_approvals assert_api_spec_approvals
;; ;;
test_inference) test_inference)
gen_fluid_lib gen_fluid_lib ${parallel_number}
test_fluid_lib test_fluid_lib
;; ;;
assert_api_approvals) assert_api_approvals)
...@@ -840,7 +859,7 @@ function main() { ...@@ -840,7 +859,7 @@ function main() {
;; ;;
cicheck_py35) cicheck_py35)
cmake_gen ${PYTHON_ABI:-""} cmake_gen ${PYTHON_ABI:-""}
build build ${parallel_number}
run_test run_test
assert_api_not_changed ${PYTHON_ABI:-""} assert_api_not_changed ${PYTHON_ABI:-""}
;; ;;
...@@ -848,7 +867,7 @@ function main() { ...@@ -848,7 +867,7 @@ function main() {
cmake_gen ${PYTHON_ABI:-""} cmake_gen ${PYTHON_ABI:-""}
;; ;;
gen_fluid_lib) gen_fluid_lib)
gen_fluid_lib gen_fluid_lib ${parallel_number}
;; ;;
test_fluid_lib) test_fluid_lib)
test_fluid_lib test_fluid_lib
......
...@@ -66,6 +66,8 @@ from . import compiler ...@@ -66,6 +66,8 @@ from . import compiler
from .compiler import * from .compiler import *
from paddle.fluid.layers.math_op_patch import monkey_patch_variable from paddle.fluid.layers.math_op_patch import monkey_patch_variable
from . import install_check from . import install_check
from .dygraph.nn import *
from .dygraph.layers import *
Tensor = LoDTensor Tensor = LoDTensor
......
...@@ -22,7 +22,7 @@ __all__ = ['enabled', 'guard', 'to_variable'] ...@@ -22,7 +22,7 @@ __all__ = ['enabled', 'guard', 'to_variable']
def enabled(): def enabled():
return framework._in_dygraph_mode() return framework.in_dygraph_mode()
@signature_safe_contextmanager @signature_safe_contextmanager
......
...@@ -97,20 +97,12 @@ def load_persistables(vardict, dirname, filename=None): ...@@ -97,20 +97,12 @@ def load_persistables(vardict, dirname, filename=None):
Examples: Examples:
.. code-block:: python .. code-block:: python
my_layer = layer(fluid.dygraph.Layer) my_layer = layer(fluid.Layer)
param_path = "./my_paddle_model" param_path = "./my_paddle_model"
param_dict = fluid.dygraph.load_persistables(my_layer.parameters(), param_path) param_dict = fluid.dygraph.load_persistables(my_layer.parameters(), param_path)
param_1 = param_dict['PtbModel_0.w_1'] param_1 = param_dict['PtbModel_0.w_1']
or:
my_layer = layer(fluid.dygraph.Layer)
param_path = "./my_paddle_model"
filename = "model.file"
param_dict = fluid.dygraph.load_persistables(my_layer.state_dict(), param_path,
filename=filename)
param_1 = param_dict['PtbModel_0.w_1']
""" """
if isinstance(vardict, collections.OrderedDict): if isinstance(vardict, collections.OrderedDict):
return _load_var_from_file(vardict, dirname, filename) return _load_var_from_file(vardict, dirname, filename)
......
...@@ -16,7 +16,7 @@ from __future__ import print_function ...@@ -16,7 +16,7 @@ from __future__ import print_function
import copy import copy
import six import six
from ..framework import Parameter, _in_dygraph_mode from ..framework import Parameter, in_dygraph_mode
from ..param_attr import ParamAttr from ..param_attr import ParamAttr
from .. import core from .. import core
from six.moves import zip from six.moves import zip
......
...@@ -139,14 +139,14 @@ class Layer(core.Layer): ...@@ -139,14 +139,14 @@ class Layer(core.Layer):
def clear_gradients(self): def clear_gradients(self):
for p in self.parameters(): for p in self.parameters():
p._clear_gradient() p.clear_gradient()
def _build_once(self, *args): def build_once(self, *args):
pass pass
def __call__(self, *inputs): def __call__(self, *inputs):
if not self._built: if not self._built:
self._build_once(*inputs) self.build_once(*inputs)
outputs = self.forward(*inputs) outputs = self.forward(*inputs)
self._built = True self._built = True
......
此差异已折叠。
...@@ -67,6 +67,7 @@ __all__ = [ ...@@ -67,6 +67,7 @@ __all__ = [
'cuda_places', 'cuda_places',
'cpu_places', 'cpu_places',
'cuda_pinned_places', 'cuda_pinned_places',
'in_dygraph_mode',
] ]
EMPTY_VAR_NAME = core.kEmptyVarName() EMPTY_VAR_NAME = core.kEmptyVarName()
...@@ -79,7 +80,10 @@ _dygraph_tracer_ = None ...@@ -79,7 +80,10 @@ _dygraph_tracer_ = None
_dygraph_current_expected_place_ = None _dygraph_current_expected_place_ = None
def _in_dygraph_mode(): def in_dygraph_mode():
'''
Returns(bool): True if the program is running in dynamic graph mode
'''
return _dygraph_tracer_ is not None return _dygraph_tracer_ is not None
...@@ -396,7 +400,7 @@ class Variable(object): ...@@ -396,7 +400,7 @@ class Variable(object):
if not isinstance(dtype, core.VarDesc.VarType): if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype) dtype = convert_np_dtype_to_dtype_(dtype)
if _in_dygraph_mode(): if in_dygraph_mode():
# record vars in tracer rather than blocks # record vars in tracer rather than blocks
self._ivar = kwargs.get("ivar", None) self._ivar = kwargs.get("ivar", None)
if not self._ivar: if not self._ivar:
...@@ -482,21 +486,21 @@ class Variable(object): ...@@ -482,21 +486,21 @@ class Variable(object):
self.block.vars[name] = self self.block.vars[name] = self
self.op = None self.op = None
self.stop_gradient = stop_gradient self._stop_gradient = stop_gradient
self.is_data = is_data self.is_data = is_data
def _numpy(self): def numpy(self):
new_ivar = self._ivar._copy_to(core.CPUPlace(), True) new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
return np.array(new_ivar.value().get_tensor()) return np.array(new_ivar.value().get_tensor())
def _backward(self): def backward(self):
self._ivar._run_backward() self._ivar._run_backward()
def _gradient(self): def gradient(self):
new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True) new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
return np.array(new_ivar.value().get_tensor()) return np.array(new_ivar.value().get_tensor())
def _clear_gradient(self): def clear_gradient(self):
self._ivar._clear_gradient() self._ivar._clear_gradient()
def __str__(self): def __str__(self):
...@@ -516,7 +520,7 @@ class Variable(object): ...@@ -516,7 +520,7 @@ class Variable(object):
Returns: Returns:
str: The debug string. str: The debug string.
""" """
if _in_dygraph_mode(): if in_dygraph_mode():
# TODO(panyx0718): add more dygraph debug info. # TODO(panyx0718): add more dygraph debug info.
return 'name %s, dtype: %s shape: %s' % (self.name, self.dtype, return 'name %s, dtype: %s shape: %s' % (self.name, self.dtype,
self.shape) self.shape)
...@@ -535,7 +539,7 @@ class Variable(object): ...@@ -535,7 +539,7 @@ class Variable(object):
__repr__ = __str__ __repr__ = __str__
def _set_desc(self, input): def set_desc(self, input):
""" """
Set the variable description. Set the variable description.
...@@ -548,43 +552,43 @@ class Variable(object): ...@@ -548,43 +552,43 @@ class Variable(object):
self.desc = input self.desc = input
@property @property
def _stop_gradient(self): def stop_gradient(self):
if _in_dygraph_mode(): if in_dygraph_mode():
return self._ivar.stop_gradient return self._ivar.stop_gradient
else: else:
return self.stop_gradient return self._stop_gradient
@_stop_gradient.setter @stop_gradient.setter
def _stop_gradient(self, s): def stop_gradient(self, s):
if _in_dygraph_mode(): if in_dygraph_mode():
self._ivar.stop_gradient = s self._ivar.stop_gradient = s
else: else:
self.stop_gradient = s self._stop_gradient = s
@property @property
def persistable(self): def persistable(self):
if _in_dygraph_mode(): if in_dygraph_mode():
return self._ivar.persistable return self._ivar.persistable
else: else:
return self.desc.persistable() return self.desc.persistable()
@persistable.setter @persistable.setter
def persistable(self, p): def persistable(self, p):
if _in_dygraph_mode(): if in_dygraph_mode():
return self._ivar.persistable return self._ivar.persistable
else: else:
self.desc.set_persistable(p) self.desc.set_persistable(p)
@property @property
def name(self): def name(self):
if _in_dygraph_mode(): if in_dygraph_mode():
return self._ivar.name return self._ivar.name
else: else:
return cpt.to_text(self.desc.name()) return cpt.to_text(self.desc.name())
@name.setter @name.setter
def name(self, new_name): def name(self, new_name):
if _in_dygraph_mode(): if in_dygraph_mode():
self._ivar.name = new_name self._ivar.name = new_name
else: else:
self.desc.set_name(new_name) self.desc.set_name(new_name)
...@@ -592,14 +596,14 @@ class Variable(object): ...@@ -592,14 +596,14 @@ class Variable(object):
@property @property
def shape(self): def shape(self):
# convert to tuple, make it as same as numpy API. # convert to tuple, make it as same as numpy API.
if _in_dygraph_mode(): if in_dygraph_mode():
return self._ivar.shape return self._ivar.shape
else: else:
return tuple(self.desc.shape()) return tuple(self.desc.shape())
@property @property
def dtype(self): def dtype(self):
if _in_dygraph_mode(): if in_dygraph_mode():
return self._ivar.dtype return self._ivar.dtype
else: else:
return self.desc.dtype() return self.desc.dtype()
...@@ -611,7 +615,7 @@ class Variable(object): ...@@ -611,7 +615,7 @@ class Variable(object):
@property @property
def type(self): def type(self):
if _in_dygraph_mode(): if in_dygraph_mode():
return self._ivar.dtype return self._ivar.dtype
else: else:
return self.desc.type() return self.desc.type()
...@@ -721,7 +725,7 @@ class Variable(object): ...@@ -721,7 +725,7 @@ class Variable(object):
name=unique_name.generate(".".join(self.name)), name=unique_name.generate(".".join(self.name)),
dtype=self.dtype, dtype=self.dtype,
persistable=self.persistable, persistable=self.persistable,
stop_gradient=self._stop_gradient, ) stop_gradient=self.stop_gradient, )
else: else:
return self return self
...@@ -930,7 +934,7 @@ class Operator(object): ...@@ -930,7 +934,7 @@ class Operator(object):
inputs=None, inputs=None,
outputs=None, outputs=None,
attrs=None): attrs=None):
if _in_dygraph_mode(): if in_dygraph_mode():
if type is None: if type is None:
raise ValueError( raise ValueError(
"`type` to initialized an Operator can not be None.") "`type` to initialized an Operator can not be None.")
...@@ -1049,7 +1053,7 @@ class Operator(object): ...@@ -1049,7 +1053,7 @@ class Operator(object):
for arg in out_args: for arg in out_args:
out_arg_names.append(cpt.to_text(arg.name)) out_arg_names.append(cpt.to_text(arg.name))
# TODO(minqiyang): could we remove variable's op in static mode? # TODO(minqiyang): could we remove variable's op in static mode?
if not _in_dygraph_mode(): if not in_dygraph_mode():
arg.op = self arg.op = self
self.desc.set_output(out_proto.name, out_arg_names) self.desc.set_output(out_proto.name, out_arg_names)
...@@ -1095,7 +1099,7 @@ class Operator(object): ...@@ -1095,7 +1099,7 @@ class Operator(object):
@property @property
def type(self): def type(self):
if _in_dygraph_mode(): if in_dygraph_mode():
return self.iop.type return self.iop.type
else: else:
return self.desc.type() return self.desc.type()
...@@ -1638,7 +1642,7 @@ class Block(object): ...@@ -1638,7 +1642,7 @@ class Block(object):
Returns: Returns:
Operator: the append Operator. Operator: the append Operator.
""" """
if _in_dygraph_mode(): if in_dygraph_mode():
op = Operator( op = Operator(
block=self, block=self,
desc=None, desc=None,
...@@ -1710,7 +1714,7 @@ class Block(object): ...@@ -1710,7 +1714,7 @@ class Block(object):
return self.ops[start:end] return self.ops[start:end]
def _prepend_op(self, *args, **kwargs): def _prepend_op(self, *args, **kwargs):
if _in_dygraph_mode(): if in_dygraph_mode():
op = Operator( op = Operator(
self, self,
None, None,
......
...@@ -165,7 +165,7 @@ class ConstantInitializer(Initializer): ...@@ -165,7 +165,7 @@ class ConstantInitializer(Initializer):
'force_cpu': self._force_cpu or force_init_on_cpu() 'force_cpu': self._force_cpu or force_init_on_cpu()
}, },
stop_gradient=True) stop_gradient=True)
if not framework._in_dygraph_mode(): if not framework.in_dygraph_mode():
var.op = op var.op = op
return op return op
...@@ -245,7 +245,7 @@ class UniformInitializer(Initializer): ...@@ -245,7 +245,7 @@ class UniformInitializer(Initializer):
attrs={"in_dtype": out_var.dtype, attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype}) "out_dtype": var.dtype})
if not framework._in_dygraph_mode(): if not framework.in_dygraph_mode():
var.op = op var.op = op
return op return op
...@@ -324,7 +324,7 @@ class NormalInitializer(Initializer): ...@@ -324,7 +324,7 @@ class NormalInitializer(Initializer):
outputs={"Out": var}, outputs={"Out": var},
attrs={"in_dtype": out_var.dtype, attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype}) "out_dtype": var.dtype})
if not framework._in_dygraph_mode(): if not framework.in_dygraph_mode():
var.op = op var.op = op
return op return op
...@@ -403,7 +403,7 @@ class TruncatedNormalInitializer(Initializer): ...@@ -403,7 +403,7 @@ class TruncatedNormalInitializer(Initializer):
outputs={"Out": var}, outputs={"Out": var},
attrs={"in_dtype": out_var.dtype, attrs={"in_dtype": out_var.dtype,
"out_dtype": var.dtype}) "out_dtype": var.dtype})
if not framework._in_dygraph_mode(): if not framework.in_dygraph_mode():
var.op = op var.op = op
return op return op
...@@ -509,7 +509,7 @@ class XavierInitializer(Initializer): ...@@ -509,7 +509,7 @@ class XavierInitializer(Initializer):
"seed": self._seed "seed": self._seed
}, },
stop_gradient=True) stop_gradient=True)
if not framework._in_dygraph_mode(): if not framework.in_dygraph_mode():
var.op = op var.op = op
return op return op
...@@ -610,7 +610,7 @@ class MSRAInitializer(Initializer): ...@@ -610,7 +610,7 @@ class MSRAInitializer(Initializer):
"seed": self._seed "seed": self._seed
}, },
stop_gradient=True) stop_gradient=True)
if not framework._in_dygraph_mode(): if not framework.in_dygraph_mode():
var.op = op var.op = op
return op return op
...@@ -709,7 +709,7 @@ class BilinearInitializer(Initializer): ...@@ -709,7 +709,7 @@ class BilinearInitializer(Initializer):
'shape': list(shape), 'shape': list(shape),
value_name: values value_name: values
}) })
if not framework._in_dygraph_mode(): if not framework.in_dygraph_mode():
var.op = op var.op = op
return op return op
...@@ -768,7 +768,7 @@ class NumpyArrayInitializer(Initializer): ...@@ -768,7 +768,7 @@ class NumpyArrayInitializer(Initializer):
value_name: values value_name: values
}, },
stop_gradient=True) stop_gradient=True)
if not framework._in_dygraph_mode(): if not framework.in_dygraph_mode():
var.op = op var.op = op
return op return op
......
...@@ -17,7 +17,7 @@ from __future__ import print_function ...@@ -17,7 +17,7 @@ from __future__ import print_function
import copy import copy
import six import six
from .framework import Parameter, dtype_is_floating, _in_dygraph_mode from .framework import Parameter, dtype_is_floating, in_dygraph_mode
from . import unique_name from . import unique_name
from paddle.fluid.initializer import Constant, Xavier from paddle.fluid.initializer import Constant, Xavier
from .param_attr import ParamAttr from .param_attr import ParamAttr
......
...@@ -17,7 +17,7 @@ from __future__ import print_function ...@@ -17,7 +17,7 @@ from __future__ import print_function
import copy import copy
import numpy as np import numpy as np
from .framework import Variable, default_main_program, default_startup_program, _in_dygraph_mode, _current_expected_place from .framework import Variable, default_main_program, default_startup_program, in_dygraph_mode, _current_expected_place
from . import unique_name from . import unique_name
from .param_attr import ParamAttr, WeightNormParamAttr from .param_attr import ParamAttr, WeightNormParamAttr
from . import core from . import core
...@@ -54,7 +54,7 @@ class LayerHelperBase(object): ...@@ -54,7 +54,7 @@ class LayerHelperBase(object):
Return Variable construct from value Return Variable construct from value
""" """
if isinstance(value, np.ndarray): if isinstance(value, np.ndarray):
assert _in_dygraph_mode( assert in_dygraph_mode(
), "to_variable could only be called in dygraph mode" ), "to_variable could only be called in dygraph mode"
if not block: if not block:
...@@ -302,7 +302,7 @@ class LayerHelperBase(object): ...@@ -302,7 +302,7 @@ class LayerHelperBase(object):
param = self._create_weight_normalize(attr, shape, dtype) param = self._create_weight_normalize(attr, shape, dtype)
WeightNormParamAttr.params_with_weight_norm.append(param) WeightNormParamAttr.params_with_weight_norm.append(param)
return param return param
if _in_dygraph_mode(): if in_dygraph_mode():
# In dygraph mode, we want the returned parameter to be # In dygraph mode, we want the returned parameter to be
# initialized so that it can be used imperatively. # initialized so that it can be used imperatively.
return self.main_program.global_block().create_parameter( return self.main_program.global_block().create_parameter(
...@@ -370,7 +370,7 @@ class LayerHelperBase(object): ...@@ -370,7 +370,7 @@ class LayerHelperBase(object):
initializer: initializer to use initializer: initializer to use
""" """
assert isinstance(var, Variable) assert isinstance(var, Variable)
if _in_dygraph_mode(): if in_dygraph_mode():
initializer(var, var.block) initializer(var, var.block)
else: else:
self.startup_program.global_block().create_var( self.startup_program.global_block().create_var(
......
...@@ -23,7 +23,7 @@ import os ...@@ -23,7 +23,7 @@ import os
import inspect import inspect
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant, NumpyArrayInitializer from ..initializer import Normal, Constant, NumpyArrayInitializer
from ..framework import Variable, OpProtoHolder, _in_dygraph_mode from ..framework import Variable, OpProtoHolder, in_dygraph_mode
from ..dygraph import base from ..dygraph import base
from ..param_attr import ParamAttr from ..param_attr import ParamAttr
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_ from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
...@@ -481,7 +481,7 @@ def dynamic_lstm(input, ...@@ -481,7 +481,7 @@ def dynamic_lstm(input,
forward, _ = fluid.layers.dynamic_lstm( forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False) input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
""" """
assert _in_dygraph_mode( assert in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!" ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp." assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstm', **locals()) helper = LayerHelper('lstm', **locals())
...@@ -867,7 +867,7 @@ def dynamic_lstmp(input, ...@@ -867,7 +867,7 @@ def dynamic_lstmp(input,
proj_activation="tanh") proj_activation="tanh")
""" """
assert _in_dygraph_mode( assert in_dygraph_mode(
) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!" ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp." assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
...@@ -1041,7 +1041,7 @@ def dynamic_gru(input, ...@@ -1041,7 +1041,7 @@ def dynamic_gru(input,
hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim) hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
""" """
assert _in_dygraph_mode( assert in_dygraph_mode(
) is not True, "please use gru instead of dynamic_gru in dygraph mode!" ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"
helper = LayerHelper('gru', **locals()) helper = LayerHelper('gru', **locals())
...@@ -1760,7 +1760,7 @@ def sequence_conv(input, ...@@ -1760,7 +1760,7 @@ def sequence_conv(input,
Variable: output of sequence_conv Variable: output of sequence_conv
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_conv', **locals()) helper = LayerHelper('sequence_conv', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -1821,7 +1821,7 @@ def sequence_softmax(input, use_cudnn=False, name=None): ...@@ -1821,7 +1821,7 @@ def sequence_softmax(input, use_cudnn=False, name=None):
dtype='float32', lod_level=1) dtype='float32', lod_level=1)
x_sequence_softmax = fluid.layers.sequence_softmax(input=x) x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_softmax', **locals()) helper = LayerHelper('sequence_softmax', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -2315,7 +2315,7 @@ def sequence_pool(input, pool_type, is_test=False): ...@@ -2315,7 +2315,7 @@ def sequence_pool(input, pool_type, is_test=False):
last_x = fluid.layers.sequence_pool(input=x, pool_type='last') last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
first_x = fluid.layers.sequence_pool(input=x, pool_type='first') first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pool', **locals()) helper = LayerHelper('sequence_pool', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -2356,7 +2356,7 @@ def sequence_concat(input, name=None): ...@@ -2356,7 +2356,7 @@ def sequence_concat(input, name=None):
out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3]) out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_concat', **locals()) helper = LayerHelper('sequence_concat', **locals())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
...@@ -2485,7 +2485,7 @@ def sequence_slice(input, offset, length, name=None): ...@@ -2485,7 +2485,7 @@ def sequence_slice(input, offset, length, name=None):
subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
length=length) length=length)
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_slice", **locals()) helper = LayerHelper("sequence_slice", **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -3307,7 +3307,7 @@ def layer_norm(input, ...@@ -3307,7 +3307,7 @@ def layer_norm(input,
>>> dtype='float32') >>> dtype='float32')
>>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1) >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
""" """
assert _in_dygraph_mode( assert in_dygraph_mode(
) is not True, "please use FC instead of fc in dygraph mode!" ) is not True, "please use FC instead of fc in dygraph mode!"
helper = LayerHelper('layer_norm', **locals()) helper = LayerHelper('layer_norm', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -3946,7 +3946,7 @@ def sequence_expand(x, y, ref_level=-1, name=None): ...@@ -3946,7 +3946,7 @@ def sequence_expand(x, y, ref_level=-1, name=None):
dtype='float32', lod_level=1) dtype='float32', lod_level=1)
out = layers.sequence_expand(x=x, y=y, ref_level=0) out = layers.sequence_expand(x=x, y=y, ref_level=0)
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand', input=x, **locals()) helper = LayerHelper('sequence_expand', input=x, **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -4014,7 +4014,7 @@ def sequence_expand_as(x, y, name=None): ...@@ -4014,7 +4014,7 @@ def sequence_expand_as(x, y, name=None):
dtype='float32', lod_level=1) dtype='float32', lod_level=1)
out = layers.sequence_expand_as(x=x, y=y) out = layers.sequence_expand_as(x=x, y=y)
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_expand_as', input=x, **locals()) helper = LayerHelper('sequence_expand_as', input=x, **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -4062,7 +4062,7 @@ def sequence_pad(x, pad_value, maxlen=None, name=None): ...@@ -4062,7 +4062,7 @@ def sequence_pad(x, pad_value, maxlen=None, name=None):
out = fluid.layers.sequence_pad(x=x, pad_value=pad_value) out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_pad', input=x, **locals()) helper = LayerHelper('sequence_pad', input=x, **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -4130,7 +4130,7 @@ def sequence_unpad(x, length, name=None): ...@@ -4130,7 +4130,7 @@ def sequence_unpad(x, length, name=None):
out = fluid.layers.sequence_unpad(x=x, length=len) out = fluid.layers.sequence_unpad(x=x, length=len)
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_unpad', input=x, **locals()) helper = LayerHelper('sequence_unpad', input=x, **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -5305,7 +5305,7 @@ def sequence_reshape(input, new_dim): ...@@ -5305,7 +5305,7 @@ def sequence_reshape(input, new_dim):
x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1) x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10) x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_reshape', **locals()) helper = LayerHelper('sequence_reshape', **locals())
out = helper.create_variable_for_type_inference(helper.input_dtype()) out = helper.create_variable_for_type_inference(helper.input_dtype())
...@@ -5841,7 +5841,7 @@ def im2sequence(input, ...@@ -5841,7 +5841,7 @@ def im2sequence(input,
input=layer, stride=[1, 1], filter_size=[2, 2]) input=layer, stride=[1, 1], filter_size=[2, 2])
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
if isinstance(filter_size, int): if isinstance(filter_size, int):
...@@ -6485,7 +6485,7 @@ def squeeze(input, axes, name=None): ...@@ -6485,7 +6485,7 @@ def squeeze(input, axes, name=None):
x = layers.data(name='x', shape=[5, 1, 10]) x = layers.data(name='x', shape=[5, 1, 10])
y = layers.sequeeze(input=x, axes=[1]) y = layers.sequeeze(input=x, axes=[1])
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"squeeze layer is not supported in dygraph mode yet.") "squeeze layer is not supported in dygraph mode yet.")
helper = LayerHelper("squeeze", **locals()) helper = LayerHelper("squeeze", **locals())
out = helper.create_variable_for_type_inference(dtype=input.dtype) out = helper.create_variable_for_type_inference(dtype=input.dtype)
...@@ -7138,10 +7138,10 @@ def image_resize(input, ...@@ -7138,10 +7138,10 @@ def image_resize(input,
out_shape(list|tuple|Variable|None): Output shape of image resize out_shape(list|tuple|Variable|None): Output shape of image resize
layer, the shape is (out_h, out_w). layer, the shape is (out_h, out_w).
Default: None Default: None
scale(float|None): The multiplier for the input height or width. scale(float|None): The multiplier for the input height or width. At
At least one of out_shape or scale must be set. least one of :attr:`out_shape` or :attr:`scale` must be set.
And out_shape has a higher priority than scale. And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None Default: None.
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST' resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
...@@ -7179,6 +7179,7 @@ def image_resize(input, ...@@ -7179,6 +7179,7 @@ def image_resize(input,
or 'NEAREST' currently. or 'NEAREST' currently.
ValueError: One of out_shape and scale must not be None. ValueError: One of out_shape and scale must not be None.
ValueError: out_shape length should be 2. ValueError: out_shape length should be 2.
ValueError: scale should be greater than zero.
TypeError: align_corners shoule be a bool value TypeError: align_corners shoule be a bool value
ValueError: align_mode can only be '0' or '1' ValueError: align_mode can only be '0' or '1'
...@@ -7210,26 +7211,36 @@ def image_resize(input, ...@@ -7210,26 +7211,36 @@ def image_resize(input,
def _is_list_or_turple_(data): def _is_list_or_turple_(data):
return (isinstance(data, list) or isinstance(data, tuple)) return (isinstance(data, list) or isinstance(data, tuple))
out_h = 0
out_w = 0
inputs = {"X": input} inputs = {"X": input}
attrs = {
"out_h": 0,
"out_w": 0,
"interp_method": resample_type,
"align_corners": align_corners,
"align_mode": align_mode
}
if out_shape is not None: if out_shape is not None:
if isinstance(out_shape, Variable): if isinstance(out_shape, Variable):
warnings.warn("out_shape as Variable type is deprecated, \ warnings.warn("out_shape as Variable type is deprecated, \
it is recommended to use actual_shape instead of \ it is recommended to use actual_shape instead of \
out_shape to specify output shape dynamically.") out_shape to specify output shape dynamically.")
inputs['OutSize'] = out_shape inputs['OutSize'] = out_shape
elif not (_is_list_or_turple_(out_shape)): else:
raise TypeError("out_shape should be a list or tuple or Variable.") if not (_is_list_or_turple_(out_shape)):
elif len(out_shape) != 2: raise TypeError(
raise ValueError("out_shape length should be 2.") "out_shape should be a list or tuple or Variable.")
if len(out_shape) != 2:
out_shape = list(map(int, out_shape)) raise ValueError("out_shape length should be 2.")
out_h = out_shape[0]
out_w = out_shape[1] out_shape = list(map(int, out_shape))
attrs['out_h'] = out_shape[0]
attrs['out_w'] = out_shape[1]
else: else:
out_h = int(input.shape[2] * scale) if scale <= 0:
out_w = int(input.shape[3] * scale) raise ValueError("scale should be greater than zero.")
attrs['scale'] = float(scale)
if isinstance(actual_shape, Variable): if isinstance(actual_shape, Variable):
inputs["OutSize"] = actual_shape inputs["OutSize"] = actual_shape
...@@ -7241,13 +7252,7 @@ def image_resize(input, ...@@ -7241,13 +7252,7 @@ def image_resize(input,
type='{}_interp'.format(resample_type), type='{}_interp'.format(resample_type),
inputs=inputs, inputs=inputs,
outputs={"Out": out}, outputs={"Out": out},
attrs={ attrs=attrs)
"out_h": out_h,
"out_w": out_w,
"interp_method": resample_type,
"align_corners": align_corners,
"align_mode": align_mode
})
return out return out
...@@ -7315,11 +7320,14 @@ def resize_bilinear(input, ...@@ -7315,11 +7320,14 @@ def resize_bilinear(input,
Args: Args:
input(${x_type}): ${x_comment}. input(${x_type}): ${x_comment}.
out_shape(${out_size_type}): ${out_size_comment}. out_shape(list|tuple|Variable|None): Output shape of resize bilinear
layer, the shape is (out_h, out_w).
Default: None
scale(float|None): The multiplier for the input height or width. At scale(float|None): The multiplier for the input height or width. At
least one of out_shape or scale must be set. And out_shape has least one of :attr:`out_shape` or :attr:`scale` must be set.
a higher priority than scale. Default: None. And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None.
name(str|None): The output variable name. name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape actual_shape(Variable): An optional input to specify output shape
...@@ -7406,11 +7414,14 @@ def resize_nearest(input, ...@@ -7406,11 +7414,14 @@ def resize_nearest(input,
Args: Args:
input(${x_type}): ${x_comment}. input(${x_type}): ${x_comment}.
out_shape(${out_size_type}): ${out_size_comment}. out_shape(list|tuple|Variable|None): Output shape of resize nearest
layer, the shape is (out_h, out_w).
Default: None
scale(float|None): The multiplier for the input height or width. At scale(float|None): The multiplier for the input height or width. At
least one of out_shape or scale must be set. And out_shape has least one of :attr:`out_shape` or :attr:`scale` must be set.
a higher priority than scale. Default: None. And :attr:`out_shape` has a higher priority than :attr:`scale`.
Default: None.
name(str|None): The output variable name. name(str|None): The output variable name.
actual_shape(Variable): An optional input to specify output shape actual_shape(Variable): An optional input to specify output shape
...@@ -7620,7 +7631,7 @@ def sequence_scatter(input, index, updates, name=None): ...@@ -7620,7 +7631,7 @@ def sequence_scatter(input, index, updates, name=None):
output = fluid.layers.sequence_scatter(input, index, updates) output = fluid.layers.sequence_scatter(input, index, updates)
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_scatter', **locals()) helper = LayerHelper('sequence_scatter', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -8710,7 +8721,7 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None): ...@@ -8710,7 +8721,7 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1) x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0) out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_enumerate', **locals()) helper = LayerHelper('sequence_enumerate', **locals())
out = helper.create_variable_for_type_inference( out = helper.create_variable_for_type_inference(
...@@ -8751,7 +8762,7 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None): ...@@ -8751,7 +8762,7 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
Variable: The output sequence mask. Variable: The output sequence mask.
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper('sequence_mask', **locals()) helper = LayerHelper('sequence_mask', **locals())
...@@ -9230,7 +9241,7 @@ def _elementwise_op(helper): ...@@ -9230,7 +9241,7 @@ def _elementwise_op(helper):
op_type = helper.layer_type op_type = helper.layer_type
x = helper.kwargs.get('x', None) x = helper.kwargs.get('x', None)
y = helper.kwargs.get('y', None) y = helper.kwargs.get('y', None)
if _in_dygraph_mode(): if in_dygraph_mode():
x = base.to_variable(x) x = base.to_variable(x)
y = base.to_variable(y) y = base.to_variable(y)
...@@ -9803,7 +9814,7 @@ def sequence_reverse(x, name=None): ...@@ -9803,7 +9814,7 @@ def sequence_reverse(x, name=None):
Returns: Returns:
out(${y_type}): ${y_comment} out(${y_type}): ${y_comment}
""" """
assert not _in_dygraph_mode(), ( assert not in_dygraph_mode(), (
"sequence layer is not supported in dygraph mode yet.") "sequence layer is not supported in dygraph mode yet.")
helper = LayerHelper("sequence_reverse", **locals()) helper = LayerHelper("sequence_reverse", **locals())
if name is None: if name is None:
......
...@@ -55,7 +55,7 @@ class Optimizer(object): ...@@ -55,7 +55,7 @@ class Optimizer(object):
""" """
def __init__(self, learning_rate, regularization=None, name=None): def __init__(self, learning_rate, regularization=None, name=None):
if framework._in_dygraph_mode(): if framework.in_dygraph_mode():
if not isinstance(learning_rate, float) and \ if not isinstance(learning_rate, float) and \
not isinstance(learning_rate, LearningRateDecay): not isinstance(learning_rate, LearningRateDecay):
raise TypeError( raise TypeError(
...@@ -205,7 +205,7 @@ class Optimizer(object): ...@@ -205,7 +205,7 @@ class Optimizer(object):
name = self._name + "_" + name name = self._name + "_" + name
if (name in self._accumulators and if (name in self._accumulators and
param.name in self._accumulators[name]): param.name in self._accumulators[name]):
if framework._in_dygraph_mode(): if framework.in_dygraph_mode():
return self._accumulators[name][param.name] return self._accumulators[name][param.name]
raise Exception("Accumulator {} already exists for parameter {}". raise Exception("Accumulator {} already exists for parameter {}".
format(name, param.name)) format(name, param.name))
...@@ -374,7 +374,7 @@ class Optimizer(object): ...@@ -374,7 +374,7 @@ class Optimizer(object):
See examples in `apply_gradients`. See examples in `apply_gradients`.
""" """
self._dtype = loss.dtype self._dtype = loss.dtype
if framework._in_dygraph_mode(): if framework.in_dygraph_mode():
if parameter_list is not None: if parameter_list is not None:
parameters = parameter_list parameters = parameter_list
else: else:
...@@ -459,7 +459,7 @@ class Optimizer(object): ...@@ -459,7 +459,7 @@ class Optimizer(object):
Returns: Returns:
list: A list of operators appended to the current program. list: A list of operators appended to the current program.
""" """
if framework._in_dygraph_mode(): if framework.in_dygraph_mode():
with program_guard(framework.default_main_program(), with program_guard(framework.default_main_program(),
framework.default_startup_program()): framework.default_startup_program()):
optimize_ops = self._create_optimization_pass(params_grads) optimize_ops = self._create_optimization_pass(params_grads)
...@@ -639,16 +639,16 @@ class DGCMomentumOptimizer(MomentumOptimizer): ...@@ -639,16 +639,16 @@ class DGCMomentumOptimizer(MomentumOptimizer):
Original paper is https://arxiv.org/abs/1712.01887 Original paper is https://arxiv.org/abs/1712.01887
DGC reduce the communication bandwidth by sending only the important gradients (sparse update):\ DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
only gradients larger than a threshold are transmitted. only gradients larger than a threshold are transmitted.
To avoid losing information, DGC accumulate the rest of the gradients locally. To avoid losing information, DGC accumulates the rest of the gradients locally.
Eventually, these gradients become large enough to be transmitted. Eventually, these gradients become large enough to be transmitted.
Thus, DGC send the large gradients immediately but eventually send all of the gradients over time. Thus, DGC sends the large gradients immediately but eventually send all of the gradients over time.
To ensure no loss of accuracy, DGC employs momentum correc-tionandlocal gradient clipping on top of the gradient sparsification to maintain model performance. To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication. DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.
...@@ -663,7 +663,7 @@ class DGCMomentumOptimizer(MomentumOptimizer): ...@@ -663,7 +663,7 @@ class DGCMomentumOptimizer(MomentumOptimizer):
learning_rate (float|Variable): the learning rate used to update parameters. \ learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one float value as data element. Can be a float value or a Variable with one float value as data element.
momentum (float): Momentum factor. momentum (float): Momentum factor.
rampup_begin_step (int): The begining step from which gradient compression is implemented. rampup_begin_step (int): The beginning step from which gradient compression is implemented.
rampup_step (int): How long it use the sparsity periods. Default is 1. rampup_step (int): How long it use the sparsity periods. Default is 1.
for example: If the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 5, \ for example: If the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 5, \
it will use 0.75 at 0 step, and 0.9375 at 1 step, and so on. And when reach sparsity array ends, \ it will use 0.75 at 0 step, and 0.9375 at 1 step, and so on. And when reach sparsity array ends, \
...@@ -671,9 +671,9 @@ class DGCMomentumOptimizer(MomentumOptimizer): ...@@ -671,9 +671,9 @@ class DGCMomentumOptimizer(MomentumOptimizer):
sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity).
use_nesterov (bool): Enables Nesterov momentum. True means use nesterov. use_nesterov (bool): Enables Nesterov momentum. True means use nesterov.
local_grad_clip_norm (float): Clip norm value if needed. local_grad_clip_norm (float): Clip norm value if needed.
num_trainers: The number of training node. num_trainers: The number of training nodes.
regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer. regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
name: A optional name prefix. name: An optional name prefix.
Examples: Examples:
.. code-block:: python .. code-block:: python
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import six
def fake_imdb_reader(word_dict_size,
sample_num,
lower_seq_len=100,
upper_seq_len=200,
class_dim=2):
def __reader__():
for _ in six.moves.range(sample_num):
length = np.random.random_integers(
low=lower_seq_len, high=upper_seq_len, size=[1])[0]
ids = np.random.random_integers(
low=0, high=word_dict_size - 1, size=[length]).astype('int64')
label = np.random.random_integers(
low=0, high=class_dim - 1, size=[1]).astype('int64')[0]
yield ids, label
return __reader__
...@@ -18,7 +18,7 @@ import numpy as np ...@@ -18,7 +18,7 @@ import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
class L1(fluid.dygraph.Layer): class L1(fluid.Layer):
def __init__(self, prefix): def __init__(self, prefix):
super(L1, self).__init__(prefix) super(L1, self).__init__(prefix)
self._param_attr = fluid.ParamAttr( self._param_attr = fluid.ParamAttr(
...@@ -32,7 +32,7 @@ class L1(fluid.dygraph.Layer): ...@@ -32,7 +32,7 @@ class L1(fluid.dygraph.Layer):
return self.w1 + self.w2 return self.w1 + self.w2
class L2(fluid.dygraph.Layer): class L2(fluid.Layer):
def __init__(self, prefix): def __init__(self, prefix):
super(L2, self).__init__(prefix) super(L2, self).__init__(prefix)
self.layer1 = L1(self.full_name()) self.layer1 = L1(self.full_name())
...@@ -42,7 +42,7 @@ class L2(fluid.dygraph.Layer): ...@@ -42,7 +42,7 @@ class L2(fluid.dygraph.Layer):
return self.layer1() + self.layer2() return self.layer1() + self.layer2()
class L3(fluid.dygraph.Layer): class L3(fluid.Layer):
def __init__(self, prefix): def __init__(self, prefix):
super(L3, self).__init__(prefix) super(L3, self).__init__(prefix)
self.layer1 = L2(self.full_name()) self.layer1 = L2(self.full_name())
...@@ -59,7 +59,7 @@ class TestBaseLayer(unittest.TestCase): ...@@ -59,7 +59,7 @@ class TestBaseLayer(unittest.TestCase):
ret = l() ret = l()
self.assertEqual(l.w1.name, "test_one_level/L1_0.w_0") self.assertEqual(l.w1.name, "test_one_level/L1_0.w_0")
self.assertEqual(l.w2.name, "test_one_level/L1_0.w_1") self.assertEqual(l.w2.name, "test_one_level/L1_0.w_1")
self.assertTrue(np.allclose(ret._numpy(), 0.2 * np.ones([2, 2]))) self.assertTrue(np.allclose(ret.numpy(), 0.2 * np.ones([2, 2])))
def test_three_level(self): def test_three_level(self):
with fluid.dygraph.guard(): with fluid.dygraph.guard():
...@@ -72,7 +72,7 @@ class TestBaseLayer(unittest.TestCase): ...@@ -72,7 +72,7 @@ class TestBaseLayer(unittest.TestCase):
self.assertEqual(names[3], "test_three_level/L3_0/L2_0/L1_1.w_1") self.assertEqual(names[3], "test_three_level/L3_0/L2_0/L1_1.w_1")
self.assertEqual(names[4], "test_three_level/L3_0/L2_1/L1_0.w_0") self.assertEqual(names[4], "test_three_level/L3_0/L2_1/L1_0.w_0")
self.assertEqual(names[5], "test_three_level/L3_0/L2_1/L1_0.w_1") self.assertEqual(names[5], "test_three_level/L3_0/L2_1/L1_0.w_1")
self.assertTrue(np.allclose(ret._numpy(), 0.8 * np.ones([2, 2]))) self.assertTrue(np.allclose(ret.numpy(), 0.8 * np.ones([2, 2])))
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -91,17 +91,26 @@ class TestBilinearInterpOp(OpTest): ...@@ -91,17 +91,26 @@ class TestBilinearInterpOp(OpTest):
self.op_type = "bilinear_interp" self.op_type = "bilinear_interp"
input_np = np.random.random(self.input_shape).astype("float32") input_np = np.random.random(self.input_shape).astype("float32")
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w, if self.scale > 0:
self.out_size, self.actual_shape, out_h = int(self.input_shape[2] * self.scale)
self.align_corners, self.align_mode) out_w = int(self.input_shape[3] * self.scale)
else:
out_h = self.out_h
out_w = self.out_w
output_np = bilinear_interp_np(input_np, out_h, out_w, self.out_size,
self.actual_shape, self.align_corners,
self.align_mode)
self.inputs = {'X': input_np} self.inputs = {'X': input_np}
if self.out_size is not None: if self.out_size is not None:
self.inputs['OutSize'] = self.out_size self.inputs['OutSize'] = self.out_size
if self.actual_shape is not None: if self.actual_shape is not None:
self.inputs['OutSize'] = self.actual_shape self.inputs['OutSize'] = self.actual_shape
self.attrs = { self.attrs = {
'out_h': self.out_h, 'out_h': self.out_h,
'out_w': self.out_w, 'out_w': self.out_w,
'scale': self.scale,
'interp_method': self.interp_method, 'interp_method': self.interp_method,
'align_corners': self.align_corners, 'align_corners': self.align_corners,
'align_mode': self.align_mode 'align_mode': self.align_mode
...@@ -119,6 +128,7 @@ class TestBilinearInterpOp(OpTest): ...@@ -119,6 +128,7 @@ class TestBilinearInterpOp(OpTest):
self.input_shape = [2, 3, 4, 4] self.input_shape = [2, 3, 4, 4]
self.out_h = 2 self.out_h = 2
self.out_w = 2 self.out_w = 2
self.scale = 0.
self.out_size = np.array([3, 3]).astype("int32") self.out_size = np.array([3, 3]).astype("int32")
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -130,6 +140,7 @@ class TestBilinearInterpCase1(TestBilinearInterpOp): ...@@ -130,6 +140,7 @@ class TestBilinearInterpCase1(TestBilinearInterpOp):
self.input_shape = [4, 1, 7, 8] self.input_shape = [4, 1, 7, 8]
self.out_h = 1 self.out_h = 1
self.out_w = 1 self.out_w = 1
self.scale = 0.
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -140,6 +151,7 @@ class TestBilinearInterpCase2(TestBilinearInterpOp): ...@@ -140,6 +151,7 @@ class TestBilinearInterpCase2(TestBilinearInterpOp):
self.input_shape = [3, 3, 9, 6] self.input_shape = [3, 3, 9, 6]
self.out_h = 12 self.out_h = 12
self.out_w = 12 self.out_w = 12
self.scale = 0.
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -150,6 +162,7 @@ class TestBilinearInterpCase3(TestBilinearInterpOp): ...@@ -150,6 +162,7 @@ class TestBilinearInterpCase3(TestBilinearInterpOp):
self.input_shape = [1, 1, 128, 64] self.input_shape = [1, 1, 128, 64]
self.out_h = 64 self.out_h = 64
self.out_w = 128 self.out_w = 128
self.scale = 0.
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -160,6 +173,7 @@ class TestBilinearInterpCase4(TestBilinearInterpOp): ...@@ -160,6 +173,7 @@ class TestBilinearInterpCase4(TestBilinearInterpOp):
self.input_shape = [4, 1, 7, 8] self.input_shape = [4, 1, 7, 8]
self.out_h = 1 self.out_h = 1
self.out_w = 1 self.out_w = 1
self.scale = 0.
self.out_size = np.array([2, 2]).astype("int32") self.out_size = np.array([2, 2]).astype("int32")
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -171,6 +185,7 @@ class TestBilinearInterpCase5(TestBilinearInterpOp): ...@@ -171,6 +185,7 @@ class TestBilinearInterpCase5(TestBilinearInterpOp):
self.input_shape = [3, 3, 9, 6] self.input_shape = [3, 3, 9, 6]
self.out_h = 12 self.out_h = 12
self.out_w = 12 self.out_w = 12
self.scale = 0.
self.out_size = np.array([11, 11]).astype("int32") self.out_size = np.array([11, 11]).astype("int32")
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -182,6 +197,7 @@ class TestBilinearInterpCase6(TestBilinearInterpOp): ...@@ -182,6 +197,7 @@ class TestBilinearInterpCase6(TestBilinearInterpOp):
self.input_shape = [1, 1, 128, 64] self.input_shape = [1, 1, 128, 64]
self.out_h = 64 self.out_h = 64
self.out_w = 128 self.out_w = 128
self.scale = 0.
self.out_size = np.array([65, 129]).astype("int32") self.out_size = np.array([65, 129]).astype("int32")
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -193,6 +209,7 @@ class TestBilinearInterpActualShape(TestBilinearInterpOp): ...@@ -193,6 +209,7 @@ class TestBilinearInterpActualShape(TestBilinearInterpOp):
self.input_shape = [3, 2, 32, 16] self.input_shape = [3, 2, 32, 16]
self.out_h = 64 self.out_h = 64
self.out_w = 32 self.out_w = 32
self.scale = 0.
self.out_size = np.array([66, 40]).astype("int32") self.out_size = np.array([66, 40]).astype("int32")
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -206,15 +223,25 @@ class TestBilinearInterpOpUint8(OpTest): ...@@ -206,15 +223,25 @@ class TestBilinearInterpOpUint8(OpTest):
self.op_type = "bilinear_interp" self.op_type = "bilinear_interp"
input_np = np.random.randint( input_np = np.random.randint(
low=0, high=256, size=self.input_shape).astype("uint8") low=0, high=256, size=self.input_shape).astype("uint8")
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w,
self.out_size, self.actual_shape, if self.scale > 0:
self.align_corners, self.align_mode) out_h = int(self.input_shape[2] * self.scale)
out_w = int(self.input_shape[3] * self.scale)
else:
out_h = self.out_h
out_w = self.out_w
output_np = bilinear_interp_np(input_np, out_h, out_w, self.out_size,
self.actual_shape, self.align_corners,
self.align_mode)
self.inputs = {'X': input_np} self.inputs = {'X': input_np}
if self.out_size is not None: if self.out_size is not None:
self.inputs['OutSize'] = self.out_size self.inputs['OutSize'] = self.out_size
self.attrs = { self.attrs = {
'out_h': self.out_h, 'out_h': self.out_h,
'out_w': self.out_w, 'out_w': self.out_w,
'scale': self.scale,
'interp_method': self.interp_method, 'interp_method': self.interp_method,
'align_corners': self.align_corners, 'align_corners': self.align_corners,
'align_mode': self.align_mode 'align_mode': self.align_mode
...@@ -229,6 +256,7 @@ class TestBilinearInterpOpUint8(OpTest): ...@@ -229,6 +256,7 @@ class TestBilinearInterpOpUint8(OpTest):
self.input_shape = [1, 3, 9, 6] self.input_shape = [1, 3, 9, 6]
self.out_h = 10 self.out_h = 10
self.out_w = 9 self.out_w = 9
self.scale = 0.
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -239,6 +267,7 @@ class TestBilinearInterpCase1Uint8(TestBilinearInterpOpUint8): ...@@ -239,6 +267,7 @@ class TestBilinearInterpCase1Uint8(TestBilinearInterpOpUint8):
self.input_shape = [2, 3, 128, 64] self.input_shape = [2, 3, 128, 64]
self.out_h = 120 self.out_h = 120
self.out_w = 50 self.out_w = 50
self.scale = 0.
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -249,6 +278,7 @@ class TestBilinearInterpCase2Uint8(TestBilinearInterpOpUint8): ...@@ -249,6 +278,7 @@ class TestBilinearInterpCase2Uint8(TestBilinearInterpOpUint8):
self.input_shape = [4, 1, 7, 8] self.input_shape = [4, 1, 7, 8]
self.out_h = 5 self.out_h = 5
self.out_w = 13 self.out_w = 13
self.scale = 0.
self.out_size = np.array([6, 15]).astype("int32") self.out_size = np.array([6, 15]).astype("int32")
self.align_corners = True self.align_corners = True
self.align_mode = 1 self.align_mode = 1
...@@ -272,5 +302,38 @@ class TestBilinearInterpWithMethod3(TestBilinearInterpOp): ...@@ -272,5 +302,38 @@ class TestBilinearInterpWithMethod3(TestBilinearInterpOp):
self.align_mode = 0 self.align_mode = 0
class TestBilinearInterpScale1(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 16, 32]
self.out_h = 60
self.out_w = 25
self.scale = 2.
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpScale2(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 16, 32]
self.out_h = 60
self.out_w = 25
self.scale = 1.
self.align_corners = True
self.align_mode = 1
class TestBilinearInterpScale3(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 16, 32]
self.out_h = 60
self.out_w = 25
self.scale = 1.5
self.align_corners = True
self.align_mode = 1
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
...@@ -19,7 +19,7 @@ import time ...@@ -19,7 +19,7 @@ import time
import six import six
import unittest import unittest
EPOCH_NUM = 60 EPOCH_NUM = 20
BATCH_SIZE = 32 BATCH_SIZE = 32
CLASS_NUM = 10 CLASS_NUM = 10
......
...@@ -22,6 +22,8 @@ import paddle ...@@ -22,6 +22,8 @@ import paddle
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler from paddle.fluid import compiler
import numpy as np
from fake_reader import fake_imdb_reader
def train(network, use_cuda, use_parallel_executor, batch_size=32, pass_num=2): def train(network, use_cuda, use_parallel_executor, batch_size=32, pass_num=2):
...@@ -35,16 +37,16 @@ def train(network, use_cuda, use_parallel_executor, batch_size=32, pass_num=2): ...@@ -35,16 +37,16 @@ def train(network, use_cuda, use_parallel_executor, batch_size=32, pass_num=2):
) )
return return
word_dict = paddle.dataset.imdb.word_dict() word_dict_size = 5147
train_reader = paddle.batch( reader = fake_imdb_reader(word_dict_size, batch_size * 40)
paddle.dataset.imdb.train(word_dict), batch_size=batch_size) train_reader = paddle.batch(reader, batch_size=batch_size)
data = fluid.layers.data( data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1) name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64") label = fluid.layers.data(name="label", shape=[1], dtype="int64")
cost = network(data, label, len(word_dict)) cost = network(data, label, word_dict_size)
cost.persistable = True cost.persistable = True
optimizer = fluid.optimizer.Adagrad(learning_rate=0.2) optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
optimizer.minimize(cost) optimizer.minimize(cost)
......
...@@ -19,6 +19,8 @@ import numpy as np ...@@ -19,6 +19,8 @@ import numpy as np
import paddle import paddle
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid as fluid import paddle.fluid as fluid
import six
from fake_reader import fake_imdb_reader
def bow_net(data, def bow_net(data,
...@@ -48,11 +50,10 @@ def bow_net(data, ...@@ -48,11 +50,10 @@ def bow_net(data,
class TestGradientClip(unittest.TestCase): class TestGradientClip(unittest.TestCase):
def setUp(self): def setUp(self):
self.word_dict = paddle.dataset.imdb.word_dict() self.word_dict_len = 5147
self.BATCH_SIZE = 2 self.BATCH_SIZE = 2
self.train_data = paddle.batch( reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100)
paddle.dataset.imdb.train(self.word_dict), self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE)
batch_size=self.BATCH_SIZE)
def get_places(self): def get_places(self):
places = [core.CPUPlace()] places = [core.CPUPlace()]
...@@ -131,7 +132,7 @@ class TestGradientClip(unittest.TestCase): ...@@ -131,7 +132,7 @@ class TestGradientClip(unittest.TestCase):
data = fluid.layers.data( data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1) name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64") label = fluid.layers.data(name="label", shape=[1], dtype="int64")
cost = bow_net(data, label, len(self.word_dict)) cost = bow_net(data, label, self.word_dict_len)
fluid.clip.set_gradient_clip( fluid.clip.set_gradient_clip(
clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)) clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0))
......
...@@ -18,11 +18,11 @@ import numpy as np ...@@ -18,11 +18,11 @@ import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import core from paddle.fluid import core
from paddle.fluid.dygraph.nn import FC from paddle.fluid import FC
from test_imperative_base import new_program_scope from test_imperative_base import new_program_scope
class MyLayer(fluid.dygraph.Layer): class MyLayer(fluid.Layer):
def __init__(self, name_scope): def __init__(self, name_scope):
super(MyLayer, self).__init__(name_scope) super(MyLayer, self).__init__(name_scope)
...@@ -34,7 +34,7 @@ class MyLayer(fluid.dygraph.Layer): ...@@ -34,7 +34,7 @@ class MyLayer(fluid.dygraph.Layer):
return [x] return [x]
class MyPyLayer(fluid.dygraph.PyLayer): class MyPyLayer(fluid.PyLayer):
def __init__(self): def __init__(self):
super(MyPyLayer, self).__init__() super(MyPyLayer, self).__init__()
...@@ -48,7 +48,7 @@ class MyPyLayer(fluid.dygraph.PyLayer): ...@@ -48,7 +48,7 @@ class MyPyLayer(fluid.dygraph.PyLayer):
return np.array(dout) * (1 - np.square(np.array(out))) return np.array(dout) * (1 - np.square(np.array(out)))
class MLP(fluid.dygraph.Layer): class MLP(fluid.Layer):
def __init__(self, name_scope): def __init__(self, name_scope):
super(MLP, self).__init__(name_scope) super(MLP, self).__init__(name_scope)
self._fc1 = FC(self.full_name(), self._fc1 = FC(self.full_name(),
...@@ -71,7 +71,7 @@ class MLP(fluid.dygraph.Layer): ...@@ -71,7 +71,7 @@ class MLP(fluid.dygraph.Layer):
return x return x
class SimpleRNNCell(fluid.dygraph.Layer): class SimpleRNNCell(fluid.Layer):
def __init__(self, name_scope, step_input_size, hidden_size, output_size, def __init__(self, name_scope, step_input_size, hidden_size, output_size,
param_attr): param_attr):
super(SimpleRNNCell, self).__init__(name_scope) super(SimpleRNNCell, self).__init__(name_scope)
...@@ -81,7 +81,7 @@ class SimpleRNNCell(fluid.dygraph.Layer): ...@@ -81,7 +81,7 @@ class SimpleRNNCell(fluid.dygraph.Layer):
self._dtype = core.VarDesc.VarType.FP32 self._dtype = core.VarDesc.VarType.FP32
self.param_attr = param_attr self.param_attr = param_attr
def _build_once(self, inputs, pre_hidden): def build_once(self, inputs, pre_hidden):
i2h_param_shape = [self.step_input_size, self.hidden_size] i2h_param_shape = [self.step_input_size, self.hidden_size]
h2h_param_shape = [self.hidden_size, self.hidden_size] h2h_param_shape = [self.hidden_size, self.hidden_size]
h2o_param_shape = [self.output_size, self.hidden_size] h2o_param_shape = [self.output_size, self.hidden_size]
...@@ -159,7 +159,7 @@ class SimpleRNNCell(fluid.dygraph.Layer): ...@@ -159,7 +159,7 @@ class SimpleRNNCell(fluid.dygraph.Layer):
return reduce_out, hidden return reduce_out, hidden
class SimpleRNN(fluid.dygraph.Layer): class SimpleRNN(fluid.Layer):
def __init__(self, name_scope): def __init__(self, name_scope):
super(SimpleRNN, self).__init__(name_scope) super(SimpleRNN, self).__init__(name_scope)
self.seq_len = 4 self.seq_len = 4
...@@ -200,22 +200,22 @@ class TestImperative(unittest.TestCase): ...@@ -200,22 +200,22 @@ class TestImperative(unittest.TestCase):
inputs.append(fluid.dygraph.base.to_variable(x)) inputs.append(fluid.dygraph.base.to_variable(x))
ret = fluid.layers.sums(inputs) ret = fluid.layers.sums(inputs)
loss = fluid.layers.reduce_sum(ret) loss = fluid.layers.reduce_sum(ret)
loss._backward() loss.backward()
self.assertTrue(np.allclose(ret._numpy(), x * 10)) self.assertTrue(np.allclose(ret.numpy(), x * 10))
self.assertTrue(np.allclose(inputs[0]._gradient(), x)) self.assertTrue(np.allclose(inputs[0].gradient(), x))
def test_layer(self): def test_layer(self):
with fluid.dygraph.guard(): with fluid.dygraph.guard():
cl = core.Layer() cl = core.Layer()
cl.forward([]) cl.forward([])
l = fluid.dygraph.Layer("l") l = fluid.Layer("l")
self.assertRaises(NotImplementedError, l.forward, []) self.assertRaises(NotImplementedError, l.forward, [])
def test_pylayer_func_id(self): def test_pylayer_func_id(self):
with fluid.dygraph.guard(): with fluid.dygraph.guard():
class PyLayer1(fluid.dygraph.PyLayer): class PyLayer1(fluid.PyLayer):
def __init__(self): def __init__(self):
super(PyLayer1, self).__init__() super(PyLayer1, self).__init__()
...@@ -227,7 +227,7 @@ class TestImperative(unittest.TestCase): ...@@ -227,7 +227,7 @@ class TestImperative(unittest.TestCase):
def backward(input): def backward(input):
return input return input
class PyLayer2(fluid.dygraph.PyLayer): class PyLayer2(fluid.PyLayer):
def __init__(self): def __init__(self):
super(PyLayer2, self).__init__() super(PyLayer2, self).__init__()
...@@ -257,9 +257,9 @@ class TestImperative(unittest.TestCase): ...@@ -257,9 +257,9 @@ class TestImperative(unittest.TestCase):
my_py_layer = MyPyLayer() my_py_layer = MyPyLayer()
var_inp = fluid.dygraph.base.to_variable(np_inp) var_inp = fluid.dygraph.base.to_variable(np_inp)
outs = my_py_layer(var_inp) outs = my_py_layer(var_inp)
dy_out = np.sum(outs[0]._numpy()) dy_out = np.sum(outs[0].numpy())
outs[0]._backward() outs[0].backward()
dy_grad = var_inp._gradient() dy_grad = var_inp.gradient()
with new_program_scope(): with new_program_scope():
inp = fluid.layers.data( inp = fluid.layers.data(
...@@ -287,9 +287,9 @@ class TestImperative(unittest.TestCase): ...@@ -287,9 +287,9 @@ class TestImperative(unittest.TestCase):
l = MyLayer("my_layer") l = MyLayer("my_layer")
x = l(var_inp)[0] x = l(var_inp)[0]
self.assertIsNotNone(x) self.assertIsNotNone(x)
dy_out = x._numpy() dy_out = x.numpy()
x._backward() x.backward()
dy_grad = l._x_for_debug._gradient() dy_grad = l._x_for_debug.gradient()
with new_program_scope(): with new_program_scope():
inp = fluid.layers.data( inp = fluid.layers.data(
...@@ -314,9 +314,9 @@ class TestImperative(unittest.TestCase): ...@@ -314,9 +314,9 @@ class TestImperative(unittest.TestCase):
var_inp = fluid.dygraph.base.to_variable(np_inp) var_inp = fluid.dygraph.base.to_variable(np_inp)
mlp = MLP("mlp") mlp = MLP("mlp")
out = mlp(var_inp) out = mlp(var_inp)
dy_out = out._numpy() dy_out = out.numpy()
out._backward() out.backward()
dy_grad = mlp._fc1._w._gradient() dy_grad = mlp._fc1._w.gradient()
with new_program_scope(): with new_program_scope():
inp = fluid.layers.data( inp = fluid.layers.data(
...@@ -358,7 +358,7 @@ class TestImperative(unittest.TestCase): ...@@ -358,7 +358,7 @@ class TestImperative(unittest.TestCase):
x = fluid.layers.elementwise_add(inp1, inp2) x = fluid.layers.elementwise_add(inp1, inp2)
else: else:
x = fluid.layers.elementwise_sub(inp1, inp2) x = fluid.layers.elementwise_sub(inp1, inp2)
dygraph_result = x._numpy() dygraph_result = x.numpy()
# static graph # static graph
with new_program_scope(): with new_program_scope():
...@@ -407,11 +407,11 @@ class TestImperative(unittest.TestCase): ...@@ -407,11 +407,11 @@ class TestImperative(unittest.TestCase):
var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3]) var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
simple_rnn = SimpleRNN("simple_rnn") simple_rnn = SimpleRNN("simple_rnn")
outs, pre_hiddens = simple_rnn.forward(var_inp) outs, pre_hiddens = simple_rnn.forward(var_inp)
dy_out = outs[3]._numpy() dy_out = outs[3].numpy()
outs[3]._backward() outs[3].backward()
dy_grad_h2o = simple_rnn._cell._h2o_w._gradient() dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
dy_grad_h2h = simple_rnn._cell._h2h_w._gradient() dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
dy_grad_i2h = simple_rnn._cell._i2h_w._gradient() dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
with new_program_scope(): with new_program_scope():
inp = fluid.layers.data( inp = fluid.layers.data(
......
...@@ -18,11 +18,11 @@ import numpy as np ...@@ -18,11 +18,11 @@ import numpy as np
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC from paddle.fluid import Conv2D, Pool2D, FC
from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph.base import to_variable
class SimpleImgConvPool(fluid.dygraph.Layer): class SimpleImgConvPool(fluid.Layer):
def __init__(self, def __init__(self,
name_scope, name_scope,
num_channels, num_channels,
...@@ -71,7 +71,7 @@ class SimpleImgConvPool(fluid.dygraph.Layer): ...@@ -71,7 +71,7 @@ class SimpleImgConvPool(fluid.dygraph.Layer):
return x return x
class MNIST(fluid.dygraph.Layer): class MNIST(fluid.Layer):
def __init__(self, name_scope): def __init__(self, name_scope):
super(MNIST, self).__init__(name_scope) super(MNIST, self).__init__(name_scope)
...@@ -125,21 +125,21 @@ class TestDygraphCheckpoint(unittest.TestCase): ...@@ -125,21 +125,21 @@ class TestDygraphCheckpoint(unittest.TestCase):
img = to_variable(dy_x_data) img = to_variable(dy_x_data)
label = to_variable(y_data) label = to_variable(y_data)
label._stop_gradient = True label.stop_gradient = True
cost = mnist(img) cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label) loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss) avg_loss = fluid.layers.mean(loss)
dy_out = avg_loss._numpy() dy_out = avg_loss.numpy()
avg_loss._backward() avg_loss.backward()
sgd.minimize(avg_loss) sgd.minimize(avg_loss)
fluid.dygraph.save_persistables(mnist, "save_dir") fluid.dygraph.save_persistables(mnist, "save_dir")
mnist.clear_gradients() mnist.clear_gradients()
for param in mnist.parameters(): for param in mnist.parameters():
dy_param_init_value[param.name] = param._numpy() dy_param_init_value[param.name] = param.numpy()
mnist.load_dict( mnist.load_dict(
fluid.dygraph.load_persistables(mnist, "save_dir")) fluid.dygraph.load_persistables(mnist, "save_dir"))
......
...@@ -32,11 +32,11 @@ NUM_BATCHES = int(os.environ.get('NUM_BATCHES', 5)) ...@@ -32,11 +32,11 @@ NUM_BATCHES = int(os.environ.get('NUM_BATCHES', 5))
NUM_EPOCHES = int(os.environ.get('NUM_EPOCHES', 1)) NUM_EPOCHES = int(os.environ.get('NUM_EPOCHES', 1))
class DMF(fluid.dygraph.Layer): class DMF(fluid.Layer):
def __init__(self, name_scope): def __init__(self, name_scope):
super(DMF, self).__init__(name_scope) super(DMF, self).__init__(name_scope)
self._user_latent = fluid.dygraph.FC(self.full_name(), 256) self._user_latent = fluid.FC(self.full_name(), 256)
self._item_latent = fluid.dygraph.FC(self.full_name(), 256) self._item_latent = fluid.FC(self.full_name(), 256)
self._user_layers = [] self._user_layers = []
self._item_layers = [] self._item_layers = []
...@@ -45,13 +45,11 @@ class DMF(fluid.dygraph.Layer): ...@@ -45,13 +45,11 @@ class DMF(fluid.dygraph.Layer):
self._user_layers.append( self._user_layers.append(
self.add_sublayer( self.add_sublayer(
'user_layer_%d' % i, 'user_layer_%d' % i,
fluid.dygraph.FC( fluid.FC(self.full_name(), self._hid_sizes[i], act='relu')))
self.full_name(), self._hid_sizes[i], act='relu')))
self._item_layers.append( self._item_layers.append(
self.add_sublayer( self.add_sublayer(
'item_layer_%d' % i, 'item_layer_%d' % i,
fluid.dygraph.FC( fluid.FC(self.full_name(), self._hid_sizes[i], act='relu')))
self.full_name(), self._hid_sizes[i], act='relu')))
def forward(self, users, items): def forward(self, users, items):
users = self._user_latent(users) users = self._user_latent(users)
...@@ -63,19 +61,18 @@ class DMF(fluid.dygraph.Layer): ...@@ -63,19 +61,18 @@ class DMF(fluid.dygraph.Layer):
return fluid.layers.elementwise_mul(users, items) return fluid.layers.elementwise_mul(users, items)
class MLP(fluid.dygraph.Layer): class MLP(fluid.Layer):
def __init__(self, name_scope): def __init__(self, name_scope):
super(MLP, self).__init__(name_scope) super(MLP, self).__init__(name_scope)
self._user_latent = fluid.dygraph.FC(self.full_name(), 256) self._user_latent = fluid.FC(self.full_name(), 256)
self._item_latent = fluid.dygraph.FC(self.full_name(), 256) self._item_latent = fluid.FC(self.full_name(), 256)
self._match_layers = [] self._match_layers = []
self._hid_sizes = [128, 64] self._hid_sizes = [128, 64]
for i in range(len(self._hid_sizes)): for i in range(len(self._hid_sizes)):
self._match_layers.append( self._match_layers.append(
self.add_sublayer( self.add_sublayer(
'match_layer_%d' % i, 'match_layer_%d' % i,
fluid.dygraph.FC( fluid.FC(self.full_name(), self._hid_sizes[i], act='relu')))
self.full_name(), self._hid_sizes[i], act='relu')))
self._mat self._mat
def forward(self, users, items): def forward(self, users, items):
...@@ -88,7 +85,7 @@ class MLP(fluid.dygraph.Layer): ...@@ -88,7 +85,7 @@ class MLP(fluid.dygraph.Layer):
return match_vec return match_vec
class DeepCF(fluid.dygraph.Layer): class DeepCF(fluid.Layer):
def __init__(self, name_scope, num_users, num_items, matrix): def __init__(self, name_scope, num_users, num_items, matrix):
super(DeepCF, self).__init__(name_scope) super(DeepCF, self).__init__(name_scope)
self._num_users = num_users self._num_users = num_users
...@@ -99,11 +96,11 @@ class DeepCF(fluid.dygraph.Layer): ...@@ -99,11 +96,11 @@ class DeepCF(fluid.dygraph.Layer):
matrix.dtype, matrix.dtype,
is_bias=False, is_bias=False,
default_initializer=fluid.initializer.NumpyArrayInitializer(matrix)) default_initializer=fluid.initializer.NumpyArrayInitializer(matrix))
self._rating_matrix._stop_gradient = True self._rating_matrix.stop_gradient = True
self._mlp = MLP(self.full_name()) self._mlp = MLP(self.full_name())
self._dmf = DMF(self.full_name()) self._dmf = DMF(self.full_name())
self._match_fc = fluid.dygraph.FC(self.full_name(), 1, act='sigmoid') self._match_fc = fluid.FC(self.full_name(), 1, act='sigmoid')
def forward(self, users, items): def forward(self, users, items):
# users_emb = self._user_emb(users) # users_emb = self._user_emb(users)
...@@ -255,10 +252,10 @@ class TestDygraphDeepCF(unittest.TestCase): ...@@ -255,10 +252,10 @@ class TestDygraphDeepCF(unittest.TestCase):
fluid.layers.log_loss(prediction, fluid.layers.log_loss(prediction,
to_variable(labels_np[ to_variable(labels_np[
slice:slice + BATCH_SIZE]))) slice:slice + BATCH_SIZE])))
loss._backward() loss.backward()
adam.minimize(loss) adam.minimize(loss)
deepcf.clear_gradients() deepcf.clear_gradients()
dy_loss = loss._numpy() dy_loss = loss.numpy()
sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss)) sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss))
self.assertEqual(static_loss, dy_loss) self.assertEqual(static_loss, dy_loss)
......
...@@ -22,12 +22,12 @@ import paddle ...@@ -22,12 +22,12 @@ import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC from paddle.fluid import Conv2D, Pool2D, FC
from test_imperative_base import new_program_scope from test_imperative_base import new_program_scope
from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph.base import to_variable
class Discriminator(fluid.dygraph.Layer): class Discriminator(fluid.Layer):
def __init__(self, name_scope): def __init__(self, name_scope):
super(Discriminator, self).__init__(name_scope) super(Discriminator, self).__init__(name_scope)
self._fc1 = FC(self.full_name(), size=32, act='elu') self._fc1 = FC(self.full_name(), size=32, act='elu')
...@@ -38,7 +38,7 @@ class Discriminator(fluid.dygraph.Layer): ...@@ -38,7 +38,7 @@ class Discriminator(fluid.dygraph.Layer):
return self._fc2(x) return self._fc2(x)
class Generator(fluid.dygraph.Layer): class Generator(fluid.Layer):
def __init__(self, name_scope): def __init__(self, name_scope):
super(Generator, self).__init__(name_scope) super(Generator, self).__init__(name_scope)
self._fc1 = FC(self.full_name(), size=64, act='elu') self._fc1 = FC(self.full_name(), size=64, act='elu')
...@@ -150,7 +150,7 @@ class TestDygraphGAN(unittest.TestCase): ...@@ -150,7 +150,7 @@ class TestDygraphGAN(unittest.TestCase):
x=d_fake, label=to_variable(np.zeros([2, 1], np.float32)))) x=d_fake, label=to_variable(np.zeros([2, 1], np.float32))))
d_loss = d_loss_real + d_loss_fake d_loss = d_loss_real + d_loss_fake
d_loss._backward() d_loss.backward()
sgd.minimize(d_loss) sgd.minimize(d_loss)
discriminator.clear_gradients() discriminator.clear_gradients()
generator.clear_gradients() generator.clear_gradients()
...@@ -160,15 +160,15 @@ class TestDygraphGAN(unittest.TestCase): ...@@ -160,15 +160,15 @@ class TestDygraphGAN(unittest.TestCase):
g_loss = fluid.layers.reduce_mean( g_loss = fluid.layers.reduce_mean(
fluid.layers.sigmoid_cross_entropy_with_logits( fluid.layers.sigmoid_cross_entropy_with_logits(
x=d_fake, label=to_variable(np.ones([2, 1], np.float32)))) x=d_fake, label=to_variable(np.ones([2, 1], np.float32))))
g_loss._backward() g_loss.backward()
sgd.minimize(g_loss) sgd.minimize(g_loss)
for p in discriminator.parameters(): for p in discriminator.parameters():
dy_params[p.name] = p._numpy() dy_params[p.name] = p.numpy()
for p in generator.parameters(): for p in generator.parameters():
dy_params[p.name] = p._numpy() dy_params[p.name] = p.numpy()
dy_g_loss = g_loss._numpy() dy_g_loss = g_loss.numpy()
dy_d_loss = d_loss._numpy() dy_d_loss = d_loss.numpy()
self.assertEqual(dy_g_loss, static_g_loss) self.assertEqual(dy_g_loss, static_g_loss)
self.assertEqual(dy_d_loss, static_d_loss) self.assertEqual(dy_d_loss, static_d_loss)
......
...@@ -15,14 +15,12 @@ ...@@ -15,14 +15,12 @@
import contextlib import contextlib
import unittest import unittest
import numpy as np import numpy as np
import six
import sys import sys
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.optimizer import AdamOptimizer from paddle.fluid.optimizer import AdamOptimizer
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
from test_imperative_base import new_program_scope from test_imperative_base import new_program_scope
from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph.base import to_variable
...@@ -31,7 +29,7 @@ def gen_data(): ...@@ -31,7 +29,7 @@ def gen_data():
pass pass
class GraphConv(fluid.dygraph.Layer): class GraphConv(fluid.Layer):
def __init__(self, name_scope, in_features, out_features): def __init__(self, name_scope, in_features, out_features):
super(GraphConv, self).__init__(name_scope) super(GraphConv, self).__init__(name_scope)
...@@ -50,7 +48,7 @@ class GraphConv(fluid.dygraph.Layer): ...@@ -50,7 +48,7 @@ class GraphConv(fluid.dygraph.Layer):
return fluid.layers.matmul(adj, support) + self.bias return fluid.layers.matmul(adj, support) + self.bias
class GCN(fluid.dygraph.Layer): class GCN(fluid.Layer):
def __init__(self, name_scope, num_hidden): def __init__(self, name_scope, num_hidden):
super(GCN, self).__init__(name_scope) super(GCN, self).__init__(name_scope)
self.gc = GraphConv(self.full_name(), num_hidden, 32) self.gc = GraphConv(self.full_name(), num_hidden, 32)
...@@ -134,10 +132,9 @@ class TestDygraphGNN(unittest.TestCase): ...@@ -134,10 +132,9 @@ class TestDygraphGNN(unittest.TestCase):
loss = fluid.layers.reduce_sum(loss) loss = fluid.layers.reduce_sum(loss)
adam = AdamOptimizer(learning_rate=1e-3) adam = AdamOptimizer(learning_rate=1e-3)
adam.minimize(loss) adam.minimize(loss)
self.assertEqual(static_loss, loss._numpy()) self.assertEqual(static_loss, loss.numpy())
self.assertTrue( self.assertTrue(np.allclose(static_weight, model.gc.weight.numpy()))
np.allclose(static_weight, model.gc.weight._numpy())) sys.stderr.write('%s %s\n' % (static_loss, loss.numpy()))
sys.stderr.write('%s %s\n' % (static_loss, loss._numpy()))
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -128,25 +128,25 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -128,25 +128,25 @@ class TestImperativeMnist(unittest.TestCase):
img = to_variable(dy_x_data) img = to_variable(dy_x_data)
label = to_variable(y_data) label = to_variable(y_data)
label._stop_gradient = True label.stop_gradient = True
cost = mnist(img) cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label) loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss) avg_loss = fluid.layers.mean(loss)
dy_out = avg_loss._numpy() dy_out = avg_loss.numpy()
if epoch == 0 and batch_id == 0: if epoch == 0 and batch_id == 0:
for param in mnist.parameters(): for param in mnist.parameters():
dy_param_init_value[param.name] = param._numpy() dy_param_init_value[param.name] = param.numpy()
avg_loss._backward() avg_loss.backward()
sgd.minimize(avg_loss) sgd.minimize(avg_loss)
mnist.clear_gradients() mnist.clear_gradients()
dy_param_value = {} dy_param_value = {}
for param in mnist.parameters(): for param in mnist.parameters():
dy_param_value[param.name] = param._numpy() dy_param_value[param.name] = param.numpy()
with new_program_scope(): with new_program_scope():
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
......
...@@ -28,7 +28,7 @@ from paddle.fluid.dygraph.base import to_variable ...@@ -28,7 +28,7 @@ from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope from test_imperative_base import new_program_scope
class MLP(fluid.dygraph.Layer): class MLP(fluid.Layer):
def __init__(self, name_scope, param_attr=None, bias_attr=None): def __init__(self, name_scope, param_attr=None, bias_attr=None):
super(MLP, self).__init__(name_scope) super(MLP, self).__init__(name_scope)
...@@ -75,18 +75,18 @@ class TestImperativeOptimizerBase(unittest.TestCase): ...@@ -75,18 +75,18 @@ class TestImperativeOptimizerBase(unittest.TestCase):
cost = mlp(img) cost = mlp(img)
avg_loss = fluid.layers.reduce_mean(cost) avg_loss = fluid.layers.reduce_mean(cost)
dy_out = avg_loss._numpy() dy_out = avg_loss.numpy()
if batch_id == 0: if batch_id == 0:
for param in mlp.parameters(): for param in mlp.parameters():
dy_param_init_value[param.name] = param._numpy() dy_param_init_value[param.name] = param.numpy()
avg_loss._backward() avg_loss.backward()
optimizer.minimize(avg_loss) optimizer.minimize(avg_loss)
mlp.clear_gradients() mlp.clear_gradients()
dy_param_value = {} dy_param_value = {}
for param in mlp.parameters(): for param in mlp.parameters():
dy_param_value[param.name] = param._numpy() dy_param_value[param.name] = param.numpy()
with new_program_scope(): with new_program_scope():
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
......
...@@ -24,10 +24,9 @@ from paddle.fluid.dygraph.base import to_variable ...@@ -24,10 +24,9 @@ from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope from test_imperative_base import new_program_scope
import numpy as np import numpy as np
import six import six
from paddle.fluid.backward import append_backward
class SimpleLSTMRNN(fluid.dygraph.Layer): class SimpleLSTMRNN(fluid.Layer):
def __init__(self, def __init__(self,
name_scope, name_scope,
hidden_size, hidden_size,
...@@ -45,7 +44,7 @@ class SimpleLSTMRNN(fluid.dygraph.Layer): ...@@ -45,7 +44,7 @@ class SimpleLSTMRNN(fluid.dygraph.Layer):
self.cell_array = [] self.cell_array = []
self.hidden_array = [] self.hidden_array = []
def _build_once(self, input_embedding, init_hidden=None, init_cell=None): def build_once(self, input_embedding, init_hidden=None, init_cell=None):
self.weight_1_arr = [] self.weight_1_arr = []
self.weight_2_arr = [] self.weight_2_arr = []
self.bias_arr = [] self.bias_arr = []
...@@ -132,7 +131,7 @@ class SimpleLSTMRNN(fluid.dygraph.Layer): ...@@ -132,7 +131,7 @@ class SimpleLSTMRNN(fluid.dygraph.Layer):
return real_res, last_hidden, last_cell return real_res, last_hidden, last_cell
class PtbModel(fluid.dygraph.Layer): class PtbModel(fluid.Layer):
def __init__(self, def __init__(self,
name_scope, name_scope,
hidden_size, hidden_size,
...@@ -177,7 +176,7 @@ class PtbModel(fluid.dygraph.Layer): ...@@ -177,7 +176,7 @@ class PtbModel(fluid.dygraph.Layer):
default_initializer=fluid.initializer.UniformInitializer( default_initializer=fluid.initializer.UniformInitializer(
low=-self.init_scale, high=self.init_scale)) low=-self.init_scale, high=self.init_scale))
def _build_once(self, input, label, init_hidden, init_cell): def build_once(self, input, label, init_hidden, init_cell):
pass pass
def forward(self, input, label, init_hidden, init_cell): def forward(self, input, label, init_hidden, init_cell):
...@@ -260,13 +259,13 @@ class TestDygraphPtbRnn(unittest.TestCase): ...@@ -260,13 +259,13 @@ class TestDygraphPtbRnn(unittest.TestCase):
init_cell) init_cell)
if i == 0: if i == 0:
for param in ptb_model.parameters(): for param in ptb_model.parameters():
dy_param_init[param.name] = param._numpy() dy_param_init[param.name] = param.numpy()
dy_loss._backward() dy_loss.backward()
sgd.minimize(dy_loss) sgd.minimize(dy_loss)
ptb_model.clear_gradients() ptb_model.clear_gradients()
if i == batch_num - 1: if i == batch_num - 1:
for param in ptb_model.parameters(): for param in ptb_model.parameters():
dy_param_updated[param.name] = param._numpy() dy_param_updated[param.name] = param.numpy()
with new_program_scope(): with new_program_scope():
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
...@@ -334,11 +333,11 @@ class TestDygraphPtbRnn(unittest.TestCase): ...@@ -334,11 +333,11 @@ class TestDygraphPtbRnn(unittest.TestCase):
static_param_updated[static_param_name_list[k - static_param_updated[static_param_name_list[k -
3]] = out[k] 3]] = out[k]
self.assertTrue(np.array_equal(static_loss_value, dy_loss._numpy())) self.assertTrue(np.array_equal(static_loss_value, dy_loss.numpy()))
self.assertTrue( self.assertTrue(
np.array_equal(static_last_cell_value, last_cell._numpy())) np.array_equal(static_last_cell_value, last_cell.numpy()))
self.assertTrue( self.assertTrue(
np.array_equal(static_last_hidden_value, last_hidden._numpy())) np.array_equal(static_last_hidden_value, last_hidden.numpy()))
for key, value in six.iteritems(static_param_init): for key, value in six.iteritems(static_param_init):
self.assertTrue(np.array_equal(value, dy_param_init[key])) self.assertTrue(np.array_equal(value, dy_param_init[key]))
for key, value in six.iteritems(static_param_updated): for key, value in six.iteritems(static_param_updated):
......
...@@ -21,7 +21,7 @@ import paddle ...@@ -21,7 +21,7 @@ import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import core from paddle.fluid import core
from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC from paddle.fluid import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope from test_imperative_base import new_program_scope
...@@ -68,7 +68,7 @@ def optimizer_setting(params): ...@@ -68,7 +68,7 @@ def optimizer_setting(params):
return optimizer return optimizer
class ConvBNLayer(fluid.dygraph.Layer): class ConvBNLayer(fluid.Layer):
def __init__(self, def __init__(self,
name_scope, name_scope,
num_channels, num_channels,
...@@ -99,7 +99,7 @@ class ConvBNLayer(fluid.dygraph.Layer): ...@@ -99,7 +99,7 @@ class ConvBNLayer(fluid.dygraph.Layer):
return y return y
class BottleneckBlock(fluid.dygraph.Layer): class BottleneckBlock(fluid.Layer):
def __init__(self, def __init__(self,
name_scope, name_scope,
num_channels, num_channels,
...@@ -156,7 +156,7 @@ class BottleneckBlock(fluid.dygraph.Layer): ...@@ -156,7 +156,7 @@ class BottleneckBlock(fluid.dygraph.Layer):
return layer_helper.append_activation(y) return layer_helper.append_activation(y)
class ResNet(fluid.dygraph.Layer): class ResNet(fluid.Layer):
def __init__(self, name_scope, layers=50, class_dim=102): def __init__(self, name_scope, layers=50, class_dim=102):
super(ResNet, self).__init__(name_scope) super(ResNet, self).__init__(name_scope)
...@@ -247,7 +247,7 @@ class TestDygraphResnet(unittest.TestCase): ...@@ -247,7 +247,7 @@ class TestDygraphResnet(unittest.TestCase):
dy_param_init_value = {} dy_param_init_value = {}
for param in resnet.parameters(): for param in resnet.parameters():
dy_param_init_value[param.name] = param._numpy() dy_param_init_value[param.name] = param.numpy()
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
if batch_id >= batch_num: if batch_id >= batch_num:
...@@ -260,20 +260,20 @@ class TestDygraphResnet(unittest.TestCase): ...@@ -260,20 +260,20 @@ class TestDygraphResnet(unittest.TestCase):
img = to_variable(dy_x_data) img = to_variable(dy_x_data)
label = to_variable(y_data) label = to_variable(y_data)
label._stop_gradient = True label.stop_gradient = True
out = resnet(img) out = resnet(img)
loss = fluid.layers.cross_entropy(input=out, label=label) loss = fluid.layers.cross_entropy(input=out, label=label)
avg_loss = fluid.layers.mean(x=loss) avg_loss = fluid.layers.mean(x=loss)
dy_out = avg_loss._numpy() dy_out = avg_loss.numpy()
if batch_id == 0: if batch_id == 0:
for param in resnet.parameters(): for param in resnet.parameters():
if param.name not in dy_param_init_value: if param.name not in dy_param_init_value:
dy_param_init_value[param.name] = param._numpy() dy_param_init_value[param.name] = param.numpy()
avg_loss._backward() avg_loss.backward()
dy_grad_value = {} dy_grad_value = {}
for param in resnet.parameters(): for param in resnet.parameters():
...@@ -288,7 +288,7 @@ class TestDygraphResnet(unittest.TestCase): ...@@ -288,7 +288,7 @@ class TestDygraphResnet(unittest.TestCase):
dy_param_value = {} dy_param_value = {}
for param in resnet.parameters(): for param in resnet.parameters():
dy_param_value[param.name] = param._numpy() dy_param_value[param.name] = param.numpy()
with new_program_scope(): with new_program_scope():
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
......
...@@ -333,7 +333,7 @@ class TestImperativeResneXt(unittest.TestCase): ...@@ -333,7 +333,7 @@ class TestImperativeResneXt(unittest.TestCase):
dy_param_init_value = {} dy_param_init_value = {}
for param in se_resnext.parameters(): for param in se_resnext.parameters():
dy_param_init_value[param.name] = param._numpy() dy_param_init_value[param.name] = param.numpy()
for epoch_id in range(epoch_num): for epoch_id in range(epoch_num):
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
...@@ -349,19 +349,19 @@ class TestImperativeResneXt(unittest.TestCase): ...@@ -349,19 +349,19 @@ class TestImperativeResneXt(unittest.TestCase):
img = to_variable(dy_x_data) img = to_variable(dy_x_data)
label = to_variable(y_data) label = to_variable(y_data)
label._stop_gradient = True label.stop_gradient = True
out = se_resnext(img) out = se_resnext(img)
loss = fluid.layers.cross_entropy(input=out, label=label) loss = fluid.layers.cross_entropy(input=out, label=label)
avg_loss = fluid.layers.mean(x=loss) avg_loss = fluid.layers.mean(x=loss)
dy_out = avg_loss._numpy() dy_out = avg_loss.numpy()
if batch_id == 0: if batch_id == 0:
for param in se_resnext.parameters(): for param in se_resnext.parameters():
if param.name not in dy_param_init_value: if param.name not in dy_param_init_value:
dy_param_init_value[param.name] = param._numpy() dy_param_init_value[param.name] = param.numpy()
avg_loss._backward() avg_loss.backward()
#dy_grad_value = {} #dy_grad_value = {}
#for param in se_resnext.parameters(): #for param in se_resnext.parameters():
...@@ -375,7 +375,7 @@ class TestImperativeResneXt(unittest.TestCase): ...@@ -375,7 +375,7 @@ class TestImperativeResneXt(unittest.TestCase):
dy_param_value = {} dy_param_value = {}
for param in se_resnext.parameters(): for param in se_resnext.parameters():
dy_param_value[param.name] = param._numpy() dy_param_value[param.name] = param.numpy()
with new_program_scope(): with new_program_scope():
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
......
...@@ -16,7 +16,8 @@ from __future__ import print_function ...@@ -16,7 +16,8 @@ from __future__ import print_function
import unittest import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.dygraph import Embedding, LayerNorm, FC, to_variable, Layer, guard from paddle.fluid import Embedding, LayerNorm, FC, Layer
from paddle.fluid.dygraph import to_variable, guard
from test_imperative_base import new_program_scope from test_imperative_base import new_program_scope
from paddle.fluid import core from paddle.fluid import core
import numpy as np import numpy as np
...@@ -116,7 +117,7 @@ class ModelHyperParams(object): ...@@ -116,7 +117,7 @@ class ModelHyperParams(object):
# to process after each sub-layer # to process after each sub-layer
postprocess_cmd = "da" # dropout + residual connection postprocess_cmd = "da" # dropout + residual connection
# random seed used in dropout for CE. # random seed used in dropout for CE.
dropout_seed = 1 dropout_seed = None
# the flag indicating whether to share embedding and softmax weights. # the flag indicating whether to share embedding and softmax weights.
# vocabularies in source and target should be same for weight sharing. # vocabularies in source and target should be same for weight sharing.
weight_sharing = True weight_sharing = True
...@@ -166,15 +167,21 @@ def create_data(is_static=False): ...@@ -166,15 +167,21 @@ def create_data(is_static=False):
] ]
else: else:
enc_inputs = [ enc_inputs = [
to_variable(src_word_np), to_variable(src_pos_np), to_variable(
to_variable(src_slf_attn_bias_np) src_word_np, name='src_word'), to_variable(
src_pos_np, name='src_pos'), to_variable(
src_slf_attn_bias_np, name='src_slf_attn_bias')
] ]
dec_inputs = [ dec_inputs = [
to_variable(trg_word_np), to_variable(trg_pos_np), to_variable(
to_variable(trg_slf_attn_bias_np), to_variable(trg_src_attn_bias_np) trg_word_np, name='trg_word'), to_variable(
trg_pos_np, name='trg_pos'), to_variable(
trg_slf_attn_bias_np, name='trg_slf_attn_bias'),
to_variable(
trg_src_attn_bias_np, name='trg_src_attn_bias')
] ]
label = to_variable(lbl_word_np) label = to_variable(lbl_word_np, name='lbl_word')
weight = to_variable(lbl_weight_np) weight = to_variable(lbl_weight_np, name='lbl_weight')
return enc_inputs, dec_inputs, label, weight return enc_inputs, dec_inputs, label, weight
...@@ -211,7 +218,7 @@ def make_all_inputs(input_fields): ...@@ -211,7 +218,7 @@ def make_all_inputs(input_fields):
# The placeholder for batch_size in compile time. Must be -1 currently to be # The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the # consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder. # sequence_expand op used in beamsearch decoder.
batch_size = 32 batch_size = -1
# The placeholder for squence length in compile time. # The placeholder for squence length in compile time.
seq_len = ModelHyperParams.max_length seq_len = ModelHyperParams.max_length
# Here list the data shapes and data types of all inputs. # Here list the data shapes and data types of all inputs.
...@@ -305,54 +312,40 @@ sync = False ...@@ -305,54 +312,40 @@ sync = False
# how many batches we use # how many batches we use
batch_num = 5 batch_num = 5
np.random.seed = 1 np.random.seed = 90
src_word_np = np.random.randint( src_word_np = np.random.randint(
1, 1,
ModelHyperParams.src_vocab_size - 1, ModelHyperParams.src_vocab_size - 1,
size=(batch_size, seq_len, 1), size=(TrainTaskConfig.batch_size, seq_len, 1),
dtype='int64') dtype='int64')
src_pos_np = np.random.randint( src_pos_np = np.random.randint(
1, seq_len, size=(batch_size, seq_len, 1), dtype='int64') 1, seq_len, size=(TrainTaskConfig.batch_size, seq_len, 1), dtype='int64')
src_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head, src_slf_attn_bias_np = np.random.randn(TrainTaskConfig.batch_size,
seq_len, seq_len).astype('float32') ModelHyperParams.n_head, seq_len,
seq_len).astype('float32')
trg_word_np = np.random.randint( trg_word_np = np.random.randint(
1, 1,
ModelHyperParams.src_vocab_size - 1, ModelHyperParams.src_vocab_size - 1,
size=(batch_size, seq_len, 1), size=(TrainTaskConfig.batch_size, seq_len, 1),
dtype='int64') dtype='int64')
trg_pos_np = np.random.randint( trg_pos_np = np.random.randint(
1, seq_len, size=(batch_size, seq_len, 1), dtype='int64') 1, seq_len, size=(TrainTaskConfig.batch_size, seq_len, 1), dtype='int64')
trg_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head, trg_slf_attn_bias_np = np.random.randn(TrainTaskConfig.batch_size,
seq_len, seq_len).astype('float32') ModelHyperParams.n_head, seq_len,
trg_src_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head, seq_len).astype('float32')
seq_len, seq_len).astype('float32') trg_src_attn_bias_np = np.random.randn(TrainTaskConfig.batch_size,
ModelHyperParams.n_head, seq_len,
seq_len).astype('float32')
lbl_word_np = np.random.randint( lbl_word_np = np.random.randint(
1, 1,
ModelHyperParams.src_vocab_size - 1, ModelHyperParams.src_vocab_size - 1,
size=(batch_size * seq_len, 1), size=(TrainTaskConfig.batch_size * seq_len, 1),
dtype='int64') dtype='int64')
lbl_weight_np = np.random.randn(batch_size * seq_len, 1).astype('float32') lbl_weight_np = np.random.randn(TrainTaskConfig.batch_size * seq_len,
1).astype('float32')
# np.random.seed = 1
# src_word_np = np.arange(0, 10).reshape([batch_size, seq_len, 1]).astype('int64')
# src_pos_np = np.random.randint(
# 1, seq_len, size=(batch_size, seq_len, 1), dtype='int64')
# src_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
# seq_len, seq_len).astype('float32')
#
# trg_word_np = np.arange(0, 10).reshape([batch_size, seq_len, 1]).astype('int64')
# trg_pos_np = np.random.randint(
# 1, seq_len, size=(batch_size, seq_len, 1), dtype='int64')
# trg_slf_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
# seq_len, seq_len).astype('float32')
# trg_src_attn_bias_np = np.random.randn(batch_size, ModelHyperParams.n_head,
# seq_len, seq_len).astype('float32')
#
# lbl_word_np = np.arange(0, 10).reshape([batch_size * seq_len, 1]).astype('int64')
# lbl_weight_np = np.random.randn(batch_size * seq_len, 1).astype('float32')
#
pos_inp1 = position_encoding_init(ModelHyperParams.max_length, pos_inp1 = position_encoding_init(ModelHyperParams.max_length,
ModelHyperParams.d_model) ModelHyperParams.d_model)
pos_inp2 = position_encoding_init(ModelHyperParams.max_length, pos_inp2 = position_encoding_init(ModelHyperParams.max_length,
...@@ -466,7 +459,7 @@ class MultiHeadAttentionLayer(Layer): ...@@ -466,7 +459,7 @@ class MultiHeadAttentionLayer(Layer):
x=v, shape=[0, 0, self._n_head, self._d_value], inplace=False) x=v, shape=[0, 0, self._n_head, self._d_value], inplace=False)
transpose_v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3]) transpose_v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3])
#scale dot product attention # scale dot product attention
product = fluid.layers.matmul( product = fluid.layers.matmul(
x=transpose_q, x=transpose_q,
y=transpose_k, y=transpose_k,
...@@ -739,7 +732,7 @@ class DecoderSubLayer(Layer): ...@@ -739,7 +732,7 @@ class DecoderSubLayer(Layer):
enc_attn_output_pp = self._multihead_attention_layer2( enc_attn_output_pp = self._multihead_attention_layer2(
pre_process_rlt2, enc_output, enc_output, dec_enc_attn_bias) pre_process_rlt2, enc_output, enc_output, dec_enc_attn_bias)
enc_attn_output = self._post_process_layer2( enc_attn_output = self._post_process_layer2(
slf_attn_output, enc_attn_output_pp, self._postprocess_cmd, slf_attn_output_pp, enc_attn_output_pp, self._postprocess_cmd,
self._prepostprcess_dropout) self._prepostprcess_dropout)
pre_process_rlt3 = self._pre_process_layer3(None, enc_attn_output, pre_process_rlt3 = self._pre_process_layer3(None, enc_attn_output,
self._preprocess_cmd, self._preprocess_cmd,
...@@ -990,16 +983,18 @@ class TestDygraphTransformer(unittest.TestCase): ...@@ -990,16 +983,18 @@ class TestDygraphTransformer(unittest.TestCase):
enc_inputs, dec_inputs, label, weights = create_data() enc_inputs, dec_inputs, label, weights = create_data()
dy_sum_cost, dy_avg_cost, dy_predict, dy_token_num = transformer( dy_sum_cost, dy_avg_cost, dy_predict, dy_token_num = transformer(
enc_inputs, dec_inputs, label, weights) enc_inputs, dec_inputs, label, weights)
if i == 0: if i == 0:
for param in transformer.parameters(): for param in transformer.parameters():
dy_param_init[param.name] = param._numpy() dy_param_init[param.name] = param.numpy()
dy_avg_cost._backward() dy_avg_cost.backward()
optimizer.minimize(dy_avg_cost) optimizer.minimize(dy_avg_cost)
transformer.clear_gradients() transformer.clear_gradients()
if i == batch_num - 1: if i == batch_num - 1:
for param in transformer.parameters(): for param in transformer.parameters():
dy_param_updated[param.name] = param._numpy() dy_param_updated[param.name] = param.numpy()
with new_program_scope(): with new_program_scope():
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
...@@ -1043,7 +1038,6 @@ class TestDygraphTransformer(unittest.TestCase): ...@@ -1043,7 +1038,6 @@ class TestDygraphTransformer(unittest.TestCase):
static_param_name_list = list() static_param_name_list = list()
static_sum_cost, static_avg_cost, static_predict, static_token_num = transformer( static_sum_cost, static_avg_cost, static_predict, static_token_num = transformer(
enc_inputs, dec_inputs, label, weights) enc_inputs, dec_inputs, label, weights)
optimizer.minimize(static_avg_cost) optimizer.minimize(static_avg_cost)
for param in transformer.parameters(): for param in transformer.parameters():
static_param_name_list.append(param.name) static_param_name_list.append(param.name)
...@@ -1061,8 +1055,8 @@ class TestDygraphTransformer(unittest.TestCase): ...@@ -1061,8 +1055,8 @@ class TestDygraphTransformer(unittest.TestCase):
static_sum_cost, static_avg_cost, static_predict, static_sum_cost, static_avg_cost, static_predict,
static_token_num static_token_num
] ]
fetch_list.extend(static_param_name_list)
fetch_list.extend(static_param_name_list)
out = exe.run(fluid.default_main_program(), out = exe.run(fluid.default_main_program(),
feed=feed_dict, feed=feed_dict,
fetch_list=fetch_list) fetch_list=fetch_list)
...@@ -1076,13 +1070,14 @@ class TestDygraphTransformer(unittest.TestCase): ...@@ -1076,13 +1070,14 @@ class TestDygraphTransformer(unittest.TestCase):
4]] = out[k] 4]] = out[k]
self.assertTrue( self.assertTrue(
np.array_equal(static_avg_cost_value, dy_avg_cost._numpy())) np.array_equal(static_avg_cost_value, dy_avg_cost.numpy()))
self.assertTrue( self.assertTrue(
np.array_equal(static_sum_cost_value, dy_sum_cost._numpy())) np.array_equal(static_sum_cost_value, dy_sum_cost.numpy()))
self.assertTrue( self.assertTrue(
np.array_equal(static_predict_value, dy_predict._numpy())) np.array_equal(static_predict_value, dy_predict.numpy()))
self.assertTrue( self.assertTrue(
np.array_equal(static_token_num_value, dy_token_num._numpy())) np.array_equal(static_token_num_value, dy_token_num.numpy()))
for key, value in six.iteritems(static_param_init): for key, value in six.iteritems(static_param_init):
self.assertTrue(np.array_equal(value, dy_param_init[key])) self.assertTrue(np.array_equal(value, dy_param_init[key]))
for key, value in six.iteritems(static_param_updated): for key, value in six.iteritems(static_param_updated):
......
...@@ -114,7 +114,7 @@ class TestLayer(LayerTest): ...@@ -114,7 +114,7 @@ class TestLayer(LayerTest):
dy_ret = fc2(ret) dy_ret = fc2(ret)
self.assertTrue(np.array_equal(static_ret, static_ret2)) self.assertTrue(np.array_equal(static_ret, static_ret2))
self.assertTrue(np.array_equal(static_ret, dy_ret._numpy())) self.assertTrue(np.array_equal(static_ret, dy_ret.numpy()))
def test_layer_norm(self): def test_layer_norm(self):
inp = np.ones([3, 32, 32], dtype='float32') inp = np.ones([3, 32, 32], dtype='float32')
...@@ -142,7 +142,7 @@ class TestLayer(LayerTest): ...@@ -142,7 +142,7 @@ class TestLayer(LayerTest):
dy_ret = lm(base.to_variable(inp)) dy_ret = lm(base.to_variable(inp))
self.assertTrue(np.allclose(static_ret, static_ret2)) self.assertTrue(np.allclose(static_ret, static_ret2))
self.assertTrue(np.allclose(dy_ret._numpy(), static_ret2)) self.assertTrue(np.allclose(dy_ret.numpy(), static_ret2))
def test_relu(self): def test_relu(self):
with self.static_graph(): with self.static_graph():
...@@ -156,7 +156,7 @@ class TestLayer(LayerTest): ...@@ -156,7 +156,7 @@ class TestLayer(LayerTest):
t = np.ones([3, 3], dtype='float32') t = np.ones([3, 3], dtype='float32')
dy_ret = layers.relu(base.to_variable(t)) dy_ret = layers.relu(base.to_variable(t))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy())) self.assertTrue(np.allclose(static_ret, dy_ret.numpy()))
def test_matmul(self): def test_matmul(self):
with self.static_graph(): with self.static_graph():
...@@ -177,7 +177,7 @@ class TestLayer(LayerTest): ...@@ -177,7 +177,7 @@ class TestLayer(LayerTest):
t2 = np.ones([3, 3], dtype='float32') t2 = np.ones([3, 3], dtype='float32')
dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2)) dy_ret = layers.matmul(base.to_variable(t), base.to_variable(t2))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy())) self.assertTrue(np.allclose(static_ret, dy_ret.numpy()))
def test_conv2d(self): def test_conv2d(self):
with self.static_graph(): with self.static_graph():
...@@ -204,7 +204,7 @@ class TestLayer(LayerTest): ...@@ -204,7 +204,7 @@ class TestLayer(LayerTest):
'conv2d', num_channels=3, num_filters=3, filter_size=[2, 2]) 'conv2d', num_channels=3, num_filters=3, filter_size=[2, 2])
dy_ret = conv2d(base.to_variable(images)) dy_ret = conv2d(base.to_variable(images))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy())) self.assertTrue(np.allclose(static_ret, dy_ret.numpy()))
self.assertTrue(np.allclose(static_ret, static_ret2)) self.assertTrue(np.allclose(static_ret, static_ret2))
def test_gru_unit(self): def test_gru_unit(self):
...@@ -246,7 +246,7 @@ class TestLayer(LayerTest): ...@@ -246,7 +246,7 @@ class TestLayer(LayerTest):
for i in range(len(static_ret)): for i in range(len(static_ret)):
self.assertTrue(np.allclose(static_ret[i], static_ret2[i])) self.assertTrue(np.allclose(static_ret[i], static_ret2[i]))
self.assertTrue(np.allclose(static_ret[i], dy_ret[i]._numpy())) self.assertTrue(np.allclose(static_ret[i], dy_ret[i].numpy()))
def test_elementwise_math(self): def test_elementwise_math(self):
n = np.ones([3, 3], dtype='float32') n = np.ones([3, 3], dtype='float32')
...@@ -288,8 +288,8 @@ class TestLayer(LayerTest): ...@@ -288,8 +288,8 @@ class TestLayer(LayerTest):
ret = layers.elementwise_sub(ret, n5) ret = layers.elementwise_sub(ret, n5)
dy_ret = layers.elementwise_mul(ret, n6) dy_ret = layers.elementwise_mul(ret, n6)
self.assertTrue( self.assertTrue(
np.allclose(static_ret, dy_ret._numpy()), np.allclose(static_ret, dy_ret.numpy()),
'%s vs %s' % (static_ret, dy_ret._numpy())) '%s vs %s' % (static_ret, dy_ret.numpy()))
def test_elementwise_minmax(self): def test_elementwise_minmax(self):
n = np.ones([3, 3], dtype='float32') n = np.ones([3, 3], dtype='float32')
...@@ -299,8 +299,8 @@ class TestLayer(LayerTest): ...@@ -299,8 +299,8 @@ class TestLayer(LayerTest):
min_ret = layers.elementwise_min(n, n2) min_ret = layers.elementwise_min(n, n2)
max_ret = layers.elementwise_max(n, n2) max_ret = layers.elementwise_max(n, n2)
self.assertTrue(np.allclose(n, min_ret._numpy())) self.assertTrue(np.allclose(n, min_ret.numpy()))
self.assertTrue(np.allclose(n2, max_ret._numpy())) self.assertTrue(np.allclose(n2, max_ret.numpy()))
def test_sequence_conv(self): def test_sequence_conv(self):
inp_np = np.arange(12).reshape([3, 4]).astype('float32') inp_np = np.arange(12).reshape([3, 4]).astype('float32')
...@@ -367,7 +367,7 @@ class TestLayer(LayerTest): ...@@ -367,7 +367,7 @@ class TestLayer(LayerTest):
'conv2d_transpose', num_filters=10, output_size=28) 'conv2d_transpose', num_filters=10, output_size=28)
dy_rlt = conv2d_transpose(base.to_variable(inp_np)) dy_rlt = conv2d_transpose(base.to_variable(inp_np))
self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt)) self.assertTrue(np.allclose(dy_rlt.numpy(), static_rlt))
def test_bilinear_tensor_product(self): def test_bilinear_tensor_product(self):
inp_np_x = np.array([[1, 2, 3]]).astype('float32') inp_np_x = np.array([[1, 2, 3]]).astype('float32')
...@@ -410,7 +410,7 @@ class TestLayer(LayerTest): ...@@ -410,7 +410,7 @@ class TestLayer(LayerTest):
dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y)) dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt)) self.assertTrue(np.allclose(dy_rlt.numpy(), static_rlt))
def test_prelu(self): def test_prelu(self):
inp_np = np.ones([5, 200, 100, 100]).astype('float32') inp_np = np.ones([5, 200, 100, 100]).astype('float32')
...@@ -451,7 +451,7 @@ class TestLayer(LayerTest): ...@@ -451,7 +451,7 @@ class TestLayer(LayerTest):
dy_rlt = prelu(base.to_variable(inp_np)) dy_rlt = prelu(base.to_variable(inp_np))
self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt)) self.assertTrue(np.allclose(dy_rlt.numpy(), static_rlt))
def test_embeding(self): def test_embeding(self):
inp_word = np.array([[[1]]]).astype('int64') inp_word = np.array([[[1]]]).astype('int64')
...@@ -484,7 +484,7 @@ class TestLayer(LayerTest): ...@@ -484,7 +484,7 @@ class TestLayer(LayerTest):
static_rlt3 = emb2(base.to_variable(inp_word)) static_rlt3 = emb2(base.to_variable(inp_word))
self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(static_rlt3._numpy(), static_rlt)) self.assertTrue(np.allclose(static_rlt3.numpy(), static_rlt))
def test_nce(self): def test_nce(self):
window_size = 5 window_size = 5
...@@ -598,7 +598,7 @@ class TestLayer(LayerTest): ...@@ -598,7 +598,7 @@ class TestLayer(LayerTest):
nce_loss3 = nce(embs3, words[label_word]) nce_loss3 = nce(embs3, words[label_word])
self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(nce_loss3._numpy(), static_rlt)) self.assertTrue(np.allclose(nce_loss3.numpy(), static_rlt))
def test_conv3d(self): def test_conv3d(self):
with self.static_graph(): with self.static_graph():
...@@ -625,7 +625,7 @@ class TestLayer(LayerTest): ...@@ -625,7 +625,7 @@ class TestLayer(LayerTest):
conv3d = nn.Conv3D('conv3d', num_filters=3, filter_size=2) conv3d = nn.Conv3D('conv3d', num_filters=3, filter_size=2)
dy_ret = conv3d(base.to_variable(images)) dy_ret = conv3d(base.to_variable(images))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy())) self.assertTrue(np.allclose(static_ret, dy_ret.numpy()))
self.assertTrue(np.allclose(static_ret, static_ret2)) self.assertTrue(np.allclose(static_ret, static_ret2))
def test_row_conv(self): def test_row_conv(self):
...@@ -719,7 +719,7 @@ class TestLayer(LayerTest): ...@@ -719,7 +719,7 @@ class TestLayer(LayerTest):
groupNorm = nn.GroupNorm('GroupNorm', groups=2) groupNorm = nn.GroupNorm('GroupNorm', groups=2)
dy_ret = groupNorm(base.to_variable(input)) dy_ret = groupNorm(base.to_variable(input))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy())) self.assertTrue(np.allclose(static_ret, dy_ret.numpy()))
self.assertTrue(np.allclose(static_ret, static_ret2)) self.assertTrue(np.allclose(static_ret, static_ret2))
def test_spectral_norm(self): def test_spectral_norm(self):
...@@ -769,7 +769,7 @@ class TestLayer(LayerTest): ...@@ -769,7 +769,7 @@ class TestLayer(LayerTest):
spectralNorm = nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2) spectralNorm = nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2)
dy_ret = spectralNorm(base.to_variable(input)) dy_ret = spectralNorm(base.to_variable(input))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy())) self.assertTrue(np.allclose(static_ret, dy_ret.numpy()))
self.assertTrue(np.allclose(static_ret, static_ret2)) self.assertTrue(np.allclose(static_ret, static_ret2))
def test_tree_conv(self): def test_tree_conv(self):
...@@ -842,7 +842,7 @@ class TestLayer(LayerTest): ...@@ -842,7 +842,7 @@ class TestLayer(LayerTest):
dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj)) dy_ret = treeConv(base.to_variable(vectors), base.to_variable(adj))
self.assertTrue(np.allclose(static_ret, static_ret2)) self.assertTrue(np.allclose(static_ret, static_ret2))
self.assertTrue(np.allclose(static_ret, dy_ret._numpy())) self.assertTrue(np.allclose(static_ret, dy_ret.numpy()))
def test_conv3d_transpose(self): def test_conv3d_transpose(self):
input_array = np.arange(0, 48).reshape( input_array = np.arange(0, 48).reshape(
...@@ -872,7 +872,7 @@ class TestLayer(LayerTest): ...@@ -872,7 +872,7 @@ class TestLayer(LayerTest):
use_cudnn=False) use_cudnn=False)
dy_rlt = conv3d_transpose(base.to_variable(input_array)) dy_rlt = conv3d_transpose(base.to_variable(input_array))
self.assertTrue(np.allclose(static_rlt2, static_rlt)) self.assertTrue(np.allclose(static_rlt2, static_rlt))
self.assertTrue(np.allclose(dy_rlt._numpy(), static_rlt)) self.assertTrue(np.allclose(dy_rlt.numpy(), static_rlt))
class TestBook(LayerTest): class TestBook(LayerTest):
...@@ -907,7 +907,7 @@ class TestBook(LayerTest): ...@@ -907,7 +907,7 @@ class TestBook(LayerTest):
if isinstance(dy_result, tuple): if isinstance(dy_result, tuple):
dy_result = dy_result[0] dy_result = dy_result[0]
self.assertTrue(np.array_equal(static_result[0], dy_result._numpy())) self.assertTrue(np.array_equal(static_result[0], dy_result.numpy()))
def _get_np_data(self, shape, dtype, append_batch_size=True): def _get_np_data(self, shape, dtype, append_batch_size=True):
np.random.seed(self.seed) np.random.seed(self.seed)
......
...@@ -73,7 +73,14 @@ class TestNearestInterpOp(OpTest): ...@@ -73,7 +73,14 @@ class TestNearestInterpOp(OpTest):
self.op_type = "nearest_interp" self.op_type = "nearest_interp"
input_np = np.random.random(self.input_shape).astype("float32") input_np = np.random.random(self.input_shape).astype("float32")
output_np = nearest_neighbor_interp_np(input_np, self.out_h, self.out_w, if self.scale > 0:
out_h = int(self.input_shape[2] * self.scale)
out_w = int(self.input_shape[3] * self.scale)
else:
out_h = self.out_h
out_w = self.out_w
output_np = nearest_neighbor_interp_np(input_np, out_h, out_w,
self.out_size, self.actual_shape, self.out_size, self.actual_shape,
self.align_corners) self.align_corners)
self.inputs = {'X': input_np} self.inputs = {'X': input_np}
...@@ -84,6 +91,7 @@ class TestNearestInterpOp(OpTest): ...@@ -84,6 +91,7 @@ class TestNearestInterpOp(OpTest):
self.attrs = { self.attrs = {
'out_h': self.out_h, 'out_h': self.out_h,
'out_w': self.out_w, 'out_w': self.out_w,
'scale': self.scale,
'interp_method': self.interp_method, 'interp_method': self.interp_method,
'align_corners': self.align_corners, 'align_corners': self.align_corners,
} }
...@@ -100,6 +108,7 @@ class TestNearestInterpOp(OpTest): ...@@ -100,6 +108,7 @@ class TestNearestInterpOp(OpTest):
self.input_shape = [2, 3, 4, 4] self.input_shape = [2, 3, 4, 4]
self.out_h = 2 self.out_h = 2
self.out_w = 2 self.out_w = 2
self.scale = 0.
self.out_size = np.array([3, 3]).astype("int32") self.out_size = np.array([3, 3]).astype("int32")
self.align_corners = True self.align_corners = True
...@@ -110,6 +119,7 @@ class TestNearestNeighborInterpCase1(TestNearestInterpOp): ...@@ -110,6 +119,7 @@ class TestNearestNeighborInterpCase1(TestNearestInterpOp):
self.input_shape = [4, 1, 7, 8] self.input_shape = [4, 1, 7, 8]
self.out_h = 1 self.out_h = 1
self.out_w = 1 self.out_w = 1
self.scale = 0.
self.align_corners = True self.align_corners = True
...@@ -119,6 +129,7 @@ class TestNearestNeighborInterpCase2(TestNearestInterpOp): ...@@ -119,6 +129,7 @@ class TestNearestNeighborInterpCase2(TestNearestInterpOp):
self.input_shape = [3, 3, 9, 6] self.input_shape = [3, 3, 9, 6]
self.out_h = 12 self.out_h = 12
self.out_w = 12 self.out_w = 12
self.scale = 0.
self.align_corners = True self.align_corners = True
...@@ -128,6 +139,7 @@ class TestNearestNeighborInterpCase3(TestNearestInterpOp): ...@@ -128,6 +139,7 @@ class TestNearestNeighborInterpCase3(TestNearestInterpOp):
self.input_shape = [1, 1, 128, 64] self.input_shape = [1, 1, 128, 64]
self.out_h = 64 self.out_h = 64
self.out_w = 128 self.out_w = 128
self.scale = 0.
self.align_corners = True self.align_corners = True
...@@ -137,6 +149,7 @@ class TestNearestNeighborInterpCase4(TestNearestInterpOp): ...@@ -137,6 +149,7 @@ class TestNearestNeighborInterpCase4(TestNearestInterpOp):
self.input_shape = [4, 1, 7, 8] self.input_shape = [4, 1, 7, 8]
self.out_h = 1 self.out_h = 1
self.out_w = 1 self.out_w = 1
self.scale = 0.
self.out_size = np.array([2, 2]).astype("int32") self.out_size = np.array([2, 2]).astype("int32")
self.align_corners = True self.align_corners = True
...@@ -147,6 +160,7 @@ class TestNearestNeighborInterpCase5(TestNearestInterpOp): ...@@ -147,6 +160,7 @@ class TestNearestNeighborInterpCase5(TestNearestInterpOp):
self.input_shape = [3, 3, 9, 6] self.input_shape = [3, 3, 9, 6]
self.out_h = 12 self.out_h = 12
self.out_w = 12 self.out_w = 12
self.scale = 0.
self.out_size = np.array([11, 11]).astype("int32") self.out_size = np.array([11, 11]).astype("int32")
self.align_corners = True self.align_corners = True
...@@ -157,6 +171,7 @@ class TestNearestNeighborInterpCase6(TestNearestInterpOp): ...@@ -157,6 +171,7 @@ class TestNearestNeighborInterpCase6(TestNearestInterpOp):
self.input_shape = [1, 1, 128, 64] self.input_shape = [1, 1, 128, 64]
self.out_h = 64 self.out_h = 64
self.out_w = 128 self.out_w = 128
self.scale = 0.
self.out_size = np.array([65, 129]).astype("int32") self.out_size = np.array([65, 129]).astype("int32")
self.align_corners = True self.align_corners = True
...@@ -167,6 +182,7 @@ class TestNearestNeighborInterpActualShape(TestNearestInterpOp): ...@@ -167,6 +182,7 @@ class TestNearestNeighborInterpActualShape(TestNearestInterpOp):
self.input_shape = [3, 2, 32, 16] self.input_shape = [3, 2, 32, 16]
self.out_h = 64 self.out_h = 64
self.out_w = 32 self.out_w = 32
self.scale = 0.
self.out_size = np.array([66, 40]).astype("int32") self.out_size = np.array([66, 40]).astype("int32")
self.align_corners = True self.align_corners = True
...@@ -179,7 +195,15 @@ class TestNearestInterpOpUint8(OpTest): ...@@ -179,7 +195,15 @@ class TestNearestInterpOpUint8(OpTest):
self.op_type = "nearest_interp" self.op_type = "nearest_interp"
input_np = np.random.randint( input_np = np.random.randint(
low=0, high=256, size=self.input_shape).astype("uint8") low=0, high=256, size=self.input_shape).astype("uint8")
output_np = nearest_neighbor_interp_np(input_np, self.out_h, self.out_w,
if self.scale > 0:
out_h = int(self.input_shape[2] * self.scale)
out_w = int(self.input_shape[3] * self.scale)
else:
out_h = self.out_h
out_w = self.out_w
output_np = nearest_neighbor_interp_np(input_np, out_h, out_w,
self.out_size, self.actual_shape, self.out_size, self.actual_shape,
self.align_corners) self.align_corners)
self.inputs = {'X': input_np} self.inputs = {'X': input_np}
...@@ -188,6 +212,7 @@ class TestNearestInterpOpUint8(OpTest): ...@@ -188,6 +212,7 @@ class TestNearestInterpOpUint8(OpTest):
self.attrs = { self.attrs = {
'out_h': self.out_h, 'out_h': self.out_h,
'out_w': self.out_w, 'out_w': self.out_w,
'scale': self.scale,
'interp_method': self.interp_method, 'interp_method': self.interp_method,
'align_corners': self.align_corners 'align_corners': self.align_corners
} }
...@@ -201,6 +226,7 @@ class TestNearestInterpOpUint8(OpTest): ...@@ -201,6 +226,7 @@ class TestNearestInterpOpUint8(OpTest):
self.input_shape = [1, 3, 9, 6] self.input_shape = [1, 3, 9, 6]
self.out_h = 10 self.out_h = 10
self.out_w = 9 self.out_w = 9
self.scale = 0.
self.align_corners = True self.align_corners = True
...@@ -210,6 +236,7 @@ class TestNearestNeighborInterpCase1Uint8(TestNearestInterpOpUint8): ...@@ -210,6 +236,7 @@ class TestNearestNeighborInterpCase1Uint8(TestNearestInterpOpUint8):
self.input_shape = [2, 3, 128, 64] self.input_shape = [2, 3, 128, 64]
self.out_h = 120 self.out_h = 120
self.out_w = 50 self.out_w = 50
self.scale = 0.
self.align_corners = True self.align_corners = True
...@@ -219,6 +246,7 @@ class TestNearestNeighborInterpCase2Uint8(TestNearestInterpOpUint8): ...@@ -219,6 +246,7 @@ class TestNearestNeighborInterpCase2Uint8(TestNearestInterpOpUint8):
self.input_shape = [4, 1, 7, 8] self.input_shape = [4, 1, 7, 8]
self.out_h = 5 self.out_h = 5
self.out_w = 13 self.out_w = 13
self.scale = 0.
self.out_size = np.array([6, 15]).astype("int32") self.out_size = np.array([6, 15]).astype("int32")
self.align_corners = True self.align_corners = True
...@@ -228,5 +256,38 @@ class TestNearestInterpWithoutCorners(TestNearestInterpOp): ...@@ -228,5 +256,38 @@ class TestNearestInterpWithoutCorners(TestNearestInterpOp):
self.align_corners = False self.align_corners = False
class TestNearestNeighborInterpScale1(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.scale = 2.
self.out_size = np.array([66, 40]).astype("int32")
self.align_corners = True
class TestNearestNeighborInterpScale2(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.scale = 1.5
self.out_size = np.array([66, 40]).astype("int32")
self.align_corners = True
class TestNearestNeighborInterpScale3(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.scale = 1.
self.out_size = np.array([66, 40]).astype("int32")
self.align_corners = True
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册