Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
20b885f7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
20b885f7
编写于
12月 04, 2017
作者:
Q
qingqing01
提交者:
GitHub
12月 04, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #6148 from qingqing01/lstm_doc
Fix the doc of LSTM operator.
上级
f40bdb15
d4fcd2a5
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
13 addition
and
13 deletion
+13
-13
paddle/operators/lstm_op.cc
paddle/operators/lstm_op.cc
+13
-13
未找到文件。
paddle/operators/lstm_op.cc
浏览文件 @
20b885f7
...
...
@@ -181,7 +181,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
Long-Short Term Memory (LSTM) Operator.
The defalut implementation is diagonal/peephole connection
The defalut implementation is diagonal/peephole connection
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
$$
...
...
@@ -198,27 +198,27 @@ c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\
h_t = o_t \odot act_h(c_t)
$$
where the W terms denote weight matrices (e.g.
\f$W_{xi}\f
$ is the matrix
of weights from the input gate to the input),
\f$W_{ic}, W_{fc}, W_{oc}\f
$
where the W terms denote weight matrices (e.g.
$W_{xi}
$ is the matrix
of weights from the input gate to the input),
$W_{ic}, W_{fc}, W_{oc}
$
are diagonal weight matrices for peephole connections. In our implementation,
we use vectors to reprenset these diagonal weight matrices. The b terms
denote bias vectors (
\f$b_i\f$ is the input gate bias vector), \f$\sigma\f
$
denote bias vectors (
$b_i$ is the input gate bias vector), $\sigma
$
is the non-line activations, such as logistic sigmoid function, and
\f$i, f, o\f$ and \f$c\f
$ are the input gate, forget gate, output gate,
$i, f, o$ and $c
$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
the cell output activation vector
\f$h\f
$.
the cell output activation vector
$h
$.
The
\f$\odot\f$ is the element-wise product of the vectors. \f$act_g\f$ and \f$act_h\f
$
The
$\odot$ is the element-wise product of the vectors. $act_g$ and $act_h
$
are the cell input and cell output activation functions and `tanh` is usually
used for them.
\f$\tilde{c_t}\f
$ is also called candidate hidden state,
used for them.
$\tilde{c_t}
$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
Set `use_peepholes` False to disable peephole connection
(http://www.bioinf.jku.at/publications/older/2604.pdf). The formula
is omitted here
.
Set `use_peepholes` False to disable peephole connection
. The formula
is omitted here, please refer to the paper
http://www.bioinf.jku.at/publications/older/2604.pdf for details
.
Note that these
\f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f
$
operations on the input
\f$x_{t}\f
$ are NOT included in this operator.
Note that these
$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}
$
operations on the input
$x_{t}
$ are NOT included in this operator.
Users can choose to use fully-connect operator before LSTM operator.
)DOC"
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录