Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
20859c08
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
20859c08
编写于
7月 31, 2019
作者:
C
chengduo
提交者:
GitHub
7月 31, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[DyGraph] Make multi-card program faster (#18892)
* update parallel.py test=develop
上级
24f85431
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
107 addition
and
27 deletion
+107
-27
paddle/fluid/operators/assign_op.cc
paddle/fluid/operators/assign_op.cc
+39
-23
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+3
-1
python/paddle/fluid/dygraph/parallel.py
python/paddle/fluid/dygraph/parallel.py
+65
-3
未找到文件。
paddle/fluid/operators/assign_op.cc
浏览文件 @
20859c08
...
...
@@ -66,27 +66,47 @@ class AssignFunctor {
const
platform
::
DeviceContext
&
dev_ctx_
;
};
class
AssignOp
:
public
framework
::
Operator
Base
{
class
AssignOp
:
public
framework
::
Operator
WithKernel
{
public:
AssignOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
Operator
Base
(
type
,
inputs
,
outputs
,
attrs
)
{}
:
Operator
WithKernel
(
type
,
inputs
,
outputs
,
attrs
)
{}
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
*
x
=
scope
.
FindVar
(
Input
(
"X"
));
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
if
(
ctx
->
HasInput
(
"X"
))
{
auto
type
=
ctx
->
GetInputsVarType
(
"X"
)[
0
];
if
(
type
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
||
type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
if
(
type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
}
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
}
};
class
AssignKernel
{
public:
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
x
=
ctx
.
InputVar
(
"X"
);
if
(
x
==
nullptr
)
{
return
;
}
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
)
);
auto
*
out
=
ctx
.
OutputVar
(
"Out"
);
PADDLE_ENFORCE
(
out
!=
nullptr
,
"The Output(Out) should not be null if the Input(X) is set."
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
place
);
auto
&
dev_ctx
=
*
pool
.
Get
(
ctx
.
GetPlace
()
);
framework
::
VisitVarType
(
*
x
,
AssignFunctor
(
out
,
dev_ctx
));
}
...
...
@@ -110,19 +130,6 @@ raise error if the type is not listed above.
}
};
class
AssignInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
context
)
const
override
{
if
(
context
->
HasInput
(
"X"
))
{
auto
type
=
context
->
GetInputsVarType
(
"X"
)[
0
];
if
(
type
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
||
type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
context
->
SetOutputDim
(
"Out"
,
context
->
GetInputDim
(
"X"
));
}
}
}
};
class
AssignGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
...
...
@@ -142,4 +149,13 @@ class AssignGradMaker : public framework::SingleGradOpDescMaker {
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
assign
,
ops
::
AssignOp
,
ops
::
AssignGradMaker
,
ops
::
AssignInferShape
,
ops
::
AssignOpProtoMaker
);
ops
::
AssignOpProtoMaker
);
REGISTER_OP_CPU_KERNEL_FUNCTOR
(
assign
,
float
,
ops
::
AssignKernel
,
double
,
ops
::
AssignKernel
,
int
,
ops
::
AssignKernel
,
int64_t
,
ops
::
AssignKernel
);
#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR
(
assign
,
float
,
ops
::
AssignKernel
,
double
,
ops
::
AssignKernel
,
int
,
ops
::
AssignKernel
,
int64_t
,
ops
::
AssignKernel
);
#endif
paddle/fluid/pybind/pybind.cc
浏览文件 @
20859c08
...
...
@@ -61,13 +61,13 @@ limitations under the License. */
#ifndef _WIN32
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
#endif
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h" // NOLINT
#include "paddle/fluid/pybind/reader_py.h"
#include "paddle/fluid/pybind/recordio.h"
#include "paddle/fluid/pybind/tensor_py.h"
#include "paddle/fluid/string/to_string.h"
#ifdef PADDLE_WITH_CUDA
#ifndef _WIN32
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
...
...
@@ -1106,6 +1106,8 @@ All parameter, weight, gradient are variables in Paddle.
return
std
::
shared_ptr
<
framework
::
ir
::
Pass
>
(
std
::
move
(
pass
));
});
m
.
def
(
"size_of_dtype"
,
framework
::
SizeOfType
);
py
::
class_
<
ir
::
Pass
,
std
::
shared_ptr
<
ir
::
Pass
>>
pass
(
m
,
"Pass"
);
pass
.
def
(
py
::
init
())
.
def
(
"has"
,
&
ir
::
Pass
::
Has
)
...
...
python/paddle/fluid/dygraph/parallel.py
浏览文件 @
20859c08
...
...
@@ -14,7 +14,7 @@
import
os
import
six
import
numpy
as
np
from
collections
import
OrderedDict
from
..
import
core
from
.
import
layers
from
.
import
parallel_helper
...
...
@@ -36,7 +36,7 @@ def prepare_context(strategy=None):
strategy
.
current_endpoint
=
Env
().
current_endpoint
if
strategy
.
nranks
<
2
:
return
assert
framework
.
in_dygraph_mode
()
is
True
,
\
assert
framework
.
in_dygraph_mode
()
is
True
,
\
"dygraph.parallel.prepare_context should be used with dygrahp mode."
place
=
framework
.
_current_expected_place
()
assert
place
is
not
None
,
\
...
...
@@ -168,6 +168,37 @@ class DataParallel(layers.Layer):
loss
=
loss
/
loss_scale
return
loss
def
_coalesce_tensors
(
self
,
var_groups
):
from
..layers
import
nn
coalesced_grads_and_grad_vars
=
[]
for
group_id
,
grad_vars
in
var_groups
.
items
():
flattened_vars
=
[]
g_var_shapes
=
[]
for
g_var
in
grad_vars
:
g_var_shapes
.
append
(
g_var
.
shape
)
flattened_vars
.
append
(
nn
.
reshape
(
x
=
g_var
,
shape
=
[
np
.
prod
(
g_var
.
shape
)],
inplace
=
True
))
coalesced_grad
=
nn
.
concat
(
flattened_vars
)
coalesced_grads_and_grad_vars
.
append
(
[
coalesced_grad
,
grad_vars
,
g_var_shapes
])
return
coalesced_grads_and_grad_vars
def
_split_tensors
(
self
,
coalesced_grads_and_grad_vars
):
from
..layers
import
nn
for
coalesced_grad
,
origin_grad_vars
,
grad_shapes
in
coalesced_grads_and_grad_vars
:
grad_var_len
=
[
np
.
prod
(
g_shape
)
for
g_shape
in
grad_shapes
]
splited_vars
=
nn
.
split
(
coalesced_grad
,
num_or_sections
=
grad_var_len
,
dim
=
0
)
reshaped_grad_vars
=
[]
for
g_var
,
g_shape
in
zip
(
splited_vars
,
grad_shapes
):
reshaped_grad_vars
.
append
(
nn
.
reshape
(
x
=
g_var
,
shape
=
g_shape
,
inplace
=
True
))
for
origin_g_var
,
reshaped_g_var
in
zip
(
origin_grad_vars
,
reshaped_grad_vars
):
nn
.
assign
(
input
=
reshaped_g_var
,
output
=
origin_g_var
)
def
apply_collective_grads
(
self
):
"""
AllReduce the Parameters' gradient.
...
...
@@ -175,6 +206,8 @@ class DataParallel(layers.Layer):
if
not
self
.
_is_data_parallel_mode
():
return
grad_var_set
=
set
()
grad_vars
=
[]
for
param
in
self
.
_layers
.
parameters
():
# NOTE(zcd): The grad_ivar maybe no generated.
if
param
.
trainable
and
param
.
_ivar
.
_grad_ivar
():
...
...
@@ -183,7 +216,36 @@ class DataParallel(layers.Layer):
name
=
param
.
_ivar
.
_grad_name
(),
stop_gradient
=
True
,
ivar
=
param
.
_ivar
.
_grad_ivar
())
collective
.
_allreduce
(
g_var
,
g_var
,
sync_mode
=
True
)
grad_vars
.
append
(
g_var
)
assert
g_var
not
in
grad_var_set
grad_var_set
.
add
(
g_var
)
# FIXME(zcd): the type of the var should be LoDTensor, i.e
# the gradients should be dense, otherwise, the following
# logic should be updated.
# 128 MB as a group
mega_bytes
=
128
*
1024
*
1024
group_idx
=
0
memory_counter
=
0
grad_var_groups
=
OrderedDict
()
dtype
=
grad_vars
[
0
].
dtype
for
g_var
in
grad_vars
:
# Note: the dtype of the same group should be the same.
bytes
=
np
.
prod
(
g_var
.
shape
)
*
core
.
size_of_dtype
(
g_var
.
dtype
)
if
memory_counter
<
mega_bytes
and
dtype
==
g_var
.
dtype
:
memory_counter
+=
bytes
else
:
memory_counter
=
bytes
group_idx
+=
1
grad_var_groups
.
setdefault
(
group_idx
,
[]).
append
(
g_var
)
coalesced_grads_and_vars
=
self
.
_coalesce_tensors
(
grad_var_groups
)
for
coalesced_grad
,
g_vars
,
g_shapes
in
coalesced_grads_and_vars
:
collective
.
_allreduce
(
coalesced_grad
,
coalesced_grad
,
sync_mode
=
False
)
self
.
_split_tensors
(
coalesced_grads_and_vars
)
def
_is_data_parallel_mode
(
self
):
return
self
.
_strategy
.
nranks
>
1
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录