未验证 提交 20659fc9 编写于 作者: T tensor-tang 提交者: GitHub

Merge pull request #13107 from tensor-tang/optimize/op/fusion_gru

Optimize fusion gru
......@@ -132,6 +132,121 @@ inline void vec_scal<float, platform::jit::avx512_common>(const int n,
vec_scal<float, platform::jit::avx2>(n, a, x, y);
}
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_bias_sub(const int n, const T a, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = a - x[i];
}
}
template <>
inline void vec_bias_sub<float, platform::jit::avx>(const int n, const float a,
const float* x, float* y) {
#ifdef __AVX__
constexpr int block = AVX_FLOAT_BLOCK;
if (n < block) {
vec_bias_sub<float, platform::jit::isa_any>(n, a, x, y);
return;
}
const int rest = n % block;
const int end = n - rest;
int i = 0;
__m256 bias = _mm256_set1_ps(a);
__m256 tmp;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_sub_ps(bias, tmp); \
_mm256_storeu_ps(y + i, tmp)
for (i = 0; i < end; i += block) {
MOVE_ONE_STEP;
}
#undef MOVE_ONE_STEP
if (rest == 0) {
return;
}
// can not continue move step if src and dst are inplace
for (i = n - rest; i < n; ++i) {
y[i] = a - x[i];
}
#else
vec_bias_sub<float, platform::jit::isa_any>(n, a, x, y);
#endif
}
template <>
inline void vec_bias_sub<float, platform::jit::avx2>(const int n, const float a,
const float* x, float* y) {
vec_bias_sub<float, platform::jit::avx>(n, a, x, y);
}
template <>
inline void vec_bias_sub<float, platform::jit::avx512_common>(const int n,
const float a,
const float* x,
float* y) {
// TODO(TJ): enable me
vec_bias_sub<float, platform::jit::avx2>(n, a, x, y);
}
// out = x*y + (1-x)*z
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_cross(const int n, const T* x, const T* y, const T* z, T* out) {
for (int i = 0; i < n; ++i) {
out[i] = x[i] * y[i] + (static_cast<T>(1) - x[i]) * z[i];
}
}
template <>
inline void vec_cross<float, platform::jit::avx>(const int n, const float* x,
const float* y, const float* z,
float* out) {
#ifdef __AVX__
constexpr int block = AVX_FLOAT_BLOCK;
if (n < block) {
vec_cross<float, platform::jit::isa_any>(n, x, y, z, out);
return;
}
const int rest = n % block;
const int end = n - rest;
int i = 0;
__m256 bias = _mm256_set1_ps(1.f);
__m256 tmpx, tmpy, tmpz;
for (i = 0; i < end; i += block) {
tmpx = _mm256_loadu_ps(x + i);
tmpy = _mm256_loadu_ps(y + i);
tmpz = _mm256_loadu_ps(z + i);
tmpy = _mm256_mul_ps(tmpx, tmpy);
tmpx = _mm256_sub_ps(bias, tmpx);
tmpz = _mm256_mul_ps(tmpx, tmpz);
tmpz = _mm256_add_ps(tmpy, tmpz);
_mm256_storeu_ps(out + i, tmpz);
}
if (rest == 0) {
return;
}
// can not continue move step if src and dst are inplace
for (i = n - rest; i < n; ++i) {
out[i] = x[i] * y[i] + (1.f - x[i]) * z[i];
}
#else
vec_cross<float, platform::jit::isa_any>(n, x, y, z, out);
#endif
}
template <>
inline void vec_cross<float, platform::jit::avx2>(const int n, const float* x,
const float* y,
const float* z, float* out) {
vec_cross<float, platform::jit::avx>(n, x, y, z, out);
}
template <>
inline void vec_cross<float, platform::jit::avx512_common>(
const int n, const float* x, const float* y, const float* z, float* out) {
// TODO(TJ): enable me
vec_cross<float, platform::jit::avx>(n, x, y, z, out);
}
template <typename T, platform::jit::cpu_isa_t isa = platform::jit::isa_any>
inline void vec_add_bias(const int n, const T a, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
......
......@@ -92,7 +92,7 @@ class LoDTensor2BatchFunctor {
// Calculate the start position of each batch.
// example: sequences = {s0, s1, s2}
// s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
// num_batch = 5,
// max_seqlen = 5,
// batchIndex = {b0, b1, b2, b3, b4}
// b0: 1 0 2, b1: 1 0 2, b2: 1 0 2, b3: 1 0, b4: 1
// batch_start_positions[6] = {0, 3, 6, 9, 11, 12}
......@@ -109,7 +109,7 @@ class LoDTensor2BatchFunctor {
// where 1 is the second sequence,
// 0 is the first sequence,
// 2 is the third sequence.
// The num_batch represents batch size after rearranging the
// The max_seqlen represents batch size after rearranging the
// input LodTensor. It is also the maximum length of input sequence.
paddle::framework::LoD batch_lods;
......@@ -118,8 +118,8 @@ class LoDTensor2BatchFunctor {
batch_lods.emplace_back(std::vector<size_t>{0});
// batch_lods[0] is the start positions for batch LoDTensor
int num_batch = seq_info[0].length;
batch_lods[0].resize(static_cast<size_t>(num_batch + 1));
int max_seqlen = seq_info[0].length;
batch_lods[0].resize(static_cast<size_t>(max_seqlen + 1));
// batch_lods[1] is the raw index in the input LoDTensor
batch_lods[1].resize(static_cast<size_t>(lod_tensor.dims()[0]));
// batch_lods[2] is the sort order for the input LoDTensor.
......@@ -128,7 +128,7 @@ class LoDTensor2BatchFunctor {
size_t* batch_starts = batch_lods[0].data();
size_t* seq2batch_idx = batch_lods[1].data();
batch_starts[0] = 0;
for (int n = 0; n < num_batch; n++) {
for (int n = 0; n < max_seqlen; n++) {
auto batch_id = static_cast<int>(batch_starts[n]);
for (size_t i = 0; i < seq_info.size(); ++i) {
int seq_len = seq_info[i].length;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册