Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2039070e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2039070e
编写于
12月 08, 2016
作者:
Y
Yu Yang
提交者:
GitHub
12月 08, 2016
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request
#668
from qingqing01/acc_image_proc
Accelerating image processing for CNN
上级
b24bf99d
978d6e84
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
279 addition
and
14 deletion
+279
-14
python/paddle/utils/image_multiproc.py
python/paddle/utils/image_multiproc.py
+262
-0
python/paddle/utils/image_util.py
python/paddle/utils/image_util.py
+17
-14
未找到文件。
python/paddle/utils/image_multiproc.py
0 → 100644
浏览文件 @
2039070e
import
os
,
sys
import
numpy
as
np
from
PIL
import
Image
from
cStringIO
import
StringIO
import
multiprocessing
import
functools
import
itertools
from
paddle.utils.image_util
import
*
from
paddle.trainer.config_parser
import
logger
try
:
import
cv2
except
ImportError
:
logger
.
warning
(
"OpenCV2 is not installed, using PIL to prcoess"
)
cv2
=
None
__all__
=
[
"CvTransformer"
,
"PILTransformer"
,
"MultiProcessImageTransformer"
]
class
CvTransformer
(
ImageTransformer
):
"""
CvTransformer used python-opencv to process image.
"""
def
__init__
(
self
,
min_size
=
None
,
crop_size
=
None
,
transpose
=
(
2
,
0
,
1
),
# transpose to C * H * W
channel_swap
=
None
,
mean
=
None
,
is_train
=
True
,
is_color
=
True
):
ImageTransformer
.
__init__
(
self
,
transpose
,
channel_swap
,
mean
,
is_color
)
self
.
min_size
=
min_size
self
.
crop_size
=
crop_size
self
.
is_train
=
is_train
def
resize
(
self
,
im
,
min_size
):
row
,
col
=
im
.
shape
[:
2
]
new_row
,
new_col
=
min_size
,
min_size
if
row
>
col
:
new_row
=
min_size
*
row
/
col
else
:
new_col
=
min_size
*
col
/
row
im
=
cv2
.
resize
(
im
,
(
new_row
,
new_col
),
interpolation
=
cv2
.
INTER_CUBIC
)
return
im
def
crop_and_flip
(
self
,
im
):
"""
Return cropped image.
The size of the cropped image is inner_size * inner_size.
im: (H x W x K) ndarrays
"""
row
,
col
=
im
.
shape
[:
2
]
start_h
,
start_w
=
0
,
0
if
self
.
is_train
:
start_h
=
np
.
random
.
randint
(
0
,
row
-
self
.
crop_size
+
1
)
start_w
=
np
.
random
.
randint
(
0
,
col
-
self
.
crop_size
+
1
)
else
:
start_h
=
(
row
-
self
.
crop_size
)
/
2
start_w
=
(
col
-
self
.
crop_size
)
/
2
end_h
,
end_w
=
start_h
+
self
.
crop_size
,
start_w
+
self
.
crop_size
if
self
.
is_color
:
im
=
im
[
start_h
:
end_h
,
start_w
:
end_w
,
:]
else
:
im
=
im
[
start_h
:
end_h
,
start_w
:
end_w
]
if
(
self
.
is_train
)
and
(
np
.
random
.
randint
(
2
)
==
0
):
if
self
.
is_color
:
im
=
im
[:,
::
-
1
,
:]
else
:
im
=
im
[:,
::
-
1
]
return
im
def
transform
(
self
,
im
):
im
=
self
.
resize
(
im
,
self
.
min_size
)
im
=
self
.
crop_and_flip
(
im
)
# transpose, swap channel, sub mean
im
=
im
.
astype
(
'float32'
)
ImageTransformer
.
transformer
(
self
,
im
)
return
im
def
load_image_from_string
(
self
,
data
):
flag
=
cv2
.
CV_LOAD_IMAGE_COLOR
if
self
.
is_color
else
cv2
.
CV_LOAD_IMAGE_GRAYSCALE
im
=
cv2
.
imdecode
(
np
.
fromstring
(
data
,
np
.
uint8
),
flag
)
return
im
def
transform_from_string
(
self
,
data
):
im
=
self
.
load_image_from_string
(
data
)
return
self
.
transform
(
im
)
def
load_image_from_file
(
self
,
file
):
flag
=
cv2
.
CV_LOAD_IMAGE_COLOR
if
self
.
is_color
else
cv2
.
CV_LOAD_IMAGE_GRAYSCALE
im
=
cv2
.
imread
(
file
,
flag
)
return
im
def
transform_from_file
(
self
,
file
):
im
=
self
.
load_image_from_file
(
file
)
return
self
.
transform
(
im
)
class
PILTransformer
(
ImageTransformer
):
"""
PILTransformer used PIL to process image.
"""
def
__init__
(
self
,
min_size
=
None
,
crop_size
=
None
,
transpose
=
(
2
,
0
,
1
),
# transpose to C * H * W
channel_swap
=
None
,
mean
=
None
,
is_train
=
True
,
is_color
=
True
):
ImageTransformer
.
__init__
(
self
,
transpose
,
channel_swap
,
mean
,
is_color
)
self
.
min_size
=
min_size
self
.
crop_size
=
crop_size
self
.
is_train
=
is_train
def
resize
(
self
,
im
,
min_size
):
row
,
col
=
im
.
size
[:
2
]
new_row
,
new_col
=
min_size
,
min_size
if
row
>
col
:
new_row
=
min_size
*
row
/
col
else
:
new_col
=
min_size
*
col
/
row
im
=
im
.
resize
((
new_row
,
new_col
),
Image
.
ANTIALIAS
)
return
im
def
crop_and_flip
(
self
,
im
):
"""
Return cropped image.
The size of the cropped image is inner_size * inner_size.
"""
row
,
col
=
im
.
size
[:
2
]
start_h
,
start_w
=
0
,
0
if
self
.
is_train
:
start_h
=
np
.
random
.
randint
(
0
,
row
-
self
.
crop_size
+
1
)
start_w
=
np
.
random
.
randint
(
0
,
col
-
self
.
crop_size
+
1
)
else
:
start_h
=
(
row
-
self
.
crop_size
)
/
2
start_w
=
(
col
-
self
.
crop_size
)
/
2
end_h
,
end_w
=
start_h
+
self
.
crop_size
,
start_w
+
self
.
crop_size
im
=
im
.
crop
((
start_h
,
start_w
,
end_h
,
end_w
))
if
(
self
.
is_train
)
and
(
np
.
random
.
randint
(
2
)
==
0
):
im
=
im
.
transpose
(
Image
.
FLIP_LEFT_RIGHT
)
return
im
def
transform
(
self
,
im
):
im
=
self
.
resize
(
im
,
self
.
min_size
)
im
=
self
.
crop_and_flip
(
im
)
im
=
np
.
array
(
im
,
dtype
=
np
.
float32
)
# convert to numpy.array
# transpose, swap channel, sub mean
ImageTransformer
.
transformer
(
self
,
im
)
return
im
def
load_image_from_string
(
self
,
data
):
im
=
Image
.
open
(
StringIO
(
data
))
return
im
def
transform_from_string
(
self
,
data
):
im
=
self
.
load_image_from_string
(
data
)
return
self
.
transform
(
im
)
def
load_image_from_file
(
self
,
file
):
im
=
Image
.
open
(
file
)
return
im
def
transform_from_file
(
self
,
file
):
im
=
self
.
load_image_from_file
(
file
)
return
self
.
transform
(
im
)
def
job
(
is_img_string
,
transformer
,
(
data
,
label
)):
if
is_img_string
:
return
transformer
.
transform_from_string
(
data
),
label
else
:
return
transformer
.
transform_from_file
(
data
),
label
class
MultiProcessImageTransformer
(
object
):
def
__init__
(
self
,
procnum
=
10
,
resize_size
=
None
,
crop_size
=
None
,
transpose
=
(
2
,
0
,
1
),
channel_swap
=
None
,
mean
=
None
,
is_train
=
True
,
is_color
=
True
,
is_img_string
=
True
):
"""
Processing image with multi-process. If it is used in PyDataProvider,
the simple usage for CNN is as follows:
.. code-block:: python
def hool(settings, is_train, **kwargs):
settings.is_train = is_train
settings.mean_value = np.array([103.939,116.779,123.68], dtype=np.float32)
settings.input_types = [
dense_vector(3 * 224 * 224),
integer_value(1)]
settings.transformer = MultiProcessImageTransformer(
procnum=10,
resize_size=256,
crop_size=224,
transpose=(2, 0, 1),
mean=settings.mean_values,
is_train=settings.is_train)
@provider(init_hook=hook, pool_size=20480)
def process(settings, file_list):
with open(file_list, 'r') as fdata:
for line in fdata:
data_dic = np.load(line.strip()) # load the data batch pickled by Pickle.
data = data_dic['data']
labels = data_dic['label']
labels = np.array(labels, dtype=np.float32)
for im, lab in settings.dp.run(data, labels):
yield [im.astype('float32'), int(lab)]
:param procnum: processor number.
:type procnum: int
:param resize_size: the shorter edge size of image after resizing.
:type resize_size: int
:param crop_size: the croping size.
:type crop_size: int
:param transpose: the transpose order, Paddle only allow C * H * W order.
:type transpose: tuple or list
:param channel_swap: the channel swap order, RGB or BRG.
:type channel_swap: tuple or list
:param mean: the mean values of image, per-channel mean or element-wise mean.
:type mean: array, The dimension is 1 for per-channel mean.
The dimension is 3 for element-wise mean.
:param is_train: training peroid or testing peroid.
:type is_train: bool.
:param is_color: the image is color or gray.
:type is_color: bool.
:param is_img_string: The input can be the file name of image or image string.
:type is_img_string: bool.
"""
self
.
procnum
=
procnum
self
.
pool
=
multiprocessing
.
Pool
(
procnum
)
self
.
is_img_string
=
is_img_string
if
cv2
is
not
None
:
self
.
transformer
=
CvTransformer
(
resize_size
,
crop_size
,
transpose
,
channel_swap
,
mean
,
is_train
,
is_color
)
else
:
self
.
transformer
=
PILTransformer
(
resize_size
,
crop_size
,
transpose
,
channel_swap
,
mean
,
is_train
,
is_color
)
def
run
(
self
,
data
,
label
):
fun
=
functools
.
partial
(
job
,
self
.
is_img_string
,
self
.
transformer
)
return
self
.
pool
.
imap_unordered
(
fun
,
itertools
.
izip
(
data
,
label
),
chunksize
=
100
*
self
.
procnum
)
python/paddle/utils/image_util.py
浏览文件 @
2039070e
...
...
@@ -186,29 +186,32 @@ class ImageTransformer:
channel_swap
=
None
,
mean
=
None
,
is_color
=
True
):
self
.
transpose
=
transpose
self
.
channel_swap
=
None
self
.
mean
=
None
self
.
is_color
=
is_color
self
.
set_transpose
(
transpose
)
self
.
set_channel_swap
(
channel_swap
)
self
.
set_mean
(
mean
)
def
set_transpose
(
self
,
order
):
if
self
.
is_color
:
assert
3
==
len
(
order
)
if
order
is
not
None
:
if
self
.
is_color
:
assert
3
==
len
(
order
)
self
.
transpose
=
order
def
set_channel_swap
(
self
,
order
):
if
self
.
is_color
:
assert
3
==
len
(
order
)
if
order
is
not
None
:
if
self
.
is_color
:
assert
3
==
len
(
order
)
self
.
channel_swap
=
order
def
set_mean
(
self
,
mean
):
# mean value, may be one value per channel
if
mean
.
ndim
==
1
:
mean
=
mean
[:,
np
.
newaxis
,
np
.
newaxis
]
else
:
# elementwise mean
if
self
.
is_color
:
assert
len
(
mean
.
shape
)
==
3
if
mean
is
not
None
:
# mean value, may be one value per channel
if
mean
.
ndim
==
1
:
mean
=
mean
[:,
np
.
newaxis
,
np
.
newaxis
]
else
:
# elementwise mean
if
self
.
is_color
:
assert
len
(
mean
.
shape
)
==
3
self
.
mean
=
mean
def
transformer
(
self
,
data
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录