input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, 3-D Tensor of shape :math:`[batch\_size, seq\_len, input\_dim]` . Data type is float32 or float64
input ( :ref:`api_guide_Variable_en` ): LSTM input tensor, 3-D Tensor of shape :math:`[batch\_size, seq\_len, input\_dim]` . Data type is float32 or float64
init_h( :ref:`api_guide_Variable_en` ): The initial hidden state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
init_h( :ref:`api_guide_Variable_en` ): The initial hidden state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
max_len (int): This parameter has no effect and will be discarded.
init_c( :ref:`api_guide_Variable_en` ): The initial cell state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
init_c( :ref:`api_guide_Variable_en` ): The initial cell state of the LSTM, 3-D Tensor of shape :math:`[num\_layers, batch\_size, hidden\_size]` .
If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
If is_bidirec = True, shape should be :math:`[num\_layers*2, batch\_size, hidden\_size]` . Data type is float32 or float64.
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len.
hidden_size (int): hidden size of the LSTM.
hidden_size (int): hidden size of the LSTM.
num_layers (int): total layers number of the LSTM.
num_layers (int): total layers number of the LSTM.
dropout_prob(float, optional): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
dropout_prob(float, optional): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
...
@@ -2256,7 +2256,6 @@ def lstm(input,
...
@@ -2256,7 +2256,6 @@ def lstm(input,
data = fluid.data(name='x', shape=[None, 100], dtype='int64')
data = fluid.data(name='x', shape=[None, 100], dtype='int64')