Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1f79fd47
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1f79fd47
编写于
7月 20, 2023
作者:
Y
Yuang Liu
提交者:
GitHub
7月 20, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
pp comm overlap use tensor fusion helper (#55540)
上级
6216beb3
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
39 addition
and
82 deletion
+39
-82
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+5
-1
python/paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
.../paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
+7
-65
python/paddle/distributed/fleet/utils/tensor_fusion_helper.py
...on/paddle/distributed/fleet/utils/tensor_fusion_helper.py
+27
-16
未找到文件。
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
1f79fd47
...
...
@@ -36,7 +36,11 @@ if _use_four_directions:
else
:
from
.pp_utils
import
p2p_communication
as
p2p
from
.pp_utils.utils
import
HOOK_ACTION
,
FusedCommBuffer
,
assign_group_by_size
from
paddle.distributed.fleet.utils.tensor_fusion_helper
import
(
assign_group_by_size
,
)
from
.pp_utils.utils
import
HOOK_ACTION
,
FusedCommBuffer
__all__
=
[]
...
...
python/paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
浏览文件 @
1f79fd47
...
...
@@ -12,27 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
collections
import
OrderedDict
import
numpy
as
np
import
paddle
from
paddle
import
_legacy_C_ops
from
paddle.distributed.fleet.
meta_parallel.sharding.group_sharded_storage
import
(
GradStorage
,
from
paddle.distributed.fleet.
utils.tensor_fusion_helper
import
(
flatten_dense_tensors
,
)
from
paddle.fluid
import
core
from
paddle.framework
import
base
as
imperative_base
alignment
=
{
"gpu"
:
256
,
}
align
=
{
paddle
.
float16
.
value
:
2
,
paddle
.
bfloat16
.
value
:
2
,
paddle
.
float32
.
value
:
4
,
}
__all__
=
[]
...
...
@@ -131,35 +118,6 @@ def _all_gather(tensor, group=None, use_calc_stream=True):
)
def
flatten_dense_tensors
(
parameters
,
use_main_grad
=
False
):
_buffer_size
=
0
_param2align
=
{}
dtype
=
paddle
.
float32
if
use_main_grad
else
parameters
[
0
].
dtype
for
param
in
parameters
:
assert
param
.
trainable
,
"param must be trainable..."
size
=
np
.
prod
(
param
.
shape
)
*
align
[
dtype
]
remaining
=
size
%
alignment
[
"gpu"
]
ali
=
0
if
remaining
==
0
else
alignment
[
"gpu"
]
-
remaining
align_
=
ali
//
align
[
dtype
]
_buffer_size
+=
np
.
prod
(
param
.
shape
)
+
align_
_param2align
[
param
.
name
]
=
align_
# process gradient
grad_storage
=
GradStorage
(
size
=
_buffer_size
,
dtype
=
dtype
,
device
=
"gpu"
,
destination
=
"0"
,
parm2align
=
_param2align
,
)
for
param
in
parameters
:
grad_storage
.
add_grad
(
param
,
_param2align
[
param
.
name
])
return
grad_storage
.
buffer
class
FusedCommBuffer
:
def
__init__
(
self
,
id
,
params
,
comm_group
,
acc_steps
=
1
,
act
=
None
,
dst
=-
1
):
self
.
_id
=
id
...
...
@@ -188,8 +146,11 @@ class FusedCommBuffer:
self
.
_init_step_dict
()
self
.
grad_storage
=
flatten_dense_tensors
(
self
.
_params
,
self
.
use_main_grad
)
self
.
_params
,
use_main_grad
=
self
.
use_main_grad
,
fuse_param
=
False
,
warp_buffer
=
False
,
).
buffer
self
.
_record_addr
()
...
...
@@ -272,22 +233,3 @@ class FusedCommBuffer:
self
.
grad_storage
.
scale_
(
scale_factor
)
self
.
_reset_params_checked_in
()
def
assign_group_by_size
(
parameters
,
group_size
=
128
*
1024
*
1024
):
group_idx
=
0
memory_counter
=
0
var_groups
=
OrderedDict
()
dtype
=
parameters
[
0
].
dtype
for
var
in
parameters
:
bytes
=
np
.
prod
(
var
.
shape
)
*
core
.
size_of_dtype
(
var
.
dtype
)
if
memory_counter
<
group_size
and
dtype
==
var
.
dtype
:
memory_counter
+=
bytes
else
:
memory_counter
=
bytes
dtype
=
var
.
dtype
group_idx
+=
1
var_groups
.
setdefault
(
group_idx
,
[]).
append
(
var
)
return
var_groups
python/paddle/distributed/fleet/utils/tensor_fusion_helper.py
浏览文件 @
1f79fd47
...
...
@@ -30,8 +30,7 @@ align = {
}
def
assign_group_by_size
(
parameters
,
group_size
=
256
*
1024
*
1024
):
# TODO(Yuang Liu): make pp_utils/utils use this tensor fusion helper
def
assign_group_by_size
(
parameters
,
group_size
=
128
*
1024
*
1024
):
is_sparse_gradient
=
[
False
]
*
len
(
parameters
)
group_indices
=
core
.
eager_assign_group_by_size
(
...
...
@@ -45,7 +44,9 @@ def assign_group_by_size(parameters, group_size=256 * 1024 * 1024):
return
var_groups
def
flatten_dense_tensors
(
parameters
,
use_main_grad
):
def
flatten_dense_tensors
(
parameters
,
use_main_grad
=
False
,
fuse_param
=
True
,
warp_buffer
=
False
):
from
paddle.distributed.fleet.meta_parallel.sharding.group_sharded_storage
import
(
GradStorage
,
ParamStorage
,
...
...
@@ -64,9 +65,11 @@ def flatten_dense_tensors(parameters, use_main_grad):
_buffer_size
+=
np
.
prod
(
param
.
shape
)
+
align_
_param2align
[
param
.
name
]
=
align_
param_storage
=
ParamStorage
(
size
=
_buffer_size
,
dtype
=
dtype
,
device
=
"gpu"
)
param_storage
.
add_rank_params
(
parameters
,
_param2align
)
if
fuse_param
:
param_storage
=
ParamStorage
(
size
=
_buffer_size
,
dtype
=
dtype
,
device
=
"gpu"
)
param_storage
.
add_rank_params
(
parameters
,
_param2align
)
# process gradient
grad_dtype
=
paddle
.
float32
if
use_main_grad
else
dtype
...
...
@@ -81,27 +84,35 @@ def flatten_dense_tensors(parameters, use_main_grad):
for
param
in
parameters
:
grad_storage
.
add_grad
(
param
,
_param2align
[
param
.
name
])
param_storage
.
warp_buffer
()
grad_storage
.
warp_buffer
()
if
warp_buffer
:
if
fuse_param
:
param_storage
.
warp_buffer
()
grad_storage
.
warp_buffer
()
if
not
use_main_grad
:
# param_storage --> grad_storage
param_storage
.
buffer
.
_copy_gradient_from
(
grad_storage
.
buffer
)
if
fuse_param
:
if
not
use_main_grad
:
# param_storage --> grad_storage
param_storage
.
buffer
.
_copy_gradient_from
(
grad_storage
.
buffer
)
else
:
param_storage
.
buffer
.
main_grad
=
grad_storage
.
buffer
param_storage
.
buffer
.
stop_gradient
=
False
return
param_storage
,
grad_storage
else
:
param_storage
.
buffer
.
main_grad
=
grad_storage
.
buffer
param_storage
.
buffer
.
stop_gradient
=
False
return
param_storage
,
grad_storage
return
grad_storage
def
obtain_storage
(
parameters
,
use_main_grad
,
clip
,
dist
):
if
len
(
parameters
)
<
1
:
return
[]
var_groups
=
assign_group_by_size
(
parameters
)
var_groups
=
assign_group_by_size
(
parameters
,
group_size
=
256
*
1024
*
1024
)
storage
=
[]
for
group_idx
,
parameters
in
var_groups
.
items
():
param_storage
,
grad_storage
=
flatten_dense_tensors
(
parameters
,
use_main_grad
parameters
,
use_main_grad
=
use_main_grad
,
fuse_param
=
True
,
warp_buffer
=
True
,
)
param_storage
.
buffer
.
need_clip
=
clip
param_storage
.
buffer
.
is_distributed
=
dist
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录