提交 1f618c4f 编写于 作者: M minqiyang

Fix the overfix of 2to3 in xrange

上级 5656f64b
...@@ -24,7 +24,7 @@ import tarfile ...@@ -24,7 +24,7 @@ import tarfile
import gzip import gzip
import itertools import itertools
import paddle.dataset.common import paddle.dataset.common
from six.moves import zip from six.moves import zip, range
__all__ = ['test, get_dict', 'get_embedding', 'convert'] __all__ = ['test, get_dict', 'get_embedding', 'convert']
......
...@@ -25,6 +25,7 @@ import collections ...@@ -25,6 +25,7 @@ import collections
import tarfile import tarfile
import re import re
import string import string
from six.moves import range
__all__ = ['build_dict', 'train', 'test', 'convert'] __all__ = ['build_dict', 'train', 'test', 'convert']
...@@ -66,7 +67,7 @@ def build_dict(pattern, cutoff): ...@@ -66,7 +67,7 @@ def build_dict(pattern, cutoff):
dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0])) dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*dictionary)) words, _ = list(zip(*dictionary))
word_idx = dict(list(zip(words, list(range(len(words)))))) word_idx = dict(list(zip(words, range(len(words)))))
word_idx['<unk>'] = len(words) word_idx['<unk>'] = len(words)
return word_idx return word_idx
......
...@@ -14,13 +14,14 @@ ...@@ -14,13 +14,14 @@
""" """
imikolov's simple dataset. imikolov's simple dataset.
This module will download dataset from This module will download dataset from
http://www.fit.vutbr.cz/~imikolov/rnnlm/ and parse training set and test set http://www.fit.vutbr.cz/~imikolov/rnnlm/ and parse training set and test set
into paddle reader creators. into paddle reader creators.
""" """
import paddle.dataset.common import paddle.dataset.common
import collections import collections
import tarfile import tarfile
from six.moves import range
__all__ = ['train', 'test', 'build_dict', 'convert'] __all__ = ['train', 'test', 'build_dict', 'convert']
...@@ -68,7 +69,7 @@ def build_dict(min_word_freq=50): ...@@ -68,7 +69,7 @@ def build_dict(min_word_freq=50):
word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0])) word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*word_freq_sorted)) words, _ = list(zip(*word_freq_sorted))
word_idx = dict(list(zip(words, list(range(len(words)))))) word_idx = dict(list(zip(words, range(len(words)))))
word_idx['<unk>'] = len(words) word_idx['<unk>'] = len(words)
return word_idx return word_idx
......
...@@ -21,6 +21,7 @@ import paddle.dataset.common ...@@ -21,6 +21,7 @@ import paddle.dataset.common
import subprocess import subprocess
import numpy import numpy
import platform import platform
from six.moves import range
__all__ = ['train', 'test', 'convert'] __all__ = ['train', 'test', 'convert']
URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/' URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/'
......
...@@ -16,6 +16,7 @@ import paddle.dataset.common ...@@ -16,6 +16,7 @@ import paddle.dataset.common
import unittest import unittest
import tempfile import tempfile
import glob import glob
from six.moves import range
class TestCommon(unittest.TestCase): class TestCommon(unittest.TestCase):
......
...@@ -22,6 +22,7 @@ parse training set and test set into paddle reader creators. ...@@ -22,6 +22,7 @@ parse training set and test set into paddle reader creators.
import os import os
import numpy as np import numpy as np
import six
import tempfile import tempfile
import tarfile import tarfile
import os import os
...@@ -74,7 +75,7 @@ def load_data(filename, feature_num=14, ratio=0.8): ...@@ -74,7 +75,7 @@ def load_data(filename, feature_num=14, ratio=0.8):
maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum( maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum(
axis=0) / data.shape[0] axis=0) / data.shape[0]
feature_range(maximums[:-1], minimums[:-1]) feature_range(maximums[:-1], minimums[:-1])
for i in range(feature_num - 1): for i in six.moves.range(feature_num - 1):
data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i]) data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])
offset = int(data.shape[0] * ratio) offset = int(data.shape[0] * ratio)
UCI_TRAIN_DATA = data[:offset] UCI_TRAIN_DATA = data[:offset]
...@@ -137,7 +138,7 @@ def predict_reader(): ...@@ -137,7 +138,7 @@ def predict_reader():
It returns just one tuple data to do inference. It returns just one tuple data to do inference.
:return: one tuple data :return: one tuple data
:rtype: tuple :rtype: tuple
""" """
global UCI_TEST_DATA global UCI_TEST_DATA
load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5))
......
...@@ -346,7 +346,7 @@ class Executor(object): ...@@ -346,7 +346,7 @@ class Executor(object):
def _fetch_data(self, fetch_list, fetch_var_name, scope): def _fetch_data(self, fetch_list, fetch_var_name, scope):
outs = [ outs = [
core.get_fetch_variable(scope, fetch_var_name, i) core.get_fetch_variable(scope, fetch_var_name, i)
for i in range(len(fetch_list)) for i in six.moves.range(len(fetch_list))
] ]
return outs return outs
......
...@@ -1497,7 +1497,9 @@ class Program(object): ...@@ -1497,7 +1497,9 @@ class Program(object):
else: else:
p = Program() p = Program()
p.desc = core.ProgramDesc(self.desc) p.desc = core.ProgramDesc(self.desc)
p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())] p.blocks = [
Block(p, i) for i in six.moves.range(self.desc.num_blocks())
]
p._sync_with_cpp() p._sync_with_cpp()
p._copy_param_info_from(self) p._copy_param_info_from(self)
...@@ -1549,7 +1551,9 @@ class Program(object): ...@@ -1549,7 +1551,9 @@ class Program(object):
targets_idx.append([t.block.idx, t.idx]) targets_idx.append([t.block.idx, t.idx])
res = Program() res = Program()
res.desc = core.prune(self.desc, targets_idx) res.desc = core.prune(self.desc, targets_idx)
res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())] res.blocks = [
Block(res, i) for i in six.moves.range(res.desc.num_blocks())
]
res._sync_with_cpp() res._sync_with_cpp()
return res return res
...@@ -1590,13 +1594,15 @@ class Program(object): ...@@ -1590,13 +1594,15 @@ class Program(object):
root_block._remove_var(var.name()) root_block._remove_var(var.name())
# change all `is_test` attributes to True # change all `is_test` attributes to True
for i in range(res.desc.num_blocks()): for i in six.moves.range(res.desc.num_blocks()):
block = res.desc.block(i) block = res.desc.block(i)
for j in range(block.op_size()): for j in six.moves.range(block.op_size()):
op = block.op(j) op = block.op(j)
if op.has_attr('is_test'): if op.has_attr('is_test'):
op.set_attr('is_test', True) op.set_attr('is_test', True)
res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())] res.blocks = [
Block(res, i) for i in six.moves.range(res.desc.num_blocks())
]
res._sync_with_cpp() res._sync_with_cpp()
return res return res
...@@ -1616,7 +1622,7 @@ class Program(object): ...@@ -1616,7 +1622,7 @@ class Program(object):
""" """
p = Program() p = Program()
p.desc = core.ProgramDesc(binary_str) p.desc = core.ProgramDesc(binary_str)
p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())] p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
p._sync_with_cpp() p._sync_with_cpp()
return p return p
......
...@@ -85,7 +85,7 @@ class LayerHelper(object): ...@@ -85,7 +85,7 @@ class LayerHelper(object):
raise ValueError("parameter number mismatch") raise ValueError("parameter number mismatch")
elif len(param_attr) == 1 and length != 1: elif len(param_attr) == 1 and length != 1:
tmp = [None] * length tmp = [None] * length
for i in range(length): for i in six.moves.range(length):
tmp[i] = copy.deepcopy(param_attr[0]) tmp[i] = copy.deepcopy(param_attr[0])
param_attr = tmp param_attr = tmp
return param_attr return param_attr
......
...@@ -21,6 +21,7 @@ from ..layer_helper import LayerHelper ...@@ -21,6 +21,7 @@ from ..layer_helper import LayerHelper
from . import tensor from . import tensor
from . import nn from . import nn
import math import math
import six
from functools import reduce from functools import reduce
__all__ = [ __all__ = [
...@@ -102,7 +103,7 @@ def rpn_target_assign(loc, ...@@ -102,7 +103,7 @@ def rpn_target_assign(loc,
examples. examples.
Returns: Returns:
tuple: tuple:
A tuple(predicted_scores, predicted_location, target_label, A tuple(predicted_scores, predicted_location, target_label,
target_bbox) is returned. The predicted_scores and target_bbox) is returned. The predicted_scores and
predicted_location is the predicted result of the RPN. predicted_location is the predicted result of the RPN.
...@@ -113,7 +114,7 @@ def rpn_target_assign(loc, ...@@ -113,7 +114,7 @@ def rpn_target_assign(loc,
anchors. The predicted_scores is a 2D Tensor with shape anchors. The predicted_scores is a 2D Tensor with shape
[F + B, 1], and the shape of target_label is same as the shape [F + B, 1], and the shape of target_label is same as the shape
of the predicted_scores, B is the number of the background of the predicted_scores, B is the number of the background
anchors, the F and B is depends on the input of this operator. anchors, the F and B is depends on the input of this operator.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -230,8 +231,8 @@ def detection_output(loc, ...@@ -230,8 +231,8 @@ def detection_output(loc,
nms_eta(float): The parameter for adaptive NMS. nms_eta(float): The parameter for adaptive NMS.
Returns: Returns:
Variable: Variable:
The detection outputs is a LoDTensor with shape [No, 6]. The detection outputs is a LoDTensor with shape [No, 6].
Each row has six values: [label, confidence, xmin, ymin, xmax, ymax]. Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
`No` is the total number of detections in this mini-batch. For each `No` is the total number of detections in this mini-batch. For each
...@@ -501,7 +502,7 @@ def target_assign(input, ...@@ -501,7 +502,7 @@ def target_assign(input,
Assumed that the row offset for each instance in `neg_indices` is called neg_lod, Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
for i-th instance and each `id` of neg_indices in this instance: for i-th instance and each `id` of neg_indices in this instance:
.. code-block:: text .. code-block:: text
out[i][id][0 : K] = {mismatch_value, mismatch_value, ...} out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
...@@ -519,11 +520,11 @@ def target_assign(input, ...@@ -519,11 +520,11 @@ def target_assign(input,
mismatch_value (float32): Fill this value to the mismatched location. mismatch_value (float32): Fill this value to the mismatched location.
Returns: Returns:
tuple: tuple:
A tuple(out, out_weight) is returned. out is a 3D Tensor with A tuple(out, out_weight) is returned. out is a 3D Tensor with
shape [N, P, K], N and P is the same as they are in shape [N, P, K], N and P is the same as they are in
`neg_indices`, K is the same as it in input of X. If `neg_indices`, K is the same as it in input of X. If
`match_indices[i][j]`. out_weight is the weight for output with `match_indices[i][j]`. out_weight is the weight for output with
the shape of [N, P, 1]. the shape of [N, P, 1].
Examples: Examples:
...@@ -822,7 +823,7 @@ def prior_box(input, ...@@ -822,7 +823,7 @@ def prior_box(input,
offset(float): Prior boxes center offset. Default: 0.5 offset(float): Prior boxes center offset. Default: 0.5
name(str): Name of the prior box op. Default: None. name(str): Name of the prior box op. Default: None.
min_max_aspect_ratios_order(bool): If set True, the output prior box is min_max_aspect_ratios_order(bool): If set True, the output prior box is
in order of [min, max, aspect_ratios], which is consistent with in order of [min, max, aspect_ratios], which is consistent with
Caffe. Please note, this order affects the weights order of Caffe. Please note, this order affects the weights order of
convolution layer followed by and does not affect the final convolution layer followed by and does not affect the final
detection results. Default: False. detection results. Default: False.
...@@ -965,7 +966,7 @@ def multi_box_head(inputs, ...@@ -965,7 +966,7 @@ def multi_box_head(inputs,
stride(int|list|tuple): The stride of conv2d. Default:1, stride(int|list|tuple): The stride of conv2d. Default:1,
name(str): Name of the prior box layer. Default: None. name(str): Name of the prior box layer. Default: None.
min_max_aspect_ratios_order(bool): If set True, the output prior box is min_max_aspect_ratios_order(bool): If set True, the output prior box is
in order of [min, max, aspect_ratios], which is consistent with in order of [min, max, aspect_ratios], which is consistent with
Caffe. Please note, this order affects the weights order of Caffe. Please note, this order affects the weights order of
convolution layer followed by and does not affect the fininal convolution layer followed by and does not affect the fininal
detection results. Default: False. detection results. Default: False.
...@@ -1033,7 +1034,7 @@ def multi_box_head(inputs, ...@@ -1033,7 +1034,7 @@ def multi_box_head(inputs,
min_sizes = [] min_sizes = []
max_sizes = [] max_sizes = []
step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2))) step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
for ratio in range(min_ratio, max_ratio + 1, step): for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
min_sizes.append(base_size * ratio / 100.) min_sizes.append(base_size * ratio / 100.)
max_sizes.append(base_size * (ratio + step) / 100.) max_sizes.append(base_size * (ratio + step) / 100.)
min_sizes = [base_size * .10] + min_sizes min_sizes = [base_size * .10] + min_sizes
......
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
import contextlib import contextlib
import multiprocessing import multiprocessing
import six
import threading import threading
from ..data_feeder import DataFeeder from ..data_feeder import DataFeeder
...@@ -69,7 +70,7 @@ def data(name, ...@@ -69,7 +70,7 @@ def data(name,
""" """
helper = LayerHelper('data', **locals()) helper = LayerHelper('data', **locals())
shape = list(shape) shape = list(shape)
for i in range(len(shape)): for i in six.moves.range(len(shape)):
if shape[i] is None: if shape[i] is None:
shape[i] = -1 shape[i] = -1
append_batch_size = False append_batch_size = False
...@@ -674,7 +675,7 @@ def py_reader(capacity, ...@@ -674,7 +675,7 @@ def py_reader(capacity,
def __tensor_provider__(): def __tensor_provider__():
for slots in paddle_reader(): for slots in paddle_reader():
yield [slots[str(idx)] for idx in xrange(counter)] yield [slots[str(idx)] for idx in six.moves.xrange(counter)]
__set_tensor_provider__(__tensor_provider__) __set_tensor_provider__(__tensor_provider__)
...@@ -1005,7 +1006,7 @@ class Preprocessor(object): ...@@ -1005,7 +1006,7 @@ class Preprocessor(object):
source_lod_levels = self.underlying_reader.desc.lod_levels() source_lod_levels = self.underlying_reader.desc.lod_levels()
self.source_var_names = [ self.source_var_names = [
unique_name("preprocessor_source") unique_name("preprocessor_source")
for _ in range(len(source_shapes)) for _ in six.moves.range(len(source_shapes))
] ]
source_vars = [] source_vars = []
for var_name, shape, dtype, lod_level in zip( for var_name, shape, dtype, lod_level in zip(
......
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import six
from . import layers from . import layers
__all__ = [ __all__ = [
...@@ -210,7 +211,7 @@ def img_conv_group(input, ...@@ -210,7 +211,7 @@ def img_conv_group(input,
conv_with_batchnorm = __extend_list__(conv_with_batchnorm) conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate) conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)
for i in range(len(conv_num_filter)): for i in six.moves.range(len(conv_num_filter)):
local_conv_act = conv_act local_conv_act = conv_act
if conv_with_batchnorm[i]: if conv_with_batchnorm[i]:
local_conv_act = None local_conv_act = None
......
...@@ -19,6 +19,7 @@ from . import framework ...@@ -19,6 +19,7 @@ from . import framework
from . import executor from . import executor
import warnings import warnings
import sys import sys
import six
import os import os
__all__ = ['ParallelExecutor', 'ExecutionStrategy', 'BuildStrategy'] __all__ = ['ParallelExecutor', 'ExecutionStrategy', 'BuildStrategy']
...@@ -95,7 +96,7 @@ class ParallelExecutor(object): ...@@ -95,7 +96,7 @@ class ParallelExecutor(object):
self._places = [] self._places = []
self._act_places = [] self._act_places = []
if use_cuda: if use_cuda:
for i in range(core.get_cuda_device_count()): for i in six.moves.range(core.get_cuda_device_count()):
p = core.Place() p = core.Place()
self._act_places.append(core.CUDAPlace(i)) self._act_places.append(core.CUDAPlace(i))
p.set_place(self._act_places[-1]) p.set_place(self._act_places[-1])
...@@ -103,7 +104,7 @@ class ParallelExecutor(object): ...@@ -103,7 +104,7 @@ class ParallelExecutor(object):
else: else:
cpu_num = int( cpu_num = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count())) os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
for i in range(cpu_num): for i in six.moves.range(cpu_num):
p = core.Place() p = core.Place()
self._act_places.append(core.CPUPlace()) self._act_places.append(core.CPUPlace())
p.set_place(self._act_places[-1]) p.set_place(self._act_places[-1])
......
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
import numpy import numpy
import six
import paddle import paddle
import paddle.dataset.mnist as mnist import paddle.dataset.mnist as mnist
...@@ -31,7 +32,7 @@ def network(is_train): ...@@ -31,7 +32,7 @@ def network(is_train):
hidden = img hidden = img
for i in xrange(2): for i in six.moves.xrange(2):
hidden = fluid.layers.fc(input=hidden, size=100, act='tanh') hidden = fluid.layers.fc(input=hidden, size=100, act='tanh')
hidden = fluid.layers.dropout( hidden = fluid.layers.dropout(
hidden, dropout_prob=0.5, is_test=not is_train) hidden, dropout_prob=0.5, is_test=not is_train)
...@@ -74,7 +75,7 @@ def main(): ...@@ -74,7 +75,7 @@ def main():
test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512)) test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
for epoch_id in xrange(10): for epoch_id in six.moves.xrange(10):
train_reader.start() train_reader.start()
try: try:
while True: while True:
......
...@@ -22,6 +22,7 @@ import paddle.fluid as fluid ...@@ -22,6 +22,7 @@ import paddle.fluid as fluid
from paddle.fluid import core from paddle.fluid import core
import os import os
import sys import sys
import six
import transformer_model import transformer_model
import paddle.dataset.wmt16 as wmt16 import paddle.dataset.wmt16 as wmt16
...@@ -222,7 +223,7 @@ class DistTransformer2x2(object): ...@@ -222,7 +223,7 @@ class DistTransformer2x2(object):
first_loss, = exe.run(fetch_list=[avg_cost.name]) first_loss, = exe.run(fetch_list=[avg_cost.name])
print(first_loss) print(first_loss)
for i in xrange(5): for i in six.moves.xrange(5):
_ = exe.run(fetch_list=[avg_cost.name]) _ = exe.run(fetch_list=[avg_cost.name])
last_loss, = exe.run(fetch_list=[avg_cost.name]) last_loss, = exe.run(fetch_list=[avg_cost.name])
print(last_loss) print(last_loss)
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
import six
from op_test import OpTest from op_test import OpTest
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
...@@ -59,7 +60,7 @@ class TestSpliteIds(unittest.TestCase): ...@@ -59,7 +60,7 @@ class TestSpliteIds(unittest.TestCase):
x_tensor = x.get_tensor() x_tensor = x.get_tensor()
x_tensor.set(np_array, place) x_tensor.set(np_array, place)
outs_name = ["out%d" % i for i in xrange(3)] outs_name = ["out%d" % i for i in six.moves.xrange(3)]
outs = [ outs = [
scope.var(var_name).get_selected_rows() for var_name in outs_name scope.var(var_name).get_selected_rows() for var_name in outs_name
] ]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册