Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1f516fa0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1f516fa0
编写于
7月 19, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify format, and modify the layer grad test, op test
上级
81998868
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
168 addition
and
243 deletion
+168
-243
paddle/function/ConvOpTest.cpp
paddle/function/ConvOpTest.cpp
+152
-231
paddle/gserver/layers/ExpandConvLayer.cpp
paddle/gserver/layers/ExpandConvLayer.cpp
+9
-8
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+7
-4
未找到文件。
paddle/function/ConvOpTest.cpp
浏览文件 @
1f516fa0
...
...
@@ -25,95 +25,89 @@ enum TestType {
kBackwardFilterTest
=
2
,
};
enum
LayerType
{
convolutionType
=
0
,
depthwiseConvolutionType
=
1
,
};
template
<
DeviceType
DType1
,
DeviceType
DType2
>
class
ConvolutionTest
{
public:
ConvolutionTest
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
LayerType
layerType
,
TestType
type
,
bool
useGroups
=
true
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
1
,
32
})
{
for
(
size_t
inputSize
:
{
7
,
14
,
54
})
{
for
(
size_t
filterSize
:
{
1
,
3
,
5
})
{
for
(
size_t
inputChannels
:
{
3
,
64
})
{
for
(
size_t
outputChannels
:
{
3
,
64
,
128
})
{
if
(
inputChannels
>
outputChannels
)
break
;
if
(
layerType
==
depthwiseConvolutionType
&&
outputChannels
%
inputChannels
!=
0
)
break
;
size_t
groups
=
1
;
if
(
layerType
==
depthwiseConvolutionType
)
{
groups
=
inputChannels
;
}
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
;
if
(
layerType
==
depthwiseConvolutionType
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
(
size_t
)
1
,
filterSize
,
filterSize
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterSize
,
filterSize
});
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
();
for
(
size_t
groups
:
{
1
,
3
,
64
})
{
if
(
inputChannels
>
outputChannels
)
break
;
if
(
groups
!=
1
&&
(
inputChannels
!=
groups
||
outputChannels
%
groups
!=
0
))
continue
;
if
(
!
useGroups
)
groups
=
1
;
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
;
if
(
groups
>
1
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
inputChannels
/
groups
,
filterSize
,
filterSize
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterSize
,
filterSize
});
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
();
}
}
}
}
...
...
@@ -132,8 +126,8 @@ class ConvolutionTest2 {
public:
ConvolutionTest2
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
LayerType
layerType
,
TestType
type
,
bool
useGroups
=
true
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
16
})
{
for
(
size_t
inputHeight
:
{
7
,
31
})
{
...
...
@@ -142,78 +136,78 @@ public:
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
inputChannels
:
{
7
})
{
for
(
size_t
outputChannels
:
{
7
,
32
})
{
if
(
layerType
==
depthwiseConvolutionType
&&
outputChannels
%
inputChannels
!=
0
)
break
;
size_t
groups
=
1
;
if
(
layerType
==
depthwiseConvolutionType
)
{
groups
=
inputChannels
;
}
size_t
stride
=
1
;
size_t
padding
=
0
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
size_t
outputWidth
=
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputHeight
<<
" inputWidth="
<<
inputWidth
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filter
Height
<<
" filterWidth="
<<
filter
Width
<<
" outputHeight="
<<
outputHeight
<<
" outputWidth="
<<
outputWidth
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
(
)
.
set
(
"paddings"
,
padding
s
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
}
;
TensorShape
filter
;
if
(
layerType
==
depthwiseConvolutionType
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
(
size_t
)
1
,
filterHeight
,
filterWidth
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterHeight
,
filterWidth
})
;
TensorShape
output
{
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
in
put
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
)
);
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
(
);
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
)
);
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
out
put
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
)
);
test
.
run
();
for
(
size_t
groups
:
{
1
,
7
})
{
if
(
!
useGroups
&&
groups
!=
1
&&
(
inputChannels
!=
groups
||
outputChannels
%
groups
!=
0
))
continue
;
if
(
!
useGroups
)
groups
=
1
;
size_t
stride
=
1
;
size_t
padding
=
0
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
size_t
outputWidth
=
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputHeight
<<
" inputWidth="
<<
inputWidth
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterHeight
<<
" filterWidth="
<<
filterWidth
<<
" outputHeight="
<<
output
Height
<<
" outputWidth="
<<
output
Width
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
}
;
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
group
s
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
};
TensorShape
filter
;
if
(
groups
>
1
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
inputChannels
/
groups
,
filterHeight
,
filterWidth
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterHeight
,
filterWidth
});
TensorShape
output
{
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
}
;
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
out
put
));
test
.
run
(
);
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
)
);
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
(
);
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
in
put
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
(
);
}
}
}
}
...
...
@@ -225,107 +219,34 @@ public:
}
};
// ======Start Convolution TEST======
TEST
(
Forward
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
convolutionType
,
kForwardTest
);
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
kForwardTest
,
false
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test2
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
convolutionType
,
kForwardTest
);
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
kForwardTest
,
false
);
}
#ifndef PADDLE_ONLY_CPU
TEST
(
Forward
,
GEMM2
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
convolutionType
,
kForwardTest
);
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
convolutionType
,
kForwardTest
);
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
);
}
TEST
(
BackwardInput
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
convolutionType
,
kBackwardInputTest
);
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
convolutionType
,
kBackwardInputTest
);
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
);
}
TEST
(
BackwardFilter
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
convolutionType
,
kBackwardFilterTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
convolutionType
,
kBackwardFilterTest
);
}
#endif
// ======End Convolution TEST======
// ======Start DepthwiseConvolution TEST======
// TODO(zhaolong) The depthwise convolution cpu test will be added when the cpu
// version of depthwiseConv is implemented.
#ifndef PADDLE_ONLY_CPU
TEST
(
DepthwiseConvForward
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_GPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
}
TEST
(
DepthwiseConvForward
,
GEMM2
)
{
ConvolutionTest
<
DEVICE_TYPE_GPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
}
TEST
(
DepthwiseConvBackwardInput
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConvGradInput-GPU"
,
"DepthwiseConvGradInput-GPU"
,
depthwiseConvolutionType
,
kBackwardInputTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConvGradInput-GPU"
,
"DepthwiseConvGradInput-GPU"
,
depthwiseConvolutionType
,
kBackwardInputTest
);
}
TEST
(
DepthwiseConvBackwardFilter
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConvGradFilter-GPU"
,
"DepthwiseConvGradFilter-GPU"
,
depthwiseConvolutionType
,
kBackwardFilterTest
);
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConvGradFilter-GPU"
,
"DepthwiseConvGradFilter-GPU"
,
depthwiseConvolutionType
,
kBackwardFilterTest
);
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
);
}
#endif
// ======End DepthwiseConvolution TEST======
}
// namespace paddle
paddle/gserver/layers/ExpandConvLayer.cpp
浏览文件 @
1f516fa0
...
...
@@ -39,21 +39,22 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
filterShape_
.
resize
(
numInputs
);
outputShape_
.
resize
(
numInputs
);
string
convType
;
string
convGradInputType
;
string
convGradFilterType
;
st
d
::
st
ring
convType
;
st
d
::
st
ring
convGradInputType
;
st
d
::
st
ring
convGradFilterType
;
for
(
int
i
=
0
;
i
<
config_
.
inputs_size
();
i
++
)
{
std
::
vector
<
size_t
>
paddings
=
{(
size_t
)
paddingY_
[
i
],
(
size_t
)
padding_
[
i
]};
std
::
vector
<
size_t
>
strides
=
{(
size_t
)
strideY_
[
i
],
(
size_t
)
stride_
[
i
]};
if
(
useGpu_
&&
(
size_t
)
groups_
[
i
]
==
(
size_t
)
channels_
[
i
]
&&
!
isDeconv_
)
{
convType
=
"DepthwiseConv"
convGradInputType
=
"DepthwiseConvGradInput"
convGradFilterType
=
"DepthwiseConvGradFilter"
convType
=
"DepthwiseConv"
;
convGradInputType
=
"DepthwiseConvGradInput"
;
convGradFilterType
=
"DepthwiseConvGradFilter"
;
}
else
{
convType
=
"GemmConv"
convGradInputType
=
"GemmConvGradInput"
convGradFilterType
=
"GemmConvGradFilter"
convType
=
"GemmConv"
;
convGradInputType
=
"GemmConvGradInput"
;
convGradFilterType
=
"GemmConvGradFilter"
;
}
if
(
FLAGS_use_nnpack
)
{
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
1f516fa0
...
...
@@ -349,13 +349,13 @@ TEST(Layer, CosSimVecMatLayer) {
void
testDepthwiseConvLayer
(
const
string
&
type
,
bool
useGpu
)
{
TestConfig
config
;
config
.
biasSize
=
16
;
config
.
biasSize
=
32
;
config
.
layerConfig
.
set_type
(
type
);
config
.
layerConfig
.
set_num_filters
(
16
);
config
.
layerConfig
.
set_num_filters
(
32
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
2048
,
192
/
2
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
2048
,
192
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
...
...
@@ -388,8 +388,11 @@ void testDepthwiseConvLayer(const string& type, bool useGpu) {
}
TEST
(
Layer
,
depthwiseConvLayer
)
{
// 'depthwise_conv' is a sepecial case of 'exconv' whose
// groups size equals to the input channels size.
testDepthwiseConvLayer
(
"exconv"
,
/* useGpu= */
false
);
#ifndef PADDLE_ONLY_CPU
testDepthwiseConvLayer
(
"
depthwise_
conv"
,
/* useGpu= */
true
);
testDepthwiseConvLayer
(
"
ex
conv"
,
/* useGpu= */
true
);
#endif
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录