未验证 提交 1eb59ef0 编写于 作者: W wangna11BD 提交者: GitHub

modify en_doco of spectral norm test=document_fix (#32812)

上级 3419de53
...@@ -143,14 +143,14 @@ def spectral_norm(layer, ...@@ -143,14 +143,14 @@ def spectral_norm(layer,
and W is the product result of remaining dimensions. and W is the product result of remaining dimensions.
Step 2: Step 2:
:attr:`power_iters` should be a positive integer, do following :attr:`n_power_iterations` should be a positive integer, do following
calculations with U and V for :attr:`power_iters` rounds. calculations with U and V for :attr:`power_iters` rounds.
.. math:: .. math::
\mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2} \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
\mathbf{u} := \\frac{\mathbf{W} \mathbf{v}}{\|\mathbf{W} \mathbf{v}\|_2} \mathbf{u} := \frac{\mathbf{W} \mathbf{v}}{\|\mathbf{W} \mathbf{v}\|_2}
Step 3: Step 3:
Calculate :math:`\sigma(\mathbf{W})` and normalize weight values. Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
...@@ -159,7 +159,7 @@ def spectral_norm(layer, ...@@ -159,7 +159,7 @@ def spectral_norm(layer,
\sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v} \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
\mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})} \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ . Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册