未验证 提交 1dbbe20e 编写于 作者: C ccrrong 提交者: GitHub

add equal trt converter (#43461)

* add comparisons trt converter
上级 6132476d
...@@ -2078,6 +2078,7 @@ USE_TRT_CONVERTER(transformer_input_convert) ...@@ -2078,6 +2078,7 @@ USE_TRT_CONVERTER(transformer_input_convert)
USE_TRT_CONVERTER(cast) USE_TRT_CONVERTER(cast)
USE_TRT_CONVERTER(recover_padding) USE_TRT_CONVERTER(recover_padding)
USE_TRT_CONVERTER(remove_padding) USE_TRT_CONVERTER(remove_padding)
USE_TRT_CONVERTER(equal);
USE_TRT_CONVERTER(top_k) USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER(top_k_v2) USE_TRT_CONVERTER(top_k_v2)
USE_TRT_CONVERTER(squeeze2) USE_TRT_CONVERTER(squeeze2)
......
...@@ -62,6 +62,7 @@ list( ...@@ -62,6 +62,7 @@ list(
transformer_input_convert_op.cc transformer_input_convert_op.cc
cast_op.cc cast_op.cc
remove_padding_op.cc remove_padding_op.cc
equal_op.cc
recover_padding_op.cc recover_padding_op.cc
preln_residual_bias.cc preln_residual_bias.cc
c_allreduce_op.cc c_allreduce_op.cc
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/elementwise_op_plugin.h"
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
class EqualOpConverter : public OpConverter {
public:
EqualOpConverter() {}
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
#if IS_TRT_VERSION_GE(8000)
framework::OpDesc op_desc(op, nullptr);
nvinfer1::ILayer* layer = nullptr;
auto* X = engine_->GetITensor(op_desc.Input("X").front());
auto* Y = engine_->GetITensor(op_desc.Input("Y").front());
nvinfer1::Dims dims_x = X->getDimensions();
nvinfer1::Dims dims_y = Y->getDimensions();
int axis = BOOST_GET_CONST(int, op_desc.GetAttr("axis"));
if (axis < 0) {
axis = std::abs(dims_x.nbDims - dims_y.nbDims);
}
auto output_name = op_desc.Output("Out")[0];
nvinfer1::IShuffleLayer* expand_layer = nullptr;
if (dims_x.nbDims > dims_y.nbDims) {
nvinfer1::Dims expand_shape;
expand_shape.nbDims = dims_x.nbDims;
for (int i = 0; i < expand_shape.nbDims; i++) {
expand_shape.d[i] = 1;
}
for (int i = 0; i < dims_y.nbDims; i++) {
expand_shape.d[i + axis] = dims_y.d[i];
}
expand_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *Y);
expand_layer->setReshapeDimensions(expand_shape);
Y = expand_layer->getOutput(0);
} else if (dims_x.nbDims < dims_y.nbDims) {
nvinfer1::Dims expand_shape;
expand_shape.nbDims = dims_y.nbDims;
for (int i = 0; i < expand_shape.nbDims; i++) {
expand_shape.d[i] = 1;
}
for (int i = 0; i < dims_x.nbDims; i++) {
expand_shape.d[i + axis] = dims_x.d[i];
}
expand_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
expand_layer->setReshapeDimensions(expand_shape);
X = expand_layer->getOutput(0);
}
layer = TRT_ENGINE_ADD_LAYER(
engine_, ElementWise, *X, *Y, nvinfer1::ElementWiseOperation::kEQUAL);
RreplenishLayerAndOutput(layer, "equal", {output_name}, test_mode);
#else
PADDLE_THROW(
platform::errors::Fatal("ElementWise Equal Operation is only supported "
"on TRT 8 or higher version."));
#endif
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(equal, EqualOpConverter);
...@@ -110,6 +110,7 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -110,6 +110,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise_mul", "elementwise_mul",
"elementwise_div", "elementwise_div",
"elementwise_pow", "elementwise_pow",
"equal",
"dropout", "dropout",
"prelu", "prelu",
"conv2d_transpose", "conv2d_transpose",
...@@ -213,6 +214,7 @@ struct SimpleOpTypeSetTeller : public Teller { ...@@ -213,6 +214,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise_mul", "elementwise_mul",
"elementwise_div", "elementwise_div",
"elementwise_pow", "elementwise_pow",
"equal",
"dropout", "dropout",
"prelu", "prelu",
"conv2d_transpose", "conv2d_transpose",
...@@ -2049,6 +2051,25 @@ bool OpTeller::Tell(const framework::ir::Node* node, ...@@ -2049,6 +2051,25 @@ bool OpTeller::Tell(const framework::ir::Node* node,
} }
#endif #endif
if (op_type == "equal") {
#if !IS_TRT_VERSION_GE(8000)
VLOG(3) << "compare is not supported when TensorRT < 8.0";
return false;
#else
int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
if (axis == 0) {
return false;
}
auto* block = desc.Block();
if (block == nullptr) {
VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass.";
return false;
}
#endif
}
if ((*teller)(op_type, desc, use_no_calib_int8)) return true; if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
} }
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import unittest
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertElementwiseTest_one_input_corner_case(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
if attrs[0]['axis'] == 0:
return false
ver = paddle_infer.get_trt_compile_version()
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 8415:
return False
return True
def sample_program_configs(self):
def generate_input(shape):
return np.random.random(shape).astype(np.float32)
for batch in [1, 2, 4]:
for shape in [[batch, 1], [batch, 1, 32], [batch, 1, 16, 32]]:
for axis in [-1 if len(shape) == 1 else 1]:
self.dims = len(shape)
dics = [{"axis": axis}, {"in_dtype": 0, "out_dtype": 5}]
ops_config = [{
"op_type": "equal",
"op_inputs": {
"X": ["input_data1"],
"Y": ["input_data2"]
},
"op_outputs": {
"Out": ["compare_output_data"]
},
"op_attrs": dics[0]
}, {
"op_type": "cast",
"op_inputs": {
"X": ["compare_output_data"]
},
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": dics[1]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data1":
TensorConfig(
data_gen=partial(generate_input, shape)),
"input_data2":
TensorConfig(
data_gen=partial(generate_input, shape))
},
outputs=["output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
# The input.dims[1] must be equal to the weight's length.
if self.dims == 2:
self.dynamic_shape.min_input_shape = {
"input_data1": [1, 1],
"input_data2": [1, 1]
}
self.dynamic_shape.max_input_shape = {
"input_data1": [4, 1],
"input_data2": [4, 1]
}
self.dynamic_shape.opt_input_shape = {
"input_data1": [2, 1],
"input_data2": [2, 1]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"input_data1": [1, 1, 4],
"input_data2": [1, 1, 4]
}
self.dynamic_shape.max_input_shape = {
"input_data1": [4, 1, 256],
"input_data2": [1, 1, 256]
}
self.dynamic_shape.opt_input_shape = {
"input_data1": [2, 1, 16],
"input_data2": [2, 1, 16]
}
elif self.dims == 4:
self.dynamic_shape.min_input_shape = {
"input_data1": [1, 1, 4, 4],
"input_data2": [1, 1, 4, 4]
}
self.dynamic_shape.max_input_shape = {
"input_data1": [4, 1, 128, 256],
"input_data2": [4, 1, 128, 256]
}
self.dynamic_shape.opt_input_shape = {
"input_data1": [2, 1, 32, 16],
"input_data2": [2, 1, 32, 16]
}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if self.dims == 1:
return 0, 3
return 1, 2
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), 1e-5
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册