Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1da03005
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
1da03005
编写于
11月 05, 2018
作者:
Z
Zhen Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dam test
上级
eb7ed1b7
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
231 addition
and
5 deletion
+231
-5
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+5
-0
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
+224
-0
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
+2
-5
未找到文件。
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
1da03005
...
...
@@ -43,6 +43,11 @@ set(RNN2_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn2")
download_model_and_data
(
${
RNN2_INSTALL_DIR
}
"rnn2_model.tar.gz"
"rnn2_data.txt.tar.gz"
)
inference_analysis_api_test
(
test_analyzer_rnn2
${
RNN2_INSTALL_DIR
}
analyzer_rnn2_tester.cc
)
# DAM
set
(
DAM_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/dam"
)
download_model_and_data
(
${
DAM_INSTALL_DIR
}
"DAM_model.tar.gz"
"DAM_data.txt.tar.gz"
)
inference_analysis_api_test
(
test_analyzer_dam
${
DAM_INSTALL_DIR
}
analyzer_dam_tester.cc
)
# chinese_ner
set
(
CHINESE_NER_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/chinese_ner"
)
download_model_and_data
(
${
CHINESE_NER_INSTALL_DIR
}
"chinese_ner_model.tar.gz"
"chinese_ner-data.txt.tar.gz"
)
...
...
paddle/fluid/inference/tests/api/analyzer_dam_tester.cc
0 → 100644
浏览文件 @
1da03005
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tests/api/tester_helper.h"
namespace
paddle
{
namespace
inference
{
using
contrib
::
AnalysisConfig
;
#define MAX_TURN_NUM 9
#define MAX_TURN_LEN 50
static
std
::
vector
<
float
>
result_data
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
turns
[
MAX_TURN_NUM
];
// turns data : MAX_TURN_NUM
std
::
vector
<
std
::
vector
<
float
>>
turns_mask
[
MAX_TURN_NUM
];
// turns mask data : MAX_TURN_NUM
std
::
vector
<
std
::
vector
<
int64_t
>>
response
;
// response data : 1
std
::
vector
<
std
::
vector
<
float
>>
response_mask
;
// response mask data : 1
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
size_t
num_samples
;
// total number of samples
DataRecord
()
=
default
;
explicit
DataRecord
(
const
std
::
string
&
path
,
int
batch_size
=
1
)
:
batch_size
(
batch_size
)
{
Load
(
path
);
}
DataRecord
NextBatch
()
{
DataRecord
data
;
size_t
batch_end
=
batch_iter
+
batch_size
;
// NOTE skip the final batch, if no enough data is provided.
if
(
batch_end
<=
response
.
size
())
{
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
data
.
turns
[
i
].
assign
(
turns
[
i
].
begin
()
+
batch_iter
,
turns
[
i
].
begin
()
+
batch_end
);
}
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
data
.
turns_mask
[
i
].
assign
(
turns_mask
[
i
].
begin
()
+
batch_iter
,
turns_mask
[
i
].
begin
()
+
batch_end
);
}
data
.
response
.
assign
(
response
.
begin
()
+
batch_iter
,
response
.
begin
()
+
batch_end
);
data
.
response_mask
.
assign
(
response_mask
.
begin
()
+
batch_iter
,
response_mask
.
begin
()
+
batch_end
);
CHECK
(
!
data
.
response
.
empty
());
CHECK
(
!
data
.
response_mask
.
empty
());
CHECK_EQ
(
data
.
response
.
size
(),
data
.
response_mask
.
size
());
}
batch_iter
+=
batch_size
;
return
data
;
}
void
Load
(
const
std
::
string
&
path
)
{
std
::
ifstream
file
(
path
);
std
::
string
line
;
size_t
num_lines
=
0
;
result_data
.
clear
();
while
(
std
::
getline
(
file
,
line
))
{
num_lines
++
;
std
::
vector
<
std
::
string
>
data
;
split
(
line
,
','
,
&
data
);
CHECK_EQ
(
data
.
size
(),
2
*
MAX_TURN_NUM
+
3
);
// load turn data
std
::
vector
<
int64_t
>
turns_tmp
[
MAX_TURN_NUM
];
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
split_to_int64
(
data
[
i
],
' '
,
&
turns_tmp
[
i
]);
turns
[
i
].
push_back
(
std
::
move
(
turns_tmp
[
i
]));
}
// load turn_mask data
std
::
vector
<
float
>
turns_mask_tmp
[
MAX_TURN_NUM
];
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
split_to_float
(
data
[
MAX_TURN_NUM
+
i
],
' '
,
&
turns_mask_tmp
[
i
]);
turns_mask
[
i
].
push_back
(
std
::
move
(
turns_mask_tmp
[
i
]));
}
// load response data
std
::
vector
<
int64_t
>
response_tmp
;
split_to_int64
(
data
[
2
*
MAX_TURN_NUM
],
' '
,
&
response_tmp
);
response
.
push_back
(
std
::
move
(
response_tmp
));
// load response_mask data
std
::
vector
<
float
>
response_mask_tmp
;
split_to_float
(
data
[
2
*
MAX_TURN_NUM
+
1
],
' '
,
&
response_mask_tmp
);
response_mask
.
push_back
(
std
::
move
(
response_mask_tmp
));
// load result data
float
result_tmp
;
result_tmp
=
std
::
stof
(
data
[
2
*
MAX_TURN_NUM
+
2
]);
result_data
.
push_back
(
result_tmp
);
}
num_samples
=
num_lines
;
}
};
void
PrepareInputs
(
std
::
vector
<
PaddleTensor
>
*
input_slots
,
DataRecord
*
data
,
int
batch_size
)
{
PaddleTensor
turns_tensor
[
MAX_TURN_NUM
];
PaddleTensor
turns_mask_tensor
[
MAX_TURN_NUM
];
PaddleTensor
response_tensor
;
PaddleTensor
response_mask_tensor
;
std
::
string
turn_pre
=
"turn_"
;
std
::
string
turn_mask_pre
=
"turn_mask_"
;
auto
one_batch
=
data
->
NextBatch
();
int
size
=
one_batch
.
response
[
0
].
size
();
CHECK_EQ
(
size
,
MAX_TURN_LEN
);
// turn tensor assignment
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
turns_tensor
[
i
].
name
=
turn_pre
+
std
::
to_string
(
i
);
turns_tensor
[
i
].
shape
.
assign
({
batch_size
,
size
,
1
});
turns_tensor
[
i
].
dtype
=
PaddleDType
::
INT64
;
TensorAssignData
<
int64_t
>
(
&
turns_tensor
[
i
],
one_batch
.
turns
[
i
]);
}
// turn mask tensor assignment
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
turns_mask_tensor
[
i
].
name
=
turn_mask_pre
+
std
::
to_string
(
i
);
turns_mask_tensor
[
i
].
shape
.
assign
({
batch_size
,
size
,
1
});
turns_mask_tensor
[
i
].
dtype
=
PaddleDType
::
FLOAT32
;
TensorAssignData
<
float
>
(
&
turns_mask_tensor
[
i
],
one_batch
.
turns_mask
[
i
]);
}
// response tensor assignment
response_tensor
.
name
=
"response"
;
response_tensor
.
shape
.
assign
({
batch_size
,
size
,
1
});
response_tensor
.
dtype
=
PaddleDType
::
INT64
;
TensorAssignData
<
int64_t
>
(
&
response_tensor
,
one_batch
.
response
);
// response mask tensor assignment
response_mask_tensor
.
name
=
"response_mask"
;
response_mask_tensor
.
shape
.
assign
({
batch_size
,
size
,
1
});
response_mask_tensor
.
dtype
=
PaddleDType
::
FLOAT32
;
TensorAssignData
<
float
>
(
&
response_mask_tensor
,
one_batch
.
response_mask
);
// Set inputs.
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
input_slots
->
push_back
(
std
::
move
(
turns_tensor
[
i
]));
}
for
(
int
i
=
0
;
i
<
MAX_TURN_NUM
;
++
i
)
{
input_slots
->
push_back
(
std
::
move
(
turns_mask_tensor
[
i
]));
}
input_slots
->
push_back
(
std
::
move
(
response_tensor
));
input_slots
->
push_back
(
std
::
move
(
response_mask_tensor
));
}
void
SetConfig
(
contrib
::
AnalysisConfig
*
cfg
)
{
cfg
->
prog_file
=
FLAGS_infer_model
+
"/__model__"
;
cfg
->
param_file
=
FLAGS_infer_model
+
"/param"
;
cfg
->
use_gpu
=
false
;
cfg
->
device
=
0
;
cfg
->
specify_input_name
=
true
;
cfg
->
enable_ir_optim
=
true
;
}
void
SetInput
(
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
*
inputs
)
{
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
std
::
vector
<
PaddleTensor
>
input_slots
;
int
test_batch_num
=
FLAGS_test_all_data
?
data
.
num_samples
/
FLAGS_batch_size
:
1
;
LOG
(
INFO
)
<<
"The number of samples to be test: "
<<
test_batch_num
*
FLAGS_batch_size
;
for
(
int
bid
=
0
;
bid
<
test_batch_num
;
++
bid
)
{
input_slots
.
clear
();
PrepareInputs
(
&
input_slots
,
&
data
,
FLAGS_batch_size
);
(
*
inputs
).
emplace_back
(
input_slots
);
}
}
// Easy for profiling independently.
TEST
(
Analyzer_dam
,
profile
)
{
contrib
::
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
PaddleTensor
>
outputs
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
TestPrediction
(
cfg
,
input_slots_all
,
&
outputs
,
FLAGS_num_threads
);
if
(
FLAGS_num_threads
==
1
&&
!
FLAGS_test_all_data
)
{
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
size_t
size
=
GetSize
(
outputs
[
0
]);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
result
=
static_cast
<
float
*>
(
outputs
[
0
].
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_NEAR
(
result
[
i
],
result_data
[
i
],
1e-3
);
}
}
}
// Check the fuse status
TEST
(
Analyzer_dam
,
fuse_statis
)
{
contrib
::
AnalysisConfig
cfg
;
// cfg.enable_ir_optim must be set true
SetConfig
(
&
cfg
);
int
num_ops
;
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
>
(
cfg
);
auto
fuse_statis
=
GetFuseStatis
(
static_cast
<
AnalysisPredictor
*>
(
predictor
.
get
()),
&
num_ops
);
ASSERT_TRUE
(
fuse_statis
.
count
(
"fc_fuse"
));
EXPECT_EQ
(
fuse_statis
.
at
(
"fc_fuse"
),
317
);
EXPECT_EQ
(
num_ops
,
2020
);
}
// Compare result of NativeConfig and AnalysisConfig
TEST
(
Analyzer_dam
,
compare
)
{
contrib
::
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
CompareNativeAndAnalysis
(
cfg
,
input_slots_all
);
}
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/api/analyzer_ner_tester.cc
浏览文件 @
1da03005
...
...
@@ -20,7 +20,6 @@ using contrib::AnalysisConfig;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
int64_t
>>
word_data_all
,
mention_data_all
;
std
::
vector
<
std
::
vector
<
int64_t
>>
rnn_word_datas
,
rnn_mention_datas
;
std
::
vector
<
size_t
>
lod
;
// two inputs have the same lod info.
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
...
...
@@ -45,8 +44,6 @@ struct DataRecord {
CHECK
(
!
data
.
mention_data_all
.
empty
());
CHECK_EQ
(
data
.
word_data_all
.
size
(),
data
.
mention_data_all
.
size
());
for
(
size_t
j
=
0
;
j
<
data
.
word_data_all
.
size
();
j
++
)
{
data
.
rnn_word_datas
.
push_back
(
data
.
word_data_all
[
j
]);
data
.
rnn_mention_datas
.
push_back
(
data
.
mention_data_all
[
j
]);
// calculate lod
data
.
lod
.
push_back
(
data
.
lod
.
back
()
+
data
.
word_data_all
[
j
].
size
());
}
...
...
@@ -87,8 +84,8 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
lod_mention_tensor
.
shape
.
assign
({
size
,
1
});
lod_mention_tensor
.
lod
.
assign
({
one_batch
.
lod
});
// assign data
TensorAssignData
<
int64_t
>
(
&
lod_word_tensor
,
one_batch
.
rnn_word_datas
);
TensorAssignData
<
int64_t
>
(
&
lod_mention_tensor
,
one_batch
.
rnn_mention_datas
);
TensorAssignData
<
int64_t
>
(
&
lod_word_tensor
,
one_batch
.
word_data_all
);
TensorAssignData
<
int64_t
>
(
&
lod_mention_tensor
,
one_batch
.
mention_data_all
);
// Set inputs.
input_slots
->
assign
({
lod_word_tensor
,
lod_mention_tensor
});
for
(
auto
&
tensor
:
*
input_slots
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录