Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1cbffbc4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1cbffbc4
编写于
9月 16, 2021
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into make_flag_adding_easier
上级
ca0136a6
a4eadd15
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
595 addition
and
44 deletion
+595
-44
paddle/fluid/operators/group_norm_op.cc
paddle/fluid/operators/group_norm_op.cc
+6
-0
paddle/fluid/operators/group_norm_op.cu
paddle/fluid/operators/group_norm_op.cu
+3
-2
paddle/fluid/operators/group_norm_op.h
paddle/fluid/operators/group_norm_op.h
+4
-4
paddle/fluid/operators/index_select_op_npu.cc
paddle/fluid/operators/index_select_op_npu.cc
+107
-6
python/paddle/distributed/fleet/meta_optimizers/sharding/gradient_clip_helper.py
...ed/fleet/meta_optimizers/sharding/gradient_clip_helper.py
+90
-19
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+1
-2
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+9
-2
python/paddle/fluid/tests/unittests/npu/test_index_select_op_npu.py
...dle/fluid/tests/unittests/npu/test_index_select_op_npu.py
+23
-6
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
...uid/tests/unittests/test_fleet_sharding_meta_optimizer.py
+27
-0
python/paddle/fluid/tests/unittests/test_segment_ops.py
python/paddle/fluid/tests/unittests/test_segment_ops.py
+61
-1
python/paddle/incubate/__init__.py
python/paddle/incubate/__init__.py
+13
-2
python/paddle/incubate/tensor/__init__.py
python/paddle/incubate/tensor/__init__.py
+25
-0
python/paddle/incubate/tensor/math.py
python/paddle/incubate/tensor/math.py
+225
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
paddle/fluid/operators/group_norm_op.cc
浏览文件 @
1cbffbc4
...
...
@@ -66,6 +66,12 @@ class GroupNormOp : public framework::OperatorWithKernel {
"The Attr(groups) of Op(group_norm) must be "
"greater than or equal to 1. But received: groups is [%s]."
,
groups
));
PADDLE_ENFORCE_EQ
(
channel_num
%
groups
,
0
,
platform
::
errors
::
InvalidArgument
(
"Expected number of channels in input to be divisible by "
"num_groups, but got input channel is %d and num_groups is %d"
,
channel_num
,
groups
));
if
(
ctx
->
HasInput
(
"Scale"
))
{
PADDLE_ENFORCE_EQ
(
...
...
paddle/fluid/operators/group_norm_op.cu
浏览文件 @
1cbffbc4
...
...
@@ -144,7 +144,8 @@ class GroupNormKernel<platform::CUDADeviceContext, T>
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
group_size
=
(
C
-
1
)
/
groups
+
1
;
const
int
group_size
=
C
/
groups
;
const
int
W
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
x_dims
.
size
()
-
1
]
:
x_dims
[
x_dims
.
size
()
-
2
]);
...
...
@@ -314,7 +315,7 @@ class GroupNormGradKernel<platform::CUDADeviceContext, T>
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
group_size
=
(
C
-
1
)
/
groups
+
1
;
const
int
group_size
=
C
/
groups
;
const
int
W
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
x_dims
.
size
()
-
1
]
:
x_dims
[
x_dims
.
size
()
-
2
]);
...
...
paddle/fluid/operators/group_norm_op.h
浏览文件 @
1cbffbc4
...
...
@@ -52,7 +52,7 @@ class GroupNormKernel : public framework::OpKernel<T> {
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
group_size
=
(
C
-
1
)
/
groups
+
1
;
const
int
group_size
=
C
/
groups
;
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -100,7 +100,7 @@ class GroupNormKernel : public framework::OpKernel<T> {
int
imid
;
for
(
imid
=
0
;
imid
<
imsize
-
(
imsize
%
M
);
imid
+=
M
,
iter_x_data
+=
M
)
{
// TODO(gaoxiang)
:
Because AVX/AVX2/AVX512 can not directly used
// TODO(gaoxiang)
:
Because AVX/AVX2/AVX512 can not directly used
// in template class/function, before we complete high
// performance cpu vector extension, temporarily unrolling
// loop to get high precision and performance
...
...
@@ -138,7 +138,7 @@ class GroupNormKernel : public framework::OpKernel<T> {
int
imid
;
for
(
imid
=
0
;
imid
<
imsize
-
(
imsize
%
M
);
imid
+=
M
,
iter_x_data
+=
M
*
C
)
{
// TODO(gaoxiang)
:
Because AVX/AVX2/AVX512 can not directly used
// TODO(gaoxiang)
:
Because AVX/AVX2/AVX512 can not directly used
// in template class/function, before we complete high
// performance cpu vector extension, temporarily unrolling
// loop to get high precision and performance
...
...
@@ -236,7 +236,7 @@ class GroupNormGradKernel : public framework::OpKernel<T> {
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
group_size
=
(
C
-
1
)
/
groups
+
1
;
const
int
group_size
=
C
/
groups
;
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
...
...
paddle/fluid/operators/index_select_op_npu.cc
浏览文件 @
1cbffbc4
...
...
@@ -21,12 +21,12 @@ namespace operators {
template
<
typename
DeviceContext
,
typename
T
>
class
IndexSelectNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
dim
=
ctx
.
Attr
<
int
>
(
"dim"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
stream
=
...
...
@@ -43,7 +43,104 @@ class IndexSelectNPUKernel : public framework::OpKernel<T> {
}
};
// todo: add class 'IndexSelectGradNPUKernel' here.
template
<
typename
DeviceContext
,
typename
T
>
class
IndexSelectGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
index
=
ctx
.
Input
<
Tensor
>
(
"Index"
);
auto
*
out_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
auto
x_dims
=
x_grad
->
dims
();
auto
out_dims
=
out_grad
->
dims
();
int
dim
=
ctx
.
Attr
<
int
>
(
"dim"
);
if
(
dim
<
0
)
{
dim
+=
out_dims
.
size
();
}
Tensor
casted_index
;
if
(
index
->
type
()
!=
framework
::
proto
::
VarType
::
INT32
)
{
casted_index
.
mutable_data
<
int32_t
>
(
index
->
dims
(),
ctx
.
GetPlace
());
const
auto
&
cast_runner
=
NpuOpRunner
(
"Cast"
,
{
*
index
},
{
casted_index
},
{{
"dst_type"
,
ACL_INT32
}});
cast_runner
.
Run
(
stream
);
}
else
{
casted_index
.
ShareDataWith
(
*
index
);
}
if
(
dim
==
0
)
{
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
zeros_runner
=
NpuOpRunner
(
"ZerosLike"
,
{
*
x_grad
},
{
*
x_grad
});
zeros_runner
.
Run
(
stream
);
NpuOpRunner
runner
;
runner
.
SetType
(
"UnsortedSegmentSum"
)
.
AddInput
(
*
out_grad
)
.
AddInput
(
casted_index
)
.
AddInput
(
std
::
vector
<
int64_t
>
{
x_dims
[
dim
]})
.
AddOutput
(
*
x_grad
);
runner
.
Run
(
stream
);
}
else
{
Tensor
transed_out_grad
;
std
::
vector
<
int
>
in_trans_perm
;
in_trans_perm
.
push_back
(
dim
);
for
(
int
i
=
0
;
i
<
out_dims
.
size
();
++
i
)
{
if
(
i
==
dim
)
continue
;
in_trans_perm
.
push_back
(
i
);
}
framework
::
DDim
transed_out_dims
(
out_dims
);
for
(
size_t
i
=
0
;
i
<
in_trans_perm
.
size
();
++
i
)
{
transed_out_dims
[
i
]
=
out_dims
[
in_trans_perm
[
i
]];
}
transed_out_grad
.
mutable_data
<
T
>
(
transed_out_dims
,
ctx
.
GetPlace
());
framework
::
NPUAttributeMap
in_trans_attr
=
{{
"perm"
,
in_trans_perm
}};
const
auto
&
in_trans_runner
=
NpuOpRunner
(
"TransposeD"
,
{
*
out_grad
},
{
transed_out_grad
},
in_trans_attr
);
in_trans_runner
.
Run
(
stream
);
Tensor
sum_out
;
framework
::
DDim
sum_dims
(
x_dims
);
sum_dims
[
0
]
=
x_dims
[
dim
];
auto
idx
=
1
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
if
(
i
==
dim
)
continue
;
sum_dims
[
idx
++
]
=
x_dims
[
i
];
}
sum_out
.
mutable_data
<
T
>
(
sum_dims
,
ctx
.
GetPlace
());
const
auto
&
zeros_runner
=
NpuOpRunner
(
"ZerosLike"
,
{
sum_out
},
{
sum_out
});
zeros_runner
.
Run
(
stream
);
NpuOpRunner
runner
;
runner
.
SetType
(
"UnsortedSegmentSum"
)
.
AddInput
(
transed_out_grad
)
.
AddInput
(
casted_index
)
.
AddInput
(
std
::
vector
<
int64_t
>
{
x_dims
[
dim
]})
.
AddOutput
(
sum_out
);
runner
.
Run
(
stream
);
std
::
vector
<
int
>
out_trans_perm
;
for
(
int
i
=
1
;
i
<
1
+
dim
;
++
i
)
{
out_trans_perm
.
push_back
(
i
);
}
out_trans_perm
.
push_back
(
0
);
for
(
int
i
=
1
+
dim
;
i
<
x_dims
.
size
();
++
i
)
{
out_trans_perm
.
push_back
(
i
);
}
framework
::
NPUAttributeMap
out_trans_attr
=
{{
"perm"
,
out_trans_perm
}};
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
out_trans_runner
=
NpuOpRunner
(
"TransposeD"
,
{
sum_out
},
{
*
x_grad
},
out_trans_attr
);
out_trans_runner
.
Run
(
stream
);
}
}
};
}
// namespace operators
}
// namespace paddle
...
...
@@ -54,4 +151,8 @@ REGISTER_OP_NPU_KERNEL(
ops
::
IndexSelectNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
IndexSelectNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int
>
,
ops
::
IndexSelectNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int64_t
>
);
// todo: register npu index_select_grad kernel here.
REGISTER_OP_NPU_KERNEL
(
index_select_grad
,
ops
::
IndexSelectGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
IndexSelectGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int
>
,
ops
::
IndexSelectGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int64_t
>
);
python/paddle/distributed/fleet/meta_optimizers/sharding/gradient_clip_helper.py
浏览文件 @
1cbffbc4
...
...
@@ -142,32 +142,103 @@ class GradientClipHelper(object):
return
# TODO (JZ-LIANG) revise this for uniform mixed parallelism
def
sync_global_norm
(
self
,
block
,
ring_ids
):
def
sync_global_norm
(
self
,
block
,
ring_ids
,
mp_rank
):
"""
prune gradient_clip related ops for params that not belong to cur shard
prune: square, reduce_sum, elementwise_mul
keep: sum, sqrt, elementwise_max, elementwise_div
"""
# FIXME(wangxi): mp should prune duplicated param_grads
is_clip_grad_by_global_norm
=
False
for
idx
,
op
in
list
(
enumerate
(
block
.
ops
)):
if
not
self
.
_is_gradient_clip_op
(
op
):
continue
if
op
.
type
==
'sum'
:
is_clip_grad_by_global_norm
=
True
break
if
not
is_clip_grad_by_global_norm
:
# TODO(Yuang Liu): need some extra handles when clip_grad_norm for mp
return
removed_op_idx
=
set
()
removed_tmp_var
=
set
()
for
idx
,
op
in
list
(
enumerate
(
block
.
ops
)):
if
not
self
.
_is_gradient_clip_op
(
op
):
continue
if
op
.
type
==
'sum'
:
break
for
input_name
in
op
.
input_arg_names
:
input_var
=
block
.
var
(
input_name
)
# NOTE: when mp_degree > 1, some vars will be split into each mp rank.
# However, there still some vars such as Scale, Bias are not split.
# Those not be split vars should only be counted once during grad clip
# by global norm. Those vars either doesn't have is_distributed attr
# or the is_distributed attr has been set as False.
# Therefore, we prune those duplicated vars for grad clip.
if
mp_rank
>=
1
and
(
not
(
hasattr
(
input_var
,
'is_distributed'
)
and
input_var
.
is_distributed
)):
removed_op_idx
.
add
(
idx
)
for
output_name
in
op
.
output_arg_names
:
removed_tmp_var
.
add
(
output_name
)
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
not
self
.
_is_gradient_clip_op
(
op
):
continue
if
idx
in
removed_op_idx
:
block
.
_remove_op
(
idx
,
sync
=
False
)
if
op
.
type
==
"sum"
:
sum_res
=
op
.
desc
.
output_arg_names
()[
0
]
for
ring_id
in
ring_ids
:
if
ring_id
==
-
1
:
continue
for
var_name
in
removed_tmp_var
:
block
.
_remove_var
(
var_name
,
sync
=
False
)
idx
=
idx
+
1
block
.
_insert_op_without_sync
(
idx
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
sum_res
},
outputs
=
{
'Out'
:
sum_res
},
attrs
=
{
'ring_id'
:
ring_id
,
'op_namescope'
:
"/gradient_clip_model_parallelism"
,
'use_calc_stream'
:
True
,
OP_ROLE_KEY
:
OpRole
.
Optimize
,
})
return
for
idx
,
op
in
list
(
enumerate
(
block
.
ops
)):
if
not
self
.
_is_gradient_clip_op
(
op
):
continue
if
op
.
type
==
'sum'
:
# If mp_rank == 0, no extra handles, just allreduce
# If mp_rank >= 1, some extra handles is needed
sum_rst_var
=
block
.
var
(
op
.
output_arg_names
[
0
])
if
mp_rank
>=
1
:
reserved_vars
=
[]
for
input_name
in
op
.
input_arg_names
:
if
input_name
not
in
removed_tmp_var
:
reserved_vars
.
append
(
input_name
)
if
len
(
reserved_vars
)
>
0
:
op
.
desc
.
set_input
(
"X"
,
reserved_vars
)
else
:
# If all input of sum op should be removed, then remove the sum op.
# And set the output's value of sum to 0.
namescope
=
op
.
attr
(
"op_namescope"
)
block
.
_remove_op
(
idx
,
sync
=
False
)
fill_constant_op
=
block
.
_insert_op_without_sync
(
idx
,
type
=
'fill_constant'
,
inputs
=
{},
outputs
=
{
'Out'
:
sum_rst_var
},
attrs
=
{
'shape'
:
sum_rst_var
.
shape
,
'dtype'
:
sum_rst_var
.
dtype
,
'value'
:
0.0
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
fill_constant_op
.
_set_attr
(
'op_namescope'
,
namescope
)
self
.
_insert_allreduce
(
block
,
ring_ids
,
idx
,
sum_rst_var
)
break
@
staticmethod
def
_insert_allreduce
(
block
,
ring_ids
,
idx
,
var
):
for
ring_id
in
ring_ids
:
if
ring_id
==
-
1
:
continue
idx
=
idx
+
1
block
.
_insert_op_without_sync
(
idx
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
var
},
outputs
=
{
'Out'
:
var
},
attrs
=
{
'ring_id'
:
ring_id
,
'op_namescope'
:
"/gradient_clip_model_parallelism"
,
'use_calc_stream'
:
True
,
OP_ROLE_KEY
:
OpRole
.
Optimize
,
})
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
1cbffbc4
...
...
@@ -435,7 +435,6 @@ class ShardingOptimizer(MetaOptimizerBase):
main_block
=
self
.
_main_program
.
global_block
()
startup_block
=
self
.
_startup_program
.
global_block
()
# FIXME(wangxi): mp should prune duplicated param_grads when calc
# amp inf_var & clip global_norm_var
rings
=
[
self
.
mp_ring_id
,
self
.
pp_ring_id
]
...
...
@@ -446,7 +445,7 @@ class ShardingOptimizer(MetaOptimizerBase):
gradientclip_helper
=
GradientClipHelper
(
None
)
gradientclip_helper
.
sync_global_norm
(
main_block
,
[
self
.
mp_ring_id
,
self
.
pp_ring_id
])
main_block
,
[
self
.
mp_ring_id
,
self
.
pp_ring_id
]
,
self
.
mp_rank
)
def
_insert_loss_grad_scale_op
(
self
):
main_block
=
self
.
_main_program
.
global_block
()
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
1cbffbc4
...
...
@@ -4381,7 +4381,7 @@ class PipelineOptimizer(object):
persistable
=
source_var
.
persistable
)
else
:
dest_var
=
block
.
_clone_variable
(
source_var
,
False
)
dest_var
.
stop_gradient
=
source_var
.
stop_gradient
self
.
_clone_var_attr
(
dest_var
,
source_var
)
# When use with sharding, allreduce_sum and allreduce_max
# used for global gradient clip and amp will be added by sharding.
op_idx
+=
1
...
...
@@ -4547,9 +4547,14 @@ class PipelineOptimizer(object):
persistable
=
ref_var
.
persistable
,
is_data
=
ref_var
.
is_data
,
need_check_feed
=
ref_var
.
desc
.
need_check_feed
())
new_var
.
stop_gradient
=
ref_var
.
stop_gradient
self
.
_clone_var_attr
(
new_var
,
ref_var
)
return
new_var
def
_clone_var_attr
(
self
,
dest
,
src
):
dest
.
stop_gradient
=
src
.
stop_gradient
if
hasattr
(
src
,
'is_distributed'
):
dest
.
is_distributed
=
src
.
is_distributed
def
_strip_grad_suffix
(
self
,
name
):
"""
Strip the grad suffix from the given variable name
...
...
@@ -5209,6 +5214,8 @@ class PipelineOptimizer(object):
persistable
=
True
,
stop_gradient
=
False
)
real_param
=
main_block
.
var
(
param
)
if
hasattr
(
real_param
,
'is_distributed'
):
merged_grad_var
.
is_distributed
=
real_param
.
is_distributed
tmp_size
=
self
.
_get_var_size
(
real_grad
)
# two strategies for splitting the grad
# 1. the current segment's size reach the user defined grad_size_in_MB
...
...
python/paddle/fluid/tests/unittests/npu/test_index_select_op_npu.py
浏览文件 @
1cbffbc4
...
...
@@ -35,7 +35,10 @@ class TestNPUIndexSelect(OpTest):
x_np
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
x_type
)
index_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
x_shape
[
self
.
dim
],
size
=
self
.
index_size
)
low
=
0
,
high
=
self
.
x_shape
[
self
.
dim
],
size
=
self
.
index_size
,
dtype
=
self
.
index_type
)
# compute real output as baseline.
outer_loop
=
np
.
prod
(
self
.
x_shape
[:
self
.
dim
])
...
...
@@ -56,18 +59,14 @@ class TestNPUIndexSelect(OpTest):
self
.
attrs
=
{
'dim'
:
self
.
dim
}
self
.
outputs
=
{
'Out'
:
out
}
# todo: comment second line when index_select grad npu op is ready.
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# todo: replace first line with second line when index_select grad npu op is ready.
def
test_check_grad
(
self
):
pass
#self.check_grad_with_place(self.place, ['X'], 'Out')
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
def
config
(
self
):
self
.
x_shape
=
(
100
,
4
,
5
)
...
...
@@ -86,6 +85,24 @@ class TestNPUIndexSelectCase2(TestNPUIndexSelect):
self
.
index_size
=
10
class
TestNPUIndexSelectCase3
(
TestNPUIndexSelect
):
def
config
(
self
):
self
.
dim
=
0
self
.
x_type
=
np
.
float32
self
.
index_type
=
np
.
int32
self
.
x_shape
=
(
10
,
10
,
4
,
10
)
self
.
index_size
=
10
class
TestNPUIndexSelectCase4
(
TestNPUIndexSelect
):
def
config
(
self
):
self
.
dim
=
-
1
self
.
x_type
=
np
.
float32
self
.
index_type
=
np
.
int32
self
.
x_shape
=
(
10
,
10
,
4
,
10
)
self
.
index_size
=
10
class
TestNPUIndexSelectAPI
(
unittest
.
TestCase
):
def
input_data
(
self
):
self
.
data_x
=
np
.
array
([[
1.0
,
2.0
,
3.0
,
4.0
],
[
5.0
,
6.0
,
7.0
,
8.0
],
...
...
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
浏览文件 @
1cbffbc4
...
...
@@ -658,6 +658,33 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
'c_gen_nccl_id'
,
'c_comm_init'
])
self
.
assertEqual
(
main_prog_op_types
,
[
'partial_recv'
,
'partial_allgather'
,
'cast'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'cast'
,
'tanh'
,
'cast'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'cast'
,
'tanh'
,
'cast'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'cast'
,
'tanh'
,
'cast'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'softmax'
,
'cast'
,
'cross_entropy2'
,
'mean'
,
'elementwise_mul'
,
'fill_constant'
,
'elementwise_mul_grad'
,
'mean_grad'
,
'cross_entropy_grad2'
,
'cast'
,
'softmax_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'tanh_grad'
,
'cast'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'tanh_grad'
,
'cast'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'tanh_grad'
,
'cast'
,
'elementwise_add_grad'
,
'mul_grad'
,
'cast'
,
'c_sync_calc_stream'
,
'partial_send'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'cast'
,
'sum'
,
'c_sync_comm_stream'
,
'check_finite_and_unscale'
,
'cast'
,
'c_allreduce_max'
,
'c_allreduce_max'
,
'cast'
,
'update_loss_scaling'
,
'fill_constant'
,
'c_allreduce_sum'
,
'c_allreduce_sum'
,
'sqrt'
,
'fill_constant'
,
'elementwise_max'
,
'elementwise_div'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'elementwise_mul'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
])
# pp + mp, partial send recv
self
.
assertIn
(
'partial_recv'
,
main_prog_op_types
)
self
.
assertIn
(
'partial_allgather'
,
main_prog_op_types
)
...
...
python/paddle/fluid/tests/unittests/test_segment_ops.py
浏览文件 @
1cbffbc4
...
...
@@ -15,8 +15,11 @@
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
import
numpy
as
np
import
paddle
from
op_test
import
OpTest
...
...
@@ -198,5 +201,62 @@ class TestSegmentMean2(TestSegmentMean):
self
.
attrs
=
{
'pooltype'
:
"MEAN"
}
class
API_SegmentOpsTest
(
unittest
.
TestCase
):
def
test_static
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
3
,
3
],
dtype
=
"float32"
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
[
3
],
dtype
=
'int32'
)
res_sum
=
paddle
.
incubate
.
segment_sum
(
x
,
y
)
res_mean
=
paddle
.
incubate
.
segment_mean
(
x
,
y
)
res_max
=
paddle
.
incubate
.
segment_max
(
x
,
y
)
res_min
=
paddle
.
incubate
.
segment_min
(
x
,
y
)
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
data1
=
np
.
array
([[
1
,
2
,
3
],
[
3
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
'float32'
)
data2
=
np
.
array
([
0
,
0
,
1
],
dtype
=
"int32"
)
np_sum
=
np
.
array
([[
4
,
4
,
4
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_mean
=
np
.
array
([[
2
,
2
,
2
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_max
=
np
.
array
([[
3
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_min
=
np
.
array
([[
1
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
ret
=
exe
.
run
(
feed
=
{
'x'
:
data1
,
'y'
:
data2
},
fetch_list
=
[
res_sum
,
res_mean
,
res_max
,
res_min
])
for
np_res
,
ret_res
in
zip
([
np_sum
,
np_mean
,
np_max
,
np_min
],
ret
):
self
.
assertTrue
(
np
.
allclose
(
np_res
,
ret_res
,
atol
=
1e-6
),
"two value is
\
{}
\n
{}, check diff!"
.
format
(
np_res
,
ret_res
))
def
test_dygraph
(
self
):
device
=
paddle
.
CPUPlace
()
with
paddle
.
fluid
.
dygraph
.
guard
(
device
):
x
=
paddle
.
to_tensor
(
[[
1
,
2
,
3
],
[
3
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
'float32'
)
y
=
paddle
.
to_tensor
([
0
,
0
,
1
],
dtype
=
"int32"
)
res_sum
=
paddle
.
incubate
.
segment_sum
(
x
,
y
)
res_mean
=
paddle
.
incubate
.
segment_mean
(
x
,
y
)
res_max
=
paddle
.
incubate
.
segment_max
(
x
,
y
)
res_min
=
paddle
.
incubate
.
segment_min
(
x
,
y
)
np_sum
=
np
.
array
([[
4
,
4
,
4
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_mean
=
np
.
array
([[
2
,
2
,
2
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_max
=
np
.
array
([[
3
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_min
=
np
.
array
([[
1
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
ret
=
[
res_sum
,
res_mean
,
res_max
,
res_min
]
for
np_res
,
ret_res
in
zip
([
np_sum
,
np_mean
,
np_max
,
np_min
],
ret
):
self
.
assertTrue
(
np
.
allclose
(
np_res
,
ret_res
.
numpy
(),
atol
=
1e-6
),
"two value is
\
{}
\n
{}, check diff!"
.
format
(
np_res
,
ret_res
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/incubate/__init__.py
浏览文件 @
1cbffbc4
...
...
@@ -18,7 +18,18 @@ from .checkpoint import auto_checkpoint # noqa: F401
from
..fluid.layer_helper
import
LayerHelper
# noqa: F401
from
.operators
import
softmax_mask_fuse_upper_triangle
# noqa: F401
from
.operators
import
softmax_mask_fuse
# noqa: F401
from
.tensor
import
segment_sum
from
.tensor
import
segment_mean
from
.tensor
import
segment_max
from
.tensor
import
segment_min
__all__
=
[
# noqa
'LookAhead'
,
'ModelAverage'
,
'softmax_mask_fuse_upper_triangle'
,
'softmax_mask_fuse'
__all__
=
[
'LookAhead'
,
'ModelAverage'
,
'softmax_mask_fuse_upper_triangle'
,
'softmax_mask_fuse'
,
'segment_sum'
,
'segment_mean'
,
'segment_max'
,
'segment_min'
,
]
python/paddle/incubate/tensor/__init__.py
0 → 100644
浏览文件 @
1cbffbc4
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.math
import
segment_sum
from
.math
import
segment_mean
from
.math
import
segment_max
from
.math
import
segment_min
__all__
=
[
'segment_sum'
,
'segment_mean'
,
'segment_max'
,
'segment_min'
,
]
python/paddle/incubate/tensor/math.py
0 → 100644
浏览文件 @
1cbffbc4
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__
=
[
'segment_sum'
,
'segment_mean'
,
'segment_max'
,
'segment_min'
,
]
import
paddle
from
paddle.fluid.layer_helper
import
LayerHelper
,
in_dygraph_mode
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
from
paddle
import
_C_ops
def
segment_sum
(
data
,
segment_ids
,
name
=
None
):
"""
Segment Sum Operator.
This operator sums the elements of input `data` which with
the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
sum_{j} data_{j}$
where sum is over j such that `segment_ids[j] == i`.
Args:
data (Tensor): A tensor, available data type float32, float64.
segment_ids (Tensor): A 1-D tensor, which have the same size
with the first dimension of input data.
Available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_sum(data, segment_ids)
#Outputs: [[4., 4., 4.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"SUM"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_sum"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"SUM"
})
return
out
def
segment_mean
(
data
,
segment_ids
,
name
=
None
):
"""
Segment mean Operator.
Ihis operator calculate the mean value of input `data` which
with the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
frac{1}{n_i}
\\
sum_{j} data[j]$
where sum is over j such that 'segment_ids[j] == i' and $n_i$ is the number
of all index 'segment_ids[j] == i'.
Args:
data (tensor): a tensor, available data type float32, float64.
segment_ids (tensor): a 1-d tensor, which have the same size
with the first dimension of input data.
available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_mean(data, segment_ids)
#Outputs: [[2., 2., 2.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"MEAN"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_mean"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"MEAN"
})
return
out
def
segment_min
(
data
,
segment_ids
,
name
=
None
):
"""
Segment min operator.
This operator calculate the minimum elements of input `data` which with
the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
min_{j} data_{j}$
where min is over j such that `segment_ids[j] == i`.
Args:
data (tensor): a tensor, available data type float32, float64.
segment_ids (tensor): a 1-d tensor, which have the same size
with the first dimension of input data.
available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_min(data, segment_ids)
#Outputs: [[1., 2., 1.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"MIN"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_min"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"MIN"
})
return
out
def
segment_max
(
data
,
segment_ids
,
name
=
None
):
"""
Segment max operator.
This operator calculate the maximum elements of input `data` which with
the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
min_{j} data_{j}$
where max is over j such that `segment_ids[j] == i`.
Args:
data (tensor): a tensor, available data type float32, float64.
segment_ids (tensor): a 1-d tensor, which have the same size
with the first dimension of input data.
available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_max(data, segment_ids)
#Outputs: [[3., 2., 3.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"MAX"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_max"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"MAX"
})
return
out
python/setup.py.in
浏览文件 @
1cbffbc4
...
...
@@ -162,6 +162,7 @@ packages=['paddle',
'paddle.incubate.optimizer',
'paddle.incubate.checkpoint',
'paddle.incubate.operators',
'paddle.incubate.tensor',
'paddle.distributed.fleet',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.elastic',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录