Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1ca791c7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1ca791c7
编写于
12月 14, 2021
作者:
J
jianghaicheng
提交者:
GitHub
12月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ipu_commit_tests p5 (#38091)
上级
b5b9b0b9
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
947 addition
and
0 deletion
+947
-0
python/paddle/fluid/tests/unittests/ipu/test_gelu_op_ipu.py
python/paddle/fluid/tests/unittests/ipu/test_gelu_op_ipu.py
+113
-0
python/paddle/fluid/tests/unittests/ipu/test_groupnorm_op_ipu.py
...paddle/fluid/tests/unittests/ipu/test_groupnorm_op_ipu.py
+169
-0
python/paddle/fluid/tests/unittests/ipu/test_instancenorm_op_ipu.py
...dle/fluid/tests/unittests/ipu/test_instancenorm_op_ipu.py
+140
-0
python/paddle/fluid/tests/unittests/ipu/test_ipu_batchs_per_step_simple.py
...id/tests/unittests/ipu/test_ipu_batchs_per_step_simple.py
+90
-0
python/paddle/fluid/tests/unittests/ipu/test_ipu_fp16_support.py
...paddle/fluid/tests/unittests/ipu/test_ipu_fp16_support.py
+109
-0
python/paddle/fluid/tests/unittests/ipu/test_ipu_inference_model_io.py
.../fluid/tests/unittests/ipu/test_ipu_inference_model_io.py
+169
-0
python/paddle/fluid/tests/unittests/ipu/test_ipu_model_pipeline.py
...ddle/fluid/tests/unittests/ipu/test_ipu_model_pipeline.py
+86
-0
python/paddle/fluid/tests/unittests/ipu/test_ipu_pipeline.py
python/paddle/fluid/tests/unittests/ipu/test_ipu_pipeline.py
+71
-0
未找到文件。
python/paddle/fluid/tests/unittests/ipu/test_gelu_op_ipu.py
0 → 100644
浏览文件 @
1ca791c7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.compiler
as
compiler
import
paddle.optimizer
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
(
IPUOpTest
,
np_dtype_to_fluid_str
)
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestBase
(
IPUOpTest
):
def
setUp
(
self
):
self
.
set_atol
()
self
.
set_training
()
self
.
set_feed
()
self
.
set_feed_attr
()
self
.
set_attrs
()
def
set_atol
(
self
):
self
.
atol
=
1e-3
def
set_feed
(
self
):
self
.
feed
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
]).
astype
(
'float32'
)
}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
.
keys
())
self
.
feed_dtype
=
[
np_dtype_to_fluid_str
(
x
.
dtype
)
for
x
in
self
.
feed
.
values
()
]
def
set_attrs
(
self
):
self
.
attrs
=
{
"approximate"
:
False
}
def
_test_base
(
self
,
run_ipu
=
True
):
scope
=
fluid
.
core
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
SEED
=
self
.
SEED
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
with
fluid
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
self
.
feed_dtype
[
0
])
out
=
paddle
.
fluid
.
layers
.
gelu
(
x
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
self
.
feed_list
ipu_strategy
=
compiler
.
get_ipu_strategy
()
ipu_strategy
.
is_training
=
self
.
is_training
program
=
compiler
.
IPUCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
result
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
res0
=
self
.
_test_base
(
False
)
res1
=
self
.
_test_base
(
True
)
self
.
assertTrue
(
np
.
allclose
(
res0
.
flatten
(),
res1
.
flatten
(),
atol
=
self
.
atol
))
self
.
assertTrue
(
res0
.
shape
==
res1
.
shape
)
@
unittest
.
skip
(
'approximate=True is not supported'
)
class
TestCase1
(
TestBase
):
def
set_attrs
(
self
):
self
.
attrs
=
{
"approximate"
:
True
}
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_groupnorm_op_ipu.py
0 → 100644
浏览文件 @
1ca791c7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.compiler
as
compiler
import
paddle.optimizer
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
(
IPUOpTest
,
np_dtype_to_fluid_str
)
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestBase
(
IPUOpTest
):
def
setUp
(
self
):
self
.
set_atol
()
self
.
set_training
()
self
.
set_feed
()
self
.
set_feed_attr
()
self
.
set_attrs
()
def
set_feed
(
self
):
self
.
feed
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
8
,
10
,
10
]).
astype
(
'float32'
),
}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
.
keys
())
self
.
feed_dtype
=
[
np_dtype_to_fluid_str
(
x
.
dtype
)
for
x
in
self
.
feed
.
values
()
]
def
set_attrs
(
self
):
self
.
attrs
=
{
"groups"
:
8
,
"epsilon"
:
1e-05
,
"data_layout"
:
'NCHW'
,
}
def
_test_base
(
self
,
run_ipu
=
True
):
scope
=
fluid
.
core
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
SEED
=
self
.
SEED
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
with
fluid
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
self
.
feed_dtype
[
0
])
if
self
.
is_training
:
ch
=
self
.
feed_shape
[
0
][
1
]
conv1
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
ch
,
filter_size
=
3
,
bias_attr
=
False
)
scale
=
paddle
.
ParamAttr
(
trainable
=
True
)
bias
=
paddle
.
ParamAttr
(
trainable
=
True
)
out
=
paddle
.
fluid
.
layers
.
nn
.
group_norm
(
conv1
,
param_attr
=
scale
,
bias_attr
=
bias
,
**
self
.
attrs
)
else
:
scale
=
True
bias
=
True
out
=
paddle
.
fluid
.
layers
.
nn
.
group_norm
(
x
,
param_attr
=
scale
,
bias_attr
=
bias
,
**
self
.
attrs
)
if
self
.
is_training
:
loss
=
paddle
.
mean
(
out
)
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-2
)
adam
.
minimize
(
loss
)
fetch_list
=
[
loss
.
name
]
else
:
fetch_list
=
[
out
.
name
]
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
self
.
feed_list
ipu_strategy
=
compiler
.
get_ipu_strategy
()
ipu_strategy
.
is_training
=
self
.
is_training
program
=
compiler
.
IPUCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
if
self
.
is_training
:
result
=
[]
for
_
in
range
(
self
.
epoch
):
loss_res
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
result
.
append
(
loss_res
[
0
])
return
np
.
array
(
result
)
else
:
result
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
res0
=
self
.
_test_base
(
False
)
res1
=
self
.
_test_base
(
True
)
self
.
assertTrue
(
np
.
allclose
(
res0
.
flatten
(),
res1
.
flatten
(),
atol
=
self
.
atol
))
self
.
assertTrue
(
res0
.
shape
==
res1
.
shape
)
class
TestCase1
(
TestBase
):
def
set_attrs
(
self
):
self
.
attrs
=
{
"groups"
:
4
,
"epsilon"
:
1e-05
,
"data_layout"
:
'NCHW'
,
}
class
TestTrainCase1
(
TestBase
):
def
set_training
(
self
):
self
.
is_training
=
True
self
.
epoch
=
10
class
TestTrainCase2
(
TestBase
):
def
set_atol
(
self
):
self
.
atol
=
1e-3
def
set_attrs
(
self
):
self
.
attrs
=
{
"groups"
:
4
,
"epsilon"
:
1e-05
,
"data_layout"
:
'NCHW'
,
}
def
set_training
(
self
):
self
.
is_training
=
True
self
.
epoch
=
10
# not support `group_norm(x, param_attr=False, bias_attr=False, **self.attrs)`
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_instancenorm_op_ipu.py
0 → 100644
浏览文件 @
1ca791c7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.compiler
as
compiler
import
paddle.optimizer
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
(
IPUOpTest
,
np_dtype_to_fluid_str
)
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestBase
(
IPUOpTest
):
def
setUp
(
self
):
self
.
set_atol
()
self
.
set_training
()
self
.
set_feed
()
self
.
set_feed_attr
()
self
.
set_attrs
()
def
set_feed
(
self
):
self
.
feed
=
{
"x"
:
np
.
random
.
uniform
(
size
=
[
1
,
3
,
10
,
10
]).
astype
(
'float32'
),
}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed
.
values
()]
self
.
feed_list
=
list
(
self
.
feed
.
keys
())
self
.
feed_dtype
=
[
np_dtype_to_fluid_str
(
x
.
dtype
)
for
x
in
self
.
feed
.
values
()
]
def
set_attrs
(
self
):
self
.
attrs
=
{
"epsilon"
:
1e-05
}
def
_test_base
(
self
,
run_ipu
=
True
):
scope
=
fluid
.
core
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
SEED
=
self
.
SEED
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
with
fluid
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
self
.
feed_dtype
[
0
])
if
self
.
is_training
:
ch
=
self
.
feed_shape
[
0
][
1
]
conv1
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
ch
,
filter_size
=
3
,
bias_attr
=
False
)
scale
=
paddle
.
ParamAttr
(
trainable
=
True
)
bias
=
paddle
.
ParamAttr
(
trainable
=
True
)
out
=
paddle
.
fluid
.
layers
.
nn
.
instance_norm
(
conv1
,
param_attr
=
scale
,
bias_attr
=
bias
,
**
self
.
attrs
)
else
:
scale
=
True
bias
=
True
out
=
paddle
.
fluid
.
layers
.
nn
.
instance_norm
(
x
,
param_attr
=
scale
,
bias_attr
=
bias
,
**
self
.
attrs
)
if
self
.
is_training
:
loss
=
paddle
.
mean
(
out
)
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-2
)
adam
.
minimize
(
loss
)
fetch_list
=
[
loss
.
name
]
else
:
fetch_list
=
[
out
.
name
]
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
self
.
feed_list
ipu_strategy
=
compiler
.
get_ipu_strategy
()
ipu_strategy
.
is_training
=
self
.
is_training
program
=
compiler
.
IPUCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
if
self
.
is_training
:
result
=
[]
for
_
in
range
(
self
.
epoch
):
loss_res
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
result
.
append
(
loss_res
)
return
np
.
array
(
result
)
else
:
result
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
res0
=
self
.
_test_base
(
False
)
res1
=
self
.
_test_base
(
True
)
self
.
assertTrue
(
np
.
allclose
(
res0
.
flatten
(),
res1
.
flatten
(),
atol
=
self
.
atol
))
self
.
assertTrue
(
res0
.
shape
==
res1
.
shape
)
class
TestTrainCase1
(
TestBase
):
def
set_training
(
self
):
self
.
is_training
=
True
self
.
epoch
=
10
# not support `instance_norm(x, param_attr=False, bias_attr=False, **self.attrs)`
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_ipu_batchs_per_step_simple.py
0 → 100644
浏览文件 @
1ca791c7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.compiler
as
compiler
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestFunc
(
unittest
.
TestCase
):
def
_test_func
(
self
,
run_ipu
=
True
):
scope
=
fluid
.
core
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
bps
=
5
n
=
1
if
run_ipu
else
-
1
c
,
h
,
w
=
3
,
10
,
10
np_image
=
np
.
random
.
uniform
(
size
=
[
1
*
bps
,
c
,
h
,
w
]).
astype
(
np
.
float32
)
with
fluid
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
image
=
paddle
.
static
.
data
(
name
=
'image'
,
shape
=
[
n
,
c
,
h
,
w
],
dtype
=
'float32'
)
conv2d
=
paddle
.
static
.
nn
.
conv2d
(
image
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
# paddle.mean oshape on ipu is [bps], need another mean()
# paddle.mean oshape on cpu is [1]
# out = paddle.mean(conv2d)
out
=
conv2d
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
[
image
.
name
]
fetch_list
=
[
out
.
name
]
ipu_strategy
=
compiler
.
get_ipu_strategy
()
ipu_strategy
.
is_training
=
False
ipu_strategy
.
batches_per_step
=
bps
program
=
compiler
.
IPUCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
result
=
exe
.
run
(
program
,
feed
=
{
image
.
name
:
np_image
},
fetch_list
=
[
out
])
return
result
[
0
]
def
test_func
(
self
):
ipu_res
=
self
.
_test_func
(
True
)
cpu_res
=
self
.
_test_func
(
False
)
if
np
.
prod
(
ipu_res
.
shape
)
==
np
.
prod
(
cpu_res
.
shape
):
ipu_res
=
ipu_res
.
reshape
(
cpu_res
.
shape
)
self
.
assertTrue
(
np
.
allclose
(
ipu_res
,
cpu_res
,
atol
=
1e-4
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_ipu_fp16_support.py
0 → 100644
浏览文件 @
1ca791c7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.compiler
as
compiler
import
paddle.optimizer
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
(
IPUOpTest
,
np_dtype_to_fluid_str
)
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestBase
(
IPUOpTest
):
def
setUp
(
self
):
self
.
set_atol
()
self
.
set_feed
()
self
.
set_feed_attr
()
self
.
set_attrs
()
def
set_feed
(
self
):
np_data
=
np
.
random
.
uniform
(
low
=-
1
,
high
=
1
,
size
=
[
1
,
3
,
100
,
100
])
self
.
feed_ipu
=
{
"x"
:
np_data
.
astype
(
'float16'
)}
self
.
feed_cpu
=
{
"x"
:
np_data
.
astype
(
'float32'
)}
def
set_feed_attr
(
self
):
self
.
feed_shape
=
[
x
.
shape
for
x
in
self
.
feed_cpu
.
values
()]
self
.
feed_list
=
list
(
self
.
feed_cpu
.
keys
())
self
.
feed_dtype
=
[
np_dtype_to_fluid_str
(
x
.
dtype
)
for
x
in
self
.
feed_cpu
.
values
()
]
def
set_attrs
(
self
):
self
.
attrs
=
{}
def
_test_base
(
self
,
run_ipu
=
True
):
scope
=
fluid
.
core
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
SEED
=
self
.
SEED
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
with
fluid
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
self
.
feed_dtype
[
0
])
conv1
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
conv2
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
add1
=
conv1
+
conv2
conv3
=
paddle
.
static
.
nn
.
conv2d
(
add1
,
num_filters
=
8
,
filter_size
=
8
,
bias_attr
=
False
)
out
=
paddle
.
fluid
.
layers
.
relu
(
conv3
,
**
self
.
attrs
)
fetch_list
=
[
out
.
name
]
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
feed
=
self
.
feed_ipu
if
run_ipu
else
self
.
feed_cpu
if
run_ipu
:
feed_list
=
self
.
feed_list
ipu_strategy
=
compiler
.
get_ipu_strategy
()
ipu_strategy
.
is_training
=
False
ipu_strategy
.
enable_fp16
=
True
program
=
compiler
.
IPUCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
feed_list
=
self
.
feed_list
program
=
main_prog
result
=
exe
.
run
(
program
,
feed
=
feed
,
fetch_list
=
fetch_list
)
return
result
[
0
]
def
test_base
(
self
):
res0
=
self
.
_test_base
(
False
)
res1
=
self
.
_test_base
(
True
)
self
.
assertTrue
(
res0
.
shape
==
res1
.
shape
)
mae
=
np
.
mean
(
np
.
abs
(
res0
.
flatten
()
-
res1
.
flatten
()))
print
(
"mae is "
,
mae
)
self
.
assertTrue
(
mae
<
0.001
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_ipu_inference_model_io.py
0 → 100644
浏览文件 @
1ca791c7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
shutil
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.compiler
as
compiler
import
paddle.optimizer
import
paddle.static
from
paddle.fluid.tests.unittests.ipu.op_test_ipu
import
IPUOpTest
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestBase
(
IPUOpTest
):
def
setUp
(
self
):
self
.
set_atol
()
self
.
set_feed
()
self
.
set_attrs
()
def
set_feed
(
self
):
self
.
feed_shape
=
[]
self
.
feed_shape
.
append
([
1
,
3
,
10
,
10
])
self
.
feed
=
{}
self
.
feed
[
"in_0"
]
=
np
.
random
.
uniform
(
size
=
self
.
feed_shape
[
0
]).
astype
(
np
.
float32
)
self
.
feed_list
=
list
(
self
.
feed
.
keys
())
def
set_attrs
(
self
):
self
.
attrs
=
{}
self
.
attrs
[
'steps'
]
=
100
self
.
attrs
[
'save_at_step'
]
=
20
self
.
attrs
[
'is_training'
]
=
True
self
.
attrs
[
'opt_type'
]
=
'sgd'
self
.
attrs
[
'path'
]
=
'model'
self
.
attrs
[
'model_name'
]
=
'test'
def
_test_save
(
self
):
scope
=
fluid
.
core
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
self
.
SEED
startup_prog
.
random_seed
=
self
.
SEED
generator
=
fluid
.
unique_name
.
UniqueNameGenerator
()
self
.
full_name
=
'/'
.
join
(
[
self
.
attrs
[
'path'
],
self
.
attrs
[
'model_name'
]])
with
fluid
.
unique_name
.
guard
(
generator
):
with
fluid
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
conv1
=
paddle
.
static
.
nn
.
conv2d
(
x
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
,
name
=
'conv2d'
)
loss
=
paddle
.
mean
(
conv1
)
if
self
.
attrs
[
'is_training'
]:
if
self
.
attrs
[
'opt_type'
]
==
'sgd'
:
sgd
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
1e-2
)
sgd
.
minimize
(
loss
)
elif
self
.
attrs
[
'opt_type'
]
==
'adam'
:
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-2
)
adam
.
minimize
(
loss
)
elif
self
.
attrs
[
'opt_type'
]
==
'lamb'
:
lamb
=
paddle
.
optimizer
.
Lamb
(
learning_rate
=
1e-2
)
lamb
.
minimize
(
loss
)
fetch_list
=
[
loss
.
name
]
place
=
paddle
.
IPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
ipu_strategy
=
compiler
.
get_ipu_strategy
()
ipu_strategy
.
is_training
=
self
.
attrs
[
'is_training'
]
program
=
compiler
.
IPUCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
self
.
feed_list
,
fetch_list
)
result
=
[]
for
i
in
range
(
self
.
attrs
[
'steps'
]):
tmp
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
fetch_list
)
result
.
append
(
tmp
)
paddle
.
static
.
save_inference_model
(
self
.
full_name
,
x
,
loss
,
exe
,
program
=
program
.
org_program
)
def
_test_load
(
self
,
run_ipu
):
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
(
paddle
.
static
.
load_inference_model
(
self
.
full_name
,
exe
))
if
run_ipu
:
feed_list
=
feed_target_names
fetch_list
=
[
fetch_targets
[
0
].
name
]
ipu_strategy
=
compiler
.
get_ipu_strategy
()
ipu_strategy
.
is_training
=
False
program
=
compiler
.
IPUCompiledProgram
(
inference_program
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
inference_program
tmp
=
exe
.
run
(
program
,
feed
=
self
.
feed
,
fetch_list
=
[
fetch_targets
])
return
tmp
def
test_base
(
self
):
self
.
_test_save
()
cpu_res
=
self
.
_test_load
(
False
)
ipu_res
=
self
.
_test_load
(
True
)
self
.
assertTrue
(
np
.
allclose
(
cpu_res
,
ipu_res
,
atol
=
self
.
atol
))
shutil
.
rmtree
(
self
.
attrs
[
'path'
],
True
)
class
TestAdam
(
TestBase
):
def
set_attrs
(
self
):
self
.
attrs
=
{}
self
.
attrs
[
'steps'
]
=
100
self
.
attrs
[
'is_training'
]
=
True
self
.
attrs
[
'opt_type'
]
=
'adam'
self
.
attrs
[
'path'
]
=
'model'
self
.
attrs
[
'model_name'
]
=
'test'
class
TestLamb
(
TestBase
):
def
set_attrs
(
self
):
self
.
attrs
=
{}
self
.
attrs
[
'steps'
]
=
100
self
.
attrs
[
'is_training'
]
=
True
self
.
attrs
[
'opt_type'
]
=
'lamb'
self
.
attrs
[
'path'
]
=
'model'
self
.
attrs
[
'model_name'
]
=
'test'
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_ipu_model_pipeline.py
0 → 100644
浏览文件 @
1ca791c7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.compiler
as
compiler
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestCastNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_ipu
=
True
):
scope
=
fluid
.
core
.
Scope
()
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
np_image
=
np
.
random
.
rand
(
1
,
3
,
10
,
10
).
astype
(
np
.
float32
)
with
fluid
.
scope_guard
(
scope
):
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
image
=
paddle
.
static
.
data
(
name
=
'image'
,
shape
=
[
1
,
3
,
10
,
10
],
dtype
=
'float32'
)
with
fluid
.
ipu_shard
(
ipu_index
=
0
):
conv1
=
paddle
.
static
.
nn
.
conv2d
(
image
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
with
fluid
.
ipu_shard
(
ipu_index
=
1
):
conv2
=
paddle
.
static
.
nn
.
conv2d
(
conv1
,
num_filters
=
3
,
filter_size
=
3
,
bias_attr
=
False
)
loss
=
paddle
.
mean
(
conv2
)
if
run_ipu
:
place
=
paddle
.
IPUPlace
()
else
:
place
=
paddle
.
CPUPlace
()
executor
=
paddle
.
static
.
Executor
(
place
)
executor
.
run
(
startup_prog
)
if
run_ipu
:
feed_list
=
[
image
.
name
]
fetch_list
=
[
loss
.
name
]
ipu_strategy
=
compiler
.
get_ipu_strategy
()
ipu_strategy
.
num_ipus
=
2
ipu_strategy
.
is_training
=
False
ipu_strategy
.
enable_manual_shard
=
True
ipu_strategy
.
enable_pipelining
=
False
program
=
compiler
.
IPUCompiledProgram
(
main_prog
,
ipu_strategy
=
ipu_strategy
).
compile
(
feed_list
,
fetch_list
)
else
:
program
=
main_prog
loss_res
=
executor
.
run
(
program
,
feed
=
{
"image"
:
np_image
},
fetch_list
=
[
loss
])
return
loss_res
def
test_cast
(
self
):
cpu_outputs
=
self
.
_test
(
False
)
ipu_outputs
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
cpu_outputs
,
ipu_outputs
,
atol
=
1e-4
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ipu/test_ipu_pipeline.py
0 → 100644
浏览文件 @
1ca791c7
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_ipu
(),
"core is not compiled with IPU"
)
class
TestIpuShard
(
unittest
.
TestCase
):
def
_test
(
self
):
# build graph
a
=
paddle
.
static
.
data
(
name
=
'data'
,
shape
=
[
None
,
1
],
dtype
=
'int32'
)
b
=
a
+
2
# scale : scale * x + bias, ipu_stage : no
with
paddle
.
fluid
.
ipu_shard
(
ipu_stage
=
1
):
c
=
b
+
1
# scale, ipu_stage : 1
with
paddle
.
fluid
.
ipu_shard
(
ipu_stage
=
2
):
d
=
c
*
2
# scale, ipu_stage : 2
with
paddle
.
fluid
.
ipu_shard
(
ipu_stage
=
3
):
e
=
d
+
3
# scale, ipu_stage : 3
with
paddle
.
fluid
.
ipu_shard
(
ipu_stage
=
1
):
e
=
e
+
3
# scale, ipu_stage : 1
with
paddle
.
fluid
.
ipu_shard
(
ipu_stage
=
2
):
e
=
e
+
3
# scale, ipu_stage : 2
with
paddle
.
fluid
.
ipu_shard
(
ipu_stage
=
1
):
f
=
paddle
.
tensor
.
pow
(
e
,
2.0
)
# pow, ipu_stage : 1
with
paddle
.
fluid
.
ipu_shard
(
ipu_stage
=
2
):
g
=
f
-
1
# scale, ipu_stage : 2
h
=
g
+
1
# scale, ipu_stage : no
ipu_index_list
=
[]
main_prog
=
paddle
.
static
.
default_main_program
()
for
op
in
main_prog
.
global_block
().
ops
:
if
op
.
desc
.
has_attr
(
"ipu_stage"
):
ipu_index_list
.
append
(
op
.
desc
.
attr
(
"ipu_stage"
))
return
ipu_index_list
def
test_ipu_shard
(
self
):
ipu_index_list
=
self
.
_test
()
expected_ipu_index_list
=
[
1
,
2
,
3
,
1
,
2
,
1
,
2
]
self
.
assertTrue
(
np
.
allclose
(
ipu_index_list
,
expected_ipu_index_list
,
atol
=
0
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录