Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1c0120e2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1c0120e2
编写于
7月 22, 2022
作者:
F
fwenguang
提交者:
GitHub
7月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add floor kernel and grid_sampler kernel (#44498)
上级
5ee4a21a
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
508 addition
and
13 deletion
+508
-13
paddle/fluid/operators/activation_op_mlu.cc
paddle/fluid/operators/activation_op_mlu.cc
+23
-0
paddle/fluid/operators/grid_sampler_op_mlu.cc
paddle/fluid/operators/grid_sampler_op_mlu.cc
+112
-0
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+55
-0
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+23
-0
paddle/fluid/platform/device/mlu/mlu_info.h
paddle/fluid/platform/device/mlu/mlu_info.h
+1
-1
python/paddle/fluid/tests/unittests/mlu/test_floor_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_floor_op_mlu.py
+59
-0
python/paddle/fluid/tests/unittests/mlu/test_grid_sampler_op_mlu.py
...dle/fluid/tests/unittests/mlu/test_grid_sampler_op_mlu.py
+223
-0
tools/dockerfile/Dockerfile.mlu
tools/dockerfile/Dockerfile.mlu
+12
-12
未找到文件。
paddle/fluid/operators/activation_op_mlu.cc
浏览文件 @
1c0120e2
...
@@ -399,6 +399,25 @@ class HardSigmoidGradMLUKernel : public framework::OpKernel<T> {
...
@@ -399,6 +399,25 @@ class HardSigmoidGradMLUKernel : public framework::OpKernel<T> {
}
}
};
};
template
<
typename
T
>
class
FloorMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
input_desc
(
*
input
);
MLUCnnlTensorDesc
output_desc
(
*
output
);
MLUCnnl
::
Floor
(
ctx
,
input_desc
.
get
(),
GetBasePtr
(
input
),
output_desc
.
get
(),
GetBasePtr
(
output
));
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
ReciprocalMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
class
ReciprocalMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -589,3 +608,7 @@ REGISTER_OP_MLU_KERNEL(
...
@@ -589,3 +608,7 @@ REGISTER_OP_MLU_KERNEL(
hard_sigmoid_grad
,
hard_sigmoid_grad
,
ops
::
HardSigmoidGradMLUKernel
<
float
>
,
ops
::
HardSigmoidGradMLUKernel
<
float
>
,
ops
::
HardSigmoidGradMLUKernel
<
paddle
::
platform
::
float16
>
);
ops
::
HardSigmoidGradMLUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
floor
,
ops
::
FloorMLUKernel
<
float
>
,
ops
::
FloorMLUKernel
<
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/grid_sampler_op_mlu.cc
0 → 100644
浏览文件 @
1c0120e2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
GridSamplerMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_mlu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
Unavailable
(
"This kernel only runs on MLU."
));
// input and output data
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
grid
=
ctx
.
Input
<
Tensor
>
(
"Grid"
);
Tensor
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
int
n
=
input
->
dims
()[
0
];
int
c
=
input
->
dims
()[
1
];
int
out_h
=
grid
->
dims
()[
1
];
int
out_w
=
grid
->
dims
()[
2
];
output
->
mutable_data
<
T
>
({
n
,
c
,
out_h
,
out_w
},
ctx
.
GetPlace
());
// attrs
// paddle.nn.functional.grid_sample(x, grid, mode='bilinear',
// padding_mode='zeros', align_corners=True, name=None)
const
std
::
string
mode
=
ctx
.
Attr
<
std
::
string
>
(
"mode"
);
const
std
::
string
padding_mode
=
ctx
.
Attr
<
std
::
string
>
(
"padding_mode"
);
bool
align_corners
=
ctx
.
Attr
<
bool
>
(
"align_corners"
);
const
std
::
string
data_format
=
paddle
::
framework
::
DataLayoutToString
(
input
->
layout
());
PADDLE_ENFORCE_EQ
(
mode
==
"bilinear"
,
true
,
platform
::
errors
::
Unavailable
(
"Only support bilinear mode in mlu grid_sample kernel."
));
PADDLE_ENFORCE_EQ
(
padding_mode
==
"zeros"
,
true
,
platform
::
errors
::
Unavailable
(
"Only support zeros padding_mode in mlu grid_sample kernel."
));
Tensor
trans_input
(
input
->
dtype
());
// transpose input from NCHW to NHWC
const
std
::
vector
<
int
>
perm_to_nhwc
=
{
0
,
2
,
3
,
1
};
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm_to_nhwc
,
input
,
&
trans_input
,
true
/*need_reshape_or_alloc*/
);
Tensor
tmp_output
(
output
->
dtype
());
tmp_output
.
mutable_data
<
T
>
({
n
,
out_h
,
out_w
,
c
},
ctx
.
GetPlace
());
MLUCnnlGridSampleDesc
grid_sample_desc
(
mode
,
padding_mode
,
align_corners
);
MLUCnnlTensorDesc
input_desc
(
trans_input
,
CNNL_LAYOUT_NHWC
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
grid_desc
(
*
grid
,
CNNL_LAYOUT_NHWC
,
ToCnnlDataType
<
T
>
());
MLUCnnlTensorDesc
tmp_output_desc
(
tmp_output
,
CNNL_LAYOUT_NHWC
,
ToCnnlDataType
<
T
>
());
MLUCnnl
::
GridSample
(
ctx
,
grid_sample_desc
.
get
(),
input_desc
.
get
(),
GetBasePtr
(
&
trans_input
),
grid_desc
.
get
(),
GetBasePtr
(
grid
),
tmp_output_desc
.
get
(),
GetBasePtr
(
&
tmp_output
));
// transpose output from NHWC to NCHW
const
std
::
vector
<
int
>
perm_to_nchw
=
{
0
,
3
,
1
,
2
,
};
TransposeFromMLUTensor
<
T
>
(
ctx
,
perm_to_nchw
,
&
tmp_output
,
output
,
false
/*need_reshape_or_alloc*/
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
grid_sampler
,
ops
::
GridSamplerMLUKernel
<
float
>
,
ops
::
GridSamplerMLUKernel
<
plat
::
float16
>
);
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
1c0120e2
...
@@ -622,6 +622,29 @@ MLUCnnlDCNDesc::~MLUCnnlDCNDesc() {
...
@@ -622,6 +622,29 @@ MLUCnnlDCNDesc::~MLUCnnlDCNDesc() {
}
}
}
}
MLUCnnlGridSampleDesc
::
MLUCnnlGridSampleDesc
(
const
std
::
string
&
interp_mode_str
,
const
std
::
string
&
padding_mode_str
,
bool
align_corners
)
{
cnnlInterpMode_t
interp_mode
=
CNNL_INTERP_BILINEAR
;
cnnlGridSamplePaddingMode_t
padding_mode
=
CNNL_GRIDSAMPLE_PADDING_ZEROS
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlCreateGridSampleDescriptor
(
&
grid_sample_desc_
));
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSetGridSampleDescriptor
(
grid_sample_desc_
,
interp_mode
,
padding_mode
,
align_corners
));
}
const
cnnlGridSampleDescriptor_t
MLUCnnlGridSampleDesc
::
get
()
const
{
return
grid_sample_desc_
;
}
MLUCnnlGridSampleDesc
::~
MLUCnnlGridSampleDesc
()
{
if
(
grid_sample_desc_
)
{
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlDestroyGridSampleDescriptor
(
grid_sample_desc_
));
}
}
MLUSeqDataDesc
::
MLUSeqDataDesc
(
cnnlSeqDataLayout_t
layout
,
MLUSeqDataDesc
::
MLUSeqDataDesc
(
cnnlSeqDataLayout_t
layout
,
cnnlDataType_t
dtype
,
cnnlDataType_t
dtype
,
int
dimNb
,
int
dimNb
,
...
@@ -4918,6 +4941,38 @@ MLURNNDesc::~MLURNNDesc() {
...
@@ -4918,6 +4941,38 @@ MLURNNDesc::~MLURNNDesc() {
grads_image
));
grads_image
));
}
}
/* static */
void
MLUCnnl
::
GridSample
(
const
ExecutionContext
&
ctx
,
const
cnnlGridSampleDescriptor_t
grid_sample_desc
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
grid_desc
,
const
void
*
grid
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
size_t
workspace_size
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlGetGridSampleForwardWorkspaceSize
(
handle
,
input_desc
,
grid_desc
,
output_desc
,
&
workspace_size
));
auto
&
dev_ctx
=
GetDevCtxFromCTX
(
ctx
);
Tensor
workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
MLUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
workspace_size
)},
dev_ctx
);
void
*
workspace_ptr
=
workspace
.
mutable_data
(
ctx
.
GetPlace
());
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlGridSampleForward
(
handle
,
grid_sample_desc
,
input_desc
,
input
,
grid_desc
,
grid
,
output_desc
,
output
,
workspace_ptr
,
workspace_size
));
}
/* static */
void
MLUCnnl
::
SyncBatchNormStats
(
/* static */
void
MLUCnnl
::
SyncBatchNormStats
(
const
ExecutionContext
&
ctx
,
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
x_desc
,
const
cnnlTensorDescriptor_t
x_desc
,
...
...
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
1c0120e2
...
@@ -495,6 +495,20 @@ class MLUCnnlDCNDesc {
...
@@ -495,6 +495,20 @@ class MLUCnnlDCNDesc {
cnnlDCNDescriptor_t
dcn_desc_
=
nullptr
;
cnnlDCNDescriptor_t
dcn_desc_
=
nullptr
;
};
};
class
MLUCnnlGridSampleDesc
{
public:
MLUCnnlGridSampleDesc
(
const
std
::
string
&
interp_mode_str
,
const
std
::
string
&
padding_mode_str
,
bool
align_corners
);
const
cnnlGridSampleDescriptor_t
get
()
const
;
~
MLUCnnlGridSampleDesc
();
private:
cnnlGridSampleDescriptor_t
grid_sample_desc_
=
nullptr
;
};
class
MLUSeqDataDesc
{
class
MLUSeqDataDesc
{
public:
public:
MLUSeqDataDesc
(
const
MLUSeqDataDesc
&
desc
)
=
delete
;
MLUSeqDataDesc
(
const
MLUSeqDataDesc
&
desc
)
=
delete
;
...
@@ -2040,6 +2054,15 @@ class MLUCnnl {
...
@@ -2040,6 +2054,15 @@ class MLUCnnl {
const
cnnlTensorDescriptor_t
grads_image_desc
,
const
cnnlTensorDescriptor_t
grads_image_desc
,
void
*
grads_image
);
void
*
grads_image
);
static
void
GridSample
(
const
ExecutionContext
&
ctx
,
const
cnnlGridSampleDescriptor_t
grid_sample_desc
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
grid_desc
,
const
void
*
grid
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
SyncBatchNormStats
(
const
ExecutionContext
&
ctx
,
static
void
SyncBatchNormStats
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
x_desc
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
void
*
x
,
...
...
paddle/fluid/platform/device/mlu/mlu_info.h
浏览文件 @
1c0120e2
...
@@ -16,9 +16,9 @@ limitations under the License. */
...
@@ -16,9 +16,9 @@ limitations under the License. */
#ifdef PADDLE_WITH_MLU
#ifdef PADDLE_WITH_MLU
#include <cn_api.h>
#include <cn_api.h>
#include <cndrv_id.h>
#include <cnnl.h>
#include <cnnl.h>
#include <cnpapi.h>
#include <cnpapi.h>
#include <cnpapi_cndrv_id.h>
#include <cnrt.h>
#include <cnrt.h>
#ifdef PADDLE_WITH_CNCL
#ifdef PADDLE_WITH_CNCL
#include <cncl.h>
#include <cncl.h>
...
...
python/paddle/fluid/tests/unittests/mlu/test_floor_op_mlu.py
0 → 100644
浏览文件 @
1c0120e2
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
import
paddle
paddle
.
enable_static
()
class
TestFloor
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"floor"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
init_dtype
()
self
.
__class__
.
no_need_check_grad
=
True
self
.
python_api
=
paddle
.
floor
np
.
random
.
seed
(
1024
)
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
10
,
12
]).
astype
(
self
.
dtype
)
out
=
np
.
floor
(
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_eager
=
False
)
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
class
TestFloorFP16
(
TestFloor
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_grid_sampler_op_mlu.py
0 → 100644
浏览文件 @
1c0120e2
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
paddle
.
enable_static
()
def
AffineGrid
(
theta
,
grid_shape
):
n
=
grid_shape
[
0
]
h
=
grid_shape
[
1
]
w
=
grid_shape
[
2
]
h_idx
=
np
.
repeat
(
np
.
linspace
(
-
1
,
1
,
h
)[
np
.
newaxis
,
:],
w
,
axis
=
0
).
T
[:,
:,
np
.
newaxis
]
w_idx
=
np
.
repeat
(
np
.
linspace
(
-
1
,
1
,
w
)[
np
.
newaxis
,
:],
h
,
axis
=
0
)[:,
:,
np
.
newaxis
]
grid
=
np
.
concatenate
([
w_idx
,
h_idx
,
np
.
ones
([
h
,
w
,
1
])],
axis
=
2
)
# h * w * 3
grid
=
np
.
repeat
(
grid
[
np
.
newaxis
,
:],
n
,
axis
=
0
)
# n * h * w *3
ret
=
np
.
zeros
([
n
,
h
*
w
,
2
])
theta
=
theta
.
transpose
([
0
,
2
,
1
])
for
i
in
range
(
len
(
theta
)):
ret
[
i
]
=
np
.
dot
(
grid
[
i
].
reshape
([
h
*
w
,
3
]),
theta
[
i
])
return
ret
.
reshape
([
n
,
h
,
w
,
2
]).
astype
(
"float32"
)
def
getGridPointValue
(
data
,
x
,
y
):
data_shape
=
data
.
shape
N
=
data_shape
[
0
]
C
=
data_shape
[
1
]
in_H
=
data_shape
[
2
]
in_W
=
data_shape
[
3
]
out_H
=
x
.
shape
[
1
]
out_W
=
x
.
shape
[
2
]
#out = np.zeros(data_shape, dtype='float32')
out
=
np
.
zeros
([
N
,
C
,
out_H
,
out_W
],
dtype
=
'float32'
)
for
i
in
range
(
N
):
for
j
in
range
(
out_H
):
for
k
in
range
(
out_W
):
if
y
[
i
,
j
,
k
]
<
0
or
y
[
i
,
j
,
k
]
>
in_H
-
1
or
x
[
i
,
j
,
k
]
<
0
or
x
[
i
,
j
,
k
]
>
in_W
-
1
:
out
[
i
,
:,
j
,
k
]
=
0
else
:
out
[
i
,
:,
j
,
k
]
=
data
[
i
,
:,
y
[
i
,
j
,
k
],
x
[
i
,
j
,
k
]]
return
out
def
clip
(
x
,
min_n
,
max_n
):
return
np
.
maximum
(
np
.
minimum
(
x
,
max_n
),
min_n
)
def
unnormalizeAndClip
(
grid_slice
,
max_val
,
align_corners
,
padding_mode
):
if
align_corners
:
grid_slice
=
0.5
*
((
grid_slice
.
astype
(
'float32'
)
+
1.0
)
*
max_val
)
else
:
grid_slice
=
0.5
*
((
grid_slice
.
astype
(
'float32'
)
+
1.0
)
*
(
max_val
+
1
))
-
0.5
if
padding_mode
==
"border"
:
grid_slice
=
clip
(
grid_slice
,
0
,
max_val
)
elif
padding_mode
==
"reflection"
:
double_range
=
2
*
max_val
if
align_corners
else
(
max_val
+
1
)
*
2
grid_abs
=
np
.
abs
(
grid_slice
)
if
align_corners
else
np
.
abs
(
grid_slice
+
0.5
)
extra
=
grid_abs
-
np
.
floor
(
grid_abs
/
double_range
)
*
double_range
grid_slice
=
np
.
minimum
(
extra
,
double_range
-
extra
)
grid_slice
=
grid_slice
if
align_corners
else
clip
(
grid_slice
-
0.5
,
0
,
max_val
)
return
grid_slice
def
GridSampler
(
data
,
grid
,
align_corners
=
True
,
mode
=
"bilinear"
,
padding_mode
=
"zeros"
):
dims
=
data
.
shape
N
=
dims
[
0
]
in_C
=
dims
[
1
]
in_H
=
dims
[
2
]
in_W
=
dims
[
3
]
out_H
=
grid
.
shape
[
1
]
out_W
=
grid
.
shape
[
2
]
x
=
grid
[:,
:,
:,
0
]
y
=
grid
[:,
:,
:,
1
]
y_max
=
in_H
-
1
x_max
=
in_W
-
1
x
=
unnormalizeAndClip
(
x
,
x_max
,
align_corners
,
padding_mode
)
y
=
unnormalizeAndClip
(
y
,
y_max
,
align_corners
,
padding_mode
)
if
mode
==
"bilinear"
:
x0
=
np
.
floor
(
x
).
astype
(
'int32'
)
x1
=
x0
+
1
y0
=
np
.
floor
(
y
).
astype
(
'int32'
)
y1
=
y0
+
1
wa
=
np
.
tile
(((
x1
-
x
)
*
(
y1
-
y
)).
reshape
((
N
,
1
,
out_H
,
out_W
)),
(
1
,
in_C
,
1
,
1
))
wb
=
np
.
tile
(((
x1
-
x
)
*
(
y
-
y0
)).
reshape
((
N
,
1
,
out_H
,
out_W
)),
(
1
,
in_C
,
1
,
1
))
wc
=
np
.
tile
(((
x
-
x0
)
*
(
y1
-
y
)).
reshape
((
N
,
1
,
out_H
,
out_W
)),
(
1
,
in_C
,
1
,
1
))
wd
=
np
.
tile
(((
x
-
x0
)
*
(
y
-
y0
)).
reshape
((
N
,
1
,
out_H
,
out_W
)),
(
1
,
in_C
,
1
,
1
))
va
=
getGridPointValue
(
data
,
x0
,
y0
)
vb
=
getGridPointValue
(
data
,
x0
,
y1
)
vc
=
getGridPointValue
(
data
,
x1
,
y0
)
vd
=
getGridPointValue
(
data
,
x1
,
y1
)
out
=
(
wa
*
va
+
wb
*
vb
+
wc
*
vc
+
wd
*
vd
).
astype
(
'float32'
)
elif
mode
==
"nearest"
:
x
=
np
.
round
(
x
).
astype
(
'int32'
)
y
=
np
.
round
(
y
).
astype
(
'int32'
)
out
=
getGridPointValue
(
data
,
x
,
y
)
return
out
class
TestGridSamplerOp
(
OpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
op_type
=
'grid_sampler'
self
.
align_corners
=
True
self
.
padding_mode
=
"zeros"
self
.
mode
=
"bilinear"
self
.
initTestCase
()
x
=
np
.
random
.
randint
(
0
,
255
,
self
.
x_shape
).
astype
(
'float32'
)
theta
=
np
.
zeros
(
self
.
theta_shape
).
astype
(
'float32'
)
for
i
in
range
(
self
.
theta_shape
[
0
]):
for
j
in
range
(
2
):
for
k
in
range
(
3
):
theta
[
i
,
j
,
k
]
=
np
.
random
.
rand
(
1
)[
0
]
grid
=
AffineGrid
(
theta
,
self
.
grid_shape
)
self
.
inputs
=
{
'X'
:
x
,
'Grid'
:
grid
}
self
.
attrs
=
{
'use_cudnn'
:
False
,
"align_corners"
:
self
.
align_corners
,
"padding_mode"
:
self
.
padding_mode
,
"mode"
:
self
.
mode
}
self
.
outputs
=
{
'Output'
:
GridSampler
(
x
,
grid
,
self
.
align_corners
,
self
.
mode
,
self
.
padding_mode
)
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
8
,
8
)
self
.
grid_shape
=
(
2
,
7
,
9
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
False
self
.
padding_mode
=
"zeros"
self
.
mode
=
"bilinear"
class
Case1
(
TestGridSamplerOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
6
)
self
.
grid_shape
=
(
2
,
8
,
9
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
True
self
.
padding_mode
=
"zeros"
self
.
mode
=
"bilinear"
class
LargeInputCase
(
TestGridSamplerOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
128
,
128
)
self
.
grid_shape
=
(
2
,
130
,
130
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
False
self
.
padding_mode
=
"zeros"
self
.
mode
=
"bilinear"
class
Case2
(
LargeInputCase
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
128
,
128
)
self
.
grid_shape
=
(
2
,
130
,
130
,
2
)
self
.
theta_shape
=
(
2
,
2
,
3
)
self
.
align_corners
=
True
self
.
padding_mode
=
"zeros"
self
.
mode
=
"bilinear"
if
__name__
==
"__main__"
:
unittest
.
main
()
tools/dockerfile/Dockerfile.mlu
浏览文件 @
1c0120e2
...
@@ -2,14 +2,14 @@
...
@@ -2,14 +2,14 @@
# Update CNTOOLKIT_VERSION, CNNL_VERSION and CNCL_VERSION if using other versions
# Update CNTOOLKIT_VERSION, CNNL_VERSION and CNCL_VERSION if using other versions
#
#
# Build:
# Build:
# - CNTOOLKIT_VERSION
2.8.1
-1
# - CNTOOLKIT_VERSION
3.0.0
-1
# - CNNL_VERSION 1.
9.3
-1
# - CNNL_VERSION 1.
11.0
-1
# - CNCL_VERSION 1.
0.4
-1
# - CNCL_VERSION 1.
2.0
-1
#
#
# Download three packages from FTP (need to connect cambricon AE to get FTP url)
# Download three packages from FTP (need to connect cambricon AE to get FTP url)
# - cntoolkit_
2.6.5
-1.ubuntu18.04_amd64.deb
# - cntoolkit_
3.0.0
-1.ubuntu18.04_amd64.deb
# - cnnl_1.
8.3
-1.ubuntu18.04_amd64.deb
# - cnnl_1.
11.0
-1.ubuntu18.04_amd64.deb
# - cncl_1.
0.2
-1.ubuntu18.04_amd64.deb
# - cncl_1.
2.0
-1.ubuntu18.04_amd64.deb
# copy them to current directory first, then run build commands
# copy them to current directory first, then run build commands
#
#
# For example:
# For example:
...
@@ -21,9 +21,9 @@
...
@@ -21,9 +21,9 @@
# (get cncl pkg)
# (get cncl pkg)
#
#
# docker build -f Dockerfile.mlu \
# docker build -f Dockerfile.mlu \
# --build-arg CNTOOLKIT_VERSION=
2.8.1
-1 \
# --build-arg CNTOOLKIT_VERSION=
3.0.0
-1 \
# --build-arg CNNL_VERSION=1.
9.3
-1 \
# --build-arg CNNL_VERSION=1.
11.0
-1 \
# --build-arg CNCL_VERSION=1.
0.4
-1 \
# --build-arg CNCL_VERSION=1.
2.0
-1 \
# -t paddlepaddle/paddle:latest-dev-mlu .
# -t paddlepaddle/paddle:latest-dev-mlu .
#
#
# without mlu device:
# without mlu device:
...
@@ -40,9 +40,9 @@ MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
...
@@ -40,9 +40,9 @@ MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
ENV WITH_GPU=OFF
ENV WITH_GPU=OFF
ARG CNTOOLKIT_VERSION=
2.8.1
-1
ARG CNTOOLKIT_VERSION=
3.0.0
-1
ARG CNNL_VERSION=1.
9.3
-1
ARG CNNL_VERSION=1.
11.0
-1
ARG CNCL_VERSION=1.
0.4
-1
ARG CNCL_VERSION=1.
2.0
-1
ARG CNTOOLKIT_PKG=cntoolkit_$CNTOOLKIT_VERSION.ubuntu18.04_amd64.deb
ARG CNTOOLKIT_PKG=cntoolkit_$CNTOOLKIT_VERSION.ubuntu18.04_amd64.deb
ARG CNNL_PKG=cnnl_$CNNL_VERSION.ubuntu18.04_amd64.deb
ARG CNNL_PKG=cnnl_$CNNL_VERSION.ubuntu18.04_amd64.deb
ARG CNCL_PKG=cncl_$CNCL_VERSION.ubuntu18.04_amd64.deb
ARG CNCL_PKG=cncl_$CNCL_VERSION.ubuntu18.04_amd64.deb
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录