Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1b20096a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1b20096a
编写于
12月 14, 2017
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
done
上级
40d0fff2
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
238 addition
and
168 deletion
+238
-168
paddle/operators/recv_op.cc
paddle/operators/recv_op.cc
+26
-2
paddle/operators/send_op.cc
paddle/operators/send_op.cc
+0
-2
python/paddle/v2/fluid/__init__.py
python/paddle/v2/fluid/__init__.py
+2
-1
python/paddle/v2/fluid/distribute_planner.py
python/paddle/v2/fluid/distribute_planner.py
+0
-49
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+206
-0
python/paddle/v2/fluid/executor.py
python/paddle/v2/fluid/executor.py
+0
-105
python/paddle/v2/fluid/tests/book/notest_recognize_digits_conv_dist.py
.../v2/fluid/tests/book/notest_recognize_digits_conv_dist.py
+4
-9
未找到文件。
paddle/operators/recv_op.cc
浏览文件 @
1b20096a
...
...
@@ -62,17 +62,29 @@ class RecvOp : public framework::OperatorBase {
server_thread_
->
join
();
}
std
::
string
GetGradVarNameForTrainer
(
const
std
::
string
&
varname
)
const
{
if
(
grads_counter_
.
find
(
varname
)
!=
grads_counter_
.
end
())
{
grads_counter_
[
varname
]
=
0
;
}
char
ret
[
256
];
snprintf
(
ret
,
sizeof
(
ret
),
"%s.trainer_%d"
,
varname
.
c_str
(),
grads_counter_
[
varname
]
++
);
return
std
::
string
(
ret
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
override
{
// FIXME(typhoonzero): no new scopes for every run.
framework
::
Scope
&
recv_scope
=
scope
.
NewScope
();
auto
param_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"ParamList"
);
auto
grad_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"GradList"
);
auto
trainer_count
=
Attr
<
int
>
(
"Trainers"
);
size_t
param_count
=
param_list
.
size
();
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
while
(
true
)
{
// TODO(typhoonzero): get from multiple trainers.
for
(
size_t
i
=
0
;
i
<
param_count
;
++
i
)
{
// Get from multiple trainers, we don't care about order in which
// the gradient arrives, just add suffix 0~n then average the gradient.
for
(
size_t
i
=
0
;
i
<
param_count
*
trainer_count
;
++
i
)
{
// blocking get one var from client.
const
detail
::
TensorWithName
&
v
=
rpc_service_
->
Get
();
auto
grad_var_name
=
v
.
first
;
...
...
@@ -83,6 +95,14 @@ class RecvOp : public framework::OperatorBase {
}
VLOG
(
10
)
<<
"recved grad: "
<<
grad_var_name
<<
" updating param: "
<<
param_var_name
;
if
(
trainer_count
>
1
)
{
auto
*
var
=
recv_scope
.
FindVar
(
grad_var_name
);
if
(
var
!=
nullptr
)
{
// must rename the var to different names to merge gradient.
grad_var_name
=
this
->
GetGradVarNameForTrainer
(
grad_var_name
);
}
}
auto
*
var
=
recv_scope
.
Var
(
grad_var_name
);
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
// FIXME(typhoonzero): do not copy
...
...
@@ -119,6 +139,7 @@ class RecvOp : public framework::OperatorBase {
// grpc send/recv service implement to register.
std
::
shared_ptr
<
detail
::
SendRecvServerImpl
>
rpc_service_
;
std
::
shared_ptr
<
std
::
thread
>
server_thread_
;
mutable
std
::
unordered_map
<
std
::
string
,
int
>
grads_counter_
;
};
class
RecvOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -144,6 +165,9 @@ This operator will recv tensor from send_op
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"GradList"
,
"type list of string"
,
"grad->param name mapping to find which param to optimize."
);
AddAttr
<
int
>
(
"Trainers"
,
"type int"
,
"Number of trainers in the current cluster job"
)
.
SetDefault
(
1
);
}
};
...
...
paddle/operators/send_op.cc
浏览文件 @
1b20096a
...
...
@@ -47,14 +47,12 @@ class SendOp : public framework::OperatorBase {
// TODO(typhoonzero): currently it's non-blocking,
// should block until server responds.
for
(
auto
in
:
ins
)
{
LOG
(
ERROR
)
<<
"sending grad: "
<<
in
;
bool
ret
=
client_
->
SendVariable
(
scope
,
in
);
if
(
!
ret
)
{
LOG
(
ERROR
)
<<
"send variable error"
;
}
}
for
(
auto
in
:
ins
)
{
LOG
(
ERROR
)
<<
"updating from server..."
;
bool
ret
=
client_
->
GetVariable
(
scope
);
if
(
!
ret
)
{
LOG
(
ERROR
)
<<
"GetVariable error"
;
...
...
python/paddle/v2/fluid/__init__.py
浏览文件 @
1b20096a
...
...
@@ -16,12 +16,13 @@ import regularizer
from
param_attr
import
ParamAttr
from
data_feeder
import
DataFeeder
from
core
import
LoDTensor
,
CPUPlace
,
GPUPlace
from
distribute_transpiler
import
DistributeTranspiler
Tensor
=
LoDTensor
__all__
=
framework
.
__all__
+
executor
.
__all__
+
[
'io'
,
'initializer'
,
'layers'
,
'nets'
,
'optimizer'
,
'backward'
,
'regularizer'
,
'LoDTensor'
,
'CPUPlace'
,
'GPUPlace'
,
'Tensor'
,
'ParamAttr'
'DataFeeder'
'DataFeeder'
,
'DistributeTranspiler'
]
...
...
python/paddle/v2/fluid/distribute_planner.py
已删除
100644 → 0
浏览文件 @
40d0fff2
import
framework
from
backward
import
append_backward_ops
from
regularizer
import
append_regularization_ops
import
optimizer
from
layer_helper
import
LayerHelper
def
hash_name_to_server
(
params_grads
,
pserver_endpoints
):
"""
:param param_grads:
:return: a map of pserver endpoint ->
params -> [param list]
grads -> [grad list]
"""
def
_hash_param
(
param_name
,
total
):
return
hash
(
param_name
)
%
total
param_grad_map
=
dict
()
for
param
,
grad
in
params_grads
:
if
param
.
trainable
is
True
and
grad
is
not
None
:
server_id
=
_hash_param
(
param
.
name
,
len
(
pserver_endpoints
))
server_for_param
=
pserver_endpoints
[
server_id
]
if
not
param_grad_map
.
has_key
(
server_for_param
):
param_grad_map
[
server_for_param
]
=
{
"params"
:
[],
"grads"
:
[]}
param_grad_map
[
server_for_param
][
"params"
].
append
(
param
)
param_grad_map
[
server_for_param
][
"grads"
].
append
(
grad
)
return
param_grad_map
def
round_robin
(
params_grads
,
pserver_endpoints
):
assert
(
len
(
params_grads
)
>
len
(
pserver_endpoints
))
param_grad_map
=
dict
()
pserver_idx
=
0
for
param
,
grad
in
params_grads
:
if
param
.
trainable
is
True
:
server_for_param
=
pserver_endpoints
[
pserver_idx
]
if
not
param_grad_map
.
has_key
(
server_for_param
):
param_grad_map
[
server_for_param
]
=
{
"params"
:
[],
"grads"
:
[]}
param_grad_map
[
server_for_param
][
"params"
].
append
(
param
)
param_grad_map
[
server_for_param
][
"grads"
].
append
(
grad
)
pserver_idx
+=
1
if
pserver_idx
>=
len
(
pserver_endpoints
):
pserver_idx
=
0
return
param_grad_map
python/paddle/v2/fluid/distribute_transpiler.py
0 → 100644
浏览文件 @
1b20096a
import
framework
from
framework
import
Program
,
default_main_program
,
Parameter
,
Variable
import
optimizer
from
layer_helper
import
LayerHelper
def
hash_name_to_server
(
params_grads
,
pserver_endpoints
):
"""
:param param_grads:
:return: a map of pserver endpoint ->
params -> [param list]
grads -> [grad list]
"""
def
_hash_param
(
param_name
,
total
):
return
hash
(
param_name
)
%
total
param_grad_map
=
dict
()
for
param
,
grad
in
params_grads
:
if
param
.
trainable
is
True
and
grad
is
not
None
:
server_id
=
_hash_param
(
param
.
name
,
len
(
pserver_endpoints
))
server_for_param
=
pserver_endpoints
[
server_id
]
if
not
param_grad_map
.
has_key
(
server_for_param
):
param_grad_map
[
server_for_param
]
=
{
"params"
:
[],
"grads"
:
[]}
param_grad_map
[
server_for_param
][
"params"
].
append
(
param
)
param_grad_map
[
server_for_param
][
"grads"
].
append
(
grad
)
return
param_grad_map
def
round_robin
(
params_grads
,
pserver_endpoints
):
assert
(
len
(
params_grads
)
>
len
(
pserver_endpoints
))
param_grad_map
=
dict
()
pserver_idx
=
0
for
param
,
grad
in
params_grads
:
if
param
.
trainable
is
True
:
server_for_param
=
pserver_endpoints
[
pserver_idx
]
if
not
param_grad_map
.
has_key
(
server_for_param
):
param_grad_map
[
server_for_param
]
=
{
"params"
:
[],
"grads"
:
[]}
param_grad_map
[
server_for_param
][
"params"
].
append
(
param
)
param_grad_map
[
server_for_param
][
"grads"
].
append
(
grad
)
pserver_idx
+=
1
if
pserver_idx
>=
len
(
pserver_endpoints
):
pserver_idx
=
0
return
param_grad_map
class
DistributeTranspiler
:
def
transpile
(
self
,
optimize_ops
,
params_grads
,
program
=
None
,
pservers
=
"127.0.0.1:6174"
,
trainers
=
1
,
split_method
=
round_robin
):
"""
Transpile the program to a distributed data-parallelism programs.
The main_program will be transform to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
in to a parameter server program.
Use different methods to split trainable varialbles to different
parameter servers.
:param optimize_ops: op list of optimization, should be the
return value of Optimizer.minimize
:type optimize_ops: list
:param program: program to optimize, default default_main_program
:param pservers: parameter server endpoints like "m1:6174,m2:6174"
:type pservers: string
:return: return a list of programs
"""
if
program
is
None
:
program
=
default_main_program
()
self
.
trainers
=
trainers
self
.
_optimize_distributed
(
optimize_ops
,
program
,
params_grads
,
pservers
=
pservers
,
trainers
=
trainers
,
split_method
=
split_method
)
def
_clone_param
(
self
,
block
,
v
):
assert
isinstance
(
v
,
Parameter
)
new_p
=
Parameter
(
block
=
block
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
,
type
=
v
.
type
,
lod_level
=
v
.
lod_level
,
stop_gradient
=
v
.
stop_gradient
,
trainable
=
v
.
trainable
,
optimize_attr
=
v
.
optimize_attr
,
regularizer
=
v
.
regularizer
,
name
=
v
.
name
)
block
.
vars
[
new_p
.
name
]
=
new_p
def
_clone_var
(
self
,
block
,
var
):
assert
isinstance
(
var
,
Variable
)
return
block
.
create_var
(
name
=
var
.
name
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
,
type
=
var
.
type
,
lod_level
=
var
.
lod_level
,
persistable
=
var
.
persistable
)
def
_optimize_distributed
(
self
,
optimize_ops
,
program
,
params_and_grads
,
**
kwargs
):
# remove optimize ops and add a send op to main_program
# FIXME(typhoonzero): delete_op only remove the first accurance,
# need to consider about multiple same optimize op?
for
op
in
optimize_ops
:
program
.
global_block
().
delete_op
(
op
)
if
kwargs
.
has_key
(
"split_method"
):
split_method
=
kwargs
[
"split_method"
]
else
:
split_method
=
round_robin
assert
(
callable
(
split_method
))
pserver_endpoints
=
kwargs
[
"pservers"
].
split
(
","
)
self
.
param_grad_map
=
split_method
(
params_and_grads
,
pserver_endpoints
)
for
ep
in
pserver_endpoints
:
# FIXME(typhoonzero): send to different servers can run in parrallel.
send_op
=
program
.
global_block
().
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
self
.
param_grad_map
[
ep
][
"grads"
]
},
# inputs is a list of tensors to be send
outputs
=
{},
attrs
=
{
"endpoint"
:
ep
})
def
_create_var_for_trainers
(
self
,
block
,
var
,
trainers
):
var_list
=
[]
for
i
in
xrange
(
trainers
):
var_each
=
block
.
create_var
(
name
=
"%s.trainer_%d"
%
(
var
.
name
,
i
),
psersistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
var_list
.
append
(
var_each
)
return
var_list
def
get_pserver_program
(
self
,
endpoint
,
optimize_ops
):
pserver_program
=
Program
()
for
v
in
self
.
param_grad_map
[
endpoint
][
"params"
]:
self
.
_clone_param
(
pserver_program
.
global_block
(),
v
)
optimize_sub_program
=
Program
()
grad_var_names
=
[
var
.
name
for
var
in
self
.
param_grad_map
[
endpoint
][
"grads"
]
]
for
opt_op
in
optimize_ops
:
for
_
,
var
in
opt_op
.
inputs
.
iteritems
():
# NOTE: append operators to merge gradients from multiple
# trainers. If trainers == 1, this is not needed.
if
self
.
trainers
>
1
and
var
.
name
in
grad_var_names
:
vars2merge
=
self
.
_create_var_for_trainers
(
optimize_sub_program
.
global_block
(),
var
,
self
.
trainers
)
merged_var
=
optimize_sub_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
optimize_sub_program
.
global_block
().
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
vars2merge
},
outputs
=
{
"Out"
:
merged_var
})
optimize_sub_program
.
global_block
().
append_op
(
type
=
"scale"
,
inputs
=
{
"X"
:
merged_var
},
outputs
=
{
"Out"
:
merged_var
},
attrs
=
{
"scale"
:
1.0
/
float
(
self
.
trainers
)})
else
:
optimize_sub_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
optimize_sub_program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
opt_op
.
inputs
,
outputs
=
opt_op
.
outputs
,
attrs
=
opt_op
.
attrs
)
pserver_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{
"RX"
:
self
.
param_grad_map
[
endpoint
][
"grads"
]},
# grads to recv
outputs
=
{},
attrs
=
{
"OptimizeProgram"
:
optimize_sub_program
.
desc
,
"endpoint"
:
endpoint
,
"ParamList"
:
[
p
.
name
for
p
in
self
.
param_grad_map
[
endpoint
][
"params"
]],
"GradList"
:
[
p
.
name
for
p
in
self
.
param_grad_map
[
endpoint
][
"grads"
]],
"Trainers"
:
self
.
trainers
})
pserver_program
.
sync_with_cpp
()
return
pserver_program
python/paddle/v2/fluid/executor.py
浏览文件 @
1b20096a
...
...
@@ -50,111 +50,6 @@ class Executor(object):
self
.
executor
=
core
.
Executor
(
act_places
)
self
.
places
=
places
def
optimize
(
self
,
optimize_ops
,
params_grads
,
program
=
None
,
**
kwargs
):
"""
optimize the program for different runtime environment
:param optimize_ops: op list of optimization, should be the
return value of Optimizer.minimize
:type optimize_ops: list
:param program: program to optimize, default default_main_program
:param pservers: parameter server endpoints like "m1:6174,m2:6174"
:type pservers: string
:return: return a list of programs
"""
if
program
is
None
:
program
=
default_main_program
()
if
kwargs
.
has_key
(
"pservers"
):
return
self
.
_optimize_distributed
(
optimize_ops
,
program
,
params_grads
,
**
kwargs
)
def
_clone_param
(
self
,
block
,
v
):
assert
isinstance
(
v
,
Parameter
)
new_p
=
Parameter
(
block
=
block
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
,
type
=
v
.
type
,
lod_level
=
v
.
lod_level
,
stop_gradient
=
v
.
stop_gradient
,
trainable
=
v
.
trainable
,
optimize_attr
=
v
.
optimize_attr
,
regularizer
=
v
.
regularizer
,
name
=
v
.
name
)
block
.
vars
[
new_p
.
name
]
=
new_p
def
_clone_var
(
self
,
block
,
var
):
assert
isinstance
(
var
,
Variable
)
return
block
.
create_var
(
name
=
var
.
name
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
,
type
=
var
.
type
,
lod_level
=
var
.
lod_level
,
persistable
=
var
.
persistable
)
def
_optimize_distributed
(
self
,
optimize_ops
,
program
,
params_and_grads
,
**
kwargs
):
# remove optimize ops and add a send op to main_program
# FIXME(typhoonzero): delete_op only remove the first accurence,
# need to consider about multiple same optimize op?
for
op
in
optimize_ops
:
program
.
global_block
().
delete_op
(
op
)
if
kwargs
.
has_key
(
"split_method"
):
split_method
=
kwargs
[
"split_method"
]
else
:
split_method
=
distribute_planner
.
round_robin
assert
(
callable
(
split_method
))
pserver_endpoints
=
kwargs
[
"pservers"
].
split
(
","
)
self
.
param_grad_map
=
split_method
(
params_and_grads
,
pserver_endpoints
)
for
ep
in
pserver_endpoints
:
# FIXME(typhoonzero): send to different servers can run in parrallel.
send_op
=
program
.
global_block
().
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
self
.
param_grad_map
[
ep
][
"grads"
]
},
# inputs is a list of tensors to be send
outputs
=
{},
attrs
=
{
"endpoint"
:
ep
})
def
get_pserver_program
(
self
,
endpoint
,
optimize_ops
):
pserver_program
=
Program
()
for
v
in
self
.
param_grad_map
[
endpoint
][
"params"
]:
self
.
_clone_param
(
pserver_program
.
global_block
(),
v
)
optimize_sub_program
=
Program
()
for
opt_op
in
optimize_ops
:
for
varname
,
var
in
opt_op
.
inputs
.
iteritems
():
optimize_sub_program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
optimize_sub_program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
opt_op
.
inputs
,
outputs
=
opt_op
.
outputs
,
attrs
=
opt_op
.
attrs
)
pserver_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{
"RX"
:
self
.
param_grad_map
[
endpoint
][
"grads"
]},
# grads to recv
outputs
=
{},
attrs
=
{
"OptimizeProgram"
:
optimize_sub_program
.
desc
,
"endpoint"
:
endpoint
,
"ParamList"
:
[
p
.
name
for
p
in
self
.
param_grad_map
[
endpoint
][
"params"
]],
"GradList"
:
[
p
.
name
for
p
in
self
.
param_grad_map
[
endpoint
][
"grads"
]]
})
pserver_program
.
sync_with_cpp
()
return
pserver_program
def
aslodtensor
(
self
,
data
):
def
accumulate
(
data
):
if
not
isinstance
(
data
,
list
):
...
...
python/paddle/v2/fluid/tests/book/test_recognize_digits_conv_dist.py
→
python/paddle/v2/fluid/tests/book/
no
test_recognize_digits_conv_dist.py
浏览文件 @
1b20096a
...
...
@@ -38,17 +38,14 @@ train_reader = paddle.batch(
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
optimiz
e
(
optimize_ops
,
params_grads
,
pservers
=
"127.0.0.1:6174"
,
trainers
=
1
)
t
=
fluid
.
DistributeTranspiler
()
t
.
transpil
e
(
optimize_ops
,
params_grads
,
pservers
=
"127.0.0.1:6174"
,
trainers
=
1
)
pserver_endpoint
=
os
.
getenv
(
"PSERVER"
)
if
pserver_endpoint
:
pserver_prog
=
exe
.
get_pserver_program
(
pserver_endpoint
,
optimize_ops
)
print
(
"pserver startup: "
,
fluid
.
default_startup_program
())
pserver_prog
=
t
.
get_pserver_program
(
pserver_endpoint
,
optimize_ops
)
exe
.
run
(
fluid
.
default_startup_program
())
while
True
:
exe
.
run
(
pserver_prog
)
print
(
"Run pserver once end..."
)
exe
.
run
(
pserver_prog
)
else
:
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
images
,
label
],
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
...
...
@@ -60,8 +57,6 @@ else:
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
pass_acc
=
accuracy
.
eval
(
exe
)
print
(
"pass_id="
+
str
(
pass_id
)
+
" acc="
+
str
(
acc
)
+
" pass_acc="
+
str
(
pass_acc
))
# print loss, acc
if
loss
<
10.0
and
pass_acc
>
0.9
:
# if avg cost less than 10.0 and accuracy is larger than 0.9, we think our code is good.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录