未验证 提交 1a32391c 编写于 作者: H Haohongxiang 提交者: GitHub

[Dygraph] Refactoring of reducer in DataParallel (#40389)

* refactor reducer

* modify cmakelists

* solve conflicts

* rename group and update process_group

* fix bugs of ProcessGroupNCCL

* modify for CIs

* refactoring reducer
上级 af6ef888
cc_library(processgroup SRCS ProcessGroup.cc DEPS phi phi_api eager_api)
cc_library(eager_reducer SRCS reducer.cc DEPS eager_api processgroup phi phi_api)
if (WITH_DISTRIBUTE)
cc_library(processgroup_gloo SRCS ProcessGroupGloo.cc DEPS phi phi_api eager_api gloo_wrapper)
endif()
cc_library(eager_reducer SRCS reducer.cc DEPS eager_api processgroup)
if(WITH_NCCL)
cc_library(processgroup_nccl SRCS ProcessGroupNCCL.cc DEPS place cuda_stream enforce collective_helper device_context phi phi_api eager_api)
......
......@@ -88,8 +88,8 @@ void SyncDefaultStream(
for (size_t i = 0; i < places.size(); ++i) {
auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
platform::DeviceContextPool::Instance().Get(places[i]));
ncclEvents[i].Record(*dev_ctx[i]);
ncclEvents[i].Block(*default_ctx);
ncclEvents[i].Record(*default_ctx);
ncclEvents[i].Block(*dev_ctx[i]);
}
}
......
......@@ -13,7 +13,6 @@
// limitations under the License.
#include "paddle/fluid/distributed/collective/reducer.h"
#include "paddle/phi/common/data_type.h"
namespace paddle {
namespace distributed {
......@@ -127,5 +126,430 @@ std::vector<std::vector<size_t>> Eager_AssignGroupBySize(
return res;
}
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
const DeviceContext &context,
const std::vector<phi::DenseTensor> &dense_tensors_,
Tensor *p_dense_contents) {
operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
concat_functor_(
context, dense_tensors_, 0,
std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
.get());
}
template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
const DeviceContext &context, Tensor *p_dense_contents,
std::vector<phi::DenseTensor> *p_dense_tensors) {
auto *in =
std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
.get();
std::vector<phi::DenseTensor *> outs;
std::vector<const phi::DenseTensor *> shape_refer;
outs.reserve(p_dense_tensors->size());
shape_refer.reserve(p_dense_tensors->size());
for (auto &tensor : *p_dense_tensors) {
outs.emplace_back(&tensor);
shape_refer.emplace_back(&tensor);
}
operators::math::SplitFunctor<DeviceContext, T> split_functor_;
split_functor_(context, *in, shape_refer, 0, &outs);
}
// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
const DeviceContext &context,
const std::vector<phi::DenseTensor> &dense_tensors_,
Tensor *p_dense_contents, phi::DataType type) {
switch (type) {
case phi::DataType::FLOAT16:
ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
context, dense_tensors_, p_dense_contents);
break;
case phi::DataType::FLOAT32:
ConcatTensorsForAllReduce<DeviceContext, float>(context, dense_tensors_,
p_dense_contents);
break;
case phi::DataType::FLOAT64:
ConcatTensorsForAllReduce<DeviceContext, double>(context, dense_tensors_,
p_dense_contents);
break;
default:
PADDLE_THROW(platform::errors::Unimplemented(
"Data type (%s) is not supported when it concats tensors for "
"allreduce.",
type));
}
}
// context is used to select the stream for split
template <typename DeviceContext>
static void SplitTensorsWithType(const DeviceContext &context,
Tensor *p_dense_contents,
std::vector<phi::DenseTensor> *p_dense_tensors,
phi::DataType type) {
switch (type) {
case phi::DataType::FLOAT16:
SplitTensorsForAllReduce<DeviceContext, platform::float16>(
context, p_dense_contents, p_dense_tensors);
break;
case phi::DataType::FLOAT32:
SplitTensorsForAllReduce<DeviceContext, float>(context, p_dense_contents,
p_dense_tensors);
break;
case phi::DataType::FLOAT64:
SplitTensorsForAllReduce<DeviceContext, double>(context, p_dense_contents,
p_dense_tensors);
break;
default:
PADDLE_THROW(platform::errors::Unimplemented(
"Data type (%s) is not supported when it splits tensors for "
"allreduce.",
type));
}
}
void EagerGroup::ConcatTensors(const platform::Place &place) {
if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
auto *default_ctx = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
ConcatTensorsWithType(*default_ctx, dense_tensors_, &dense_contents_,
dtype_);
#else
PADDLE_THROW(platform::errors::PermissionDenied(
"Paddle can't concat grad tensors since it's not compiled with NCCL,"
"Please recompile or reinstall Paddle with NCCL support."));
#endif
} else if (platform::is_cpu_place(place)) {
auto *default_ctx = static_cast<platform::CPUDeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
ConcatTensorsWithType(*default_ctx, dense_tensors_, &dense_contents_,
dtype_);
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Concat grad tensor not supported on place (%s)", place));
}
}
void EagerGroup::SplitTensors(const platform::Place &place) {
if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
auto *default_ctx = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
SplitTensorsWithType(*default_ctx, &dense_contents_, &dense_tensors_,
dtype_);
#else
PADDLE_THROW(platform::errors::PermissionDenied(
"Paddle can't split grad tensor since it's not compiled with NCCL,"
"Please recompile or reinstall Paddle with NCCL support."));
#endif
} else if (platform::is_cpu_place(place)) {
auto *default_ctx = static_cast<platform::CPUDeviceContext *>(
platform::DeviceContextPool::Instance().Get(place));
SplitTensorsWithType(*default_ctx, &dense_contents_, &dense_tensors_,
dtype_);
} else {
PADDLE_THROW(platform::errors::Unimplemented(
"Split grad tensor not supported on place (%s)", place));
}
}
EagerReducer::EagerReducer(
const std::vector<Tensor> tensors,
const std::vector<std::vector<size_t>> &group_indices,
const std::vector<bool> &is_sparse_gradient,
std::shared_ptr<distributed::ProcessGroup> process_group,
const std::vector<size_t> &group_size_limits, bool find_unused_parameters)
: tensors_(tensors),
group_indices_(group_indices),
is_sparse_gradient_(is_sparse_gradient),
process_group_(process_group),
group_size_limits_(group_size_limits),
find_unused_vars_each_step_(find_unused_parameters) {
VLOG(3) << "Start construct the Reducer ...";
nranks_ = process_group_->GetSize();
// initialize groups
InitializeGroups(group_indices);
for (size_t global_var_index = 0; global_var_index < tensors_.size();
++global_var_index) {
auto tensor = tensors_[global_var_index];
auto reduce_hook = [=](void) -> void {
this->AddDistHook(global_var_index);
};
const auto &grad_node = GetGradNodeFromTensor(&tensor);
PADDLE_ENFORCE(
grad_node.get() != nullptr,
paddle::platform::errors::Fatal("Detected NULL grad_node,"
"Leaf tensor should have had grad_node "
"with type: GradNodeAccumulation"));
const auto &accumulation_grad_node =
std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
accumulation_grad_node->RegisterReduceHook(
std::make_shared<egr::CppTensorVoidHook>(reduce_hook));
}
vars_marked_ready_.resize(tensors_.size(), false);
local_used_vars_.resize(tensors_.size(), 0);
}
std::shared_ptr<egr::GradNodeBase> EagerReducer::GetGradNodeFromTensor(
Tensor *tensor) {
auto *autograd_meta = tensor->get_autograd_meta();
const auto &grad_node =
static_cast<egr::AutogradMeta *>(autograd_meta)->GetMutableGradNode();
return grad_node;
}
void EagerReducer::InitializeGroups(
const std::vector<std::vector<size_t>> &group_indices) {
VLOG(3) << "Start initialize groups ..";
// clear the group
groups_.clear();
groups_.reserve(group_indices.size());
variable_locators_.clear();
variable_locators_.resize(tensors_.size());
auto group_nums = group_indices.size();
for (size_t group_index = 0; group_index < group_nums; ++group_index) {
const auto &tensor_indices_ = group_indices[group_index];
PADDLE_ENFORCE_GT(
tensor_indices_.size(), 0,
platform::errors::PreconditionNotMet(
"The number of group[%d]'s elements is 0.", group_index));
EagerGroup group;
// It's just for check the sparse or dense
auto first_var = tensors_[tensor_indices_.front()];
if (tensor_indices_.size() == 1 &&
is_sparse_gradient_[tensor_indices_.front()]) {
// process the sparse gradient. one sparse, one group
group.dtype_ = first_var.dtype();
} else {
// process the dense gradient.
InitializeDenseGroups(tensor_indices_, &group);
experimental::Backend backend;
switch (inner_place_.GetType()) {
case phi::AllocationType::GPU:
backend = experimental::Backend::GPU;
break;
case phi::AllocationType::CPU:
backend = experimental::Backend::CPU;
break;
default:
PADDLE_THROW(platform::errors::Unimplemented(
"Place type (%s) is not supported. ", inner_place_));
break;
}
group.dense_contents_ = paddle::experimental::empty(
ScalarArray({group.all_length_}), group.dtype_, backend);
}
// map tensors to this group by VariableLocator
size_t inside_group_index = 0;
for (const auto var_index : tensor_indices_) {
TensorLocator tensor_locator;
tensor_locator.group_index = group_index;
tensor_locator.inside_group_index = inside_group_index++;
variable_locators_[var_index] = tensor_locator;
}
group.tensor_indices_ = std::move(tensor_indices_);
groups_.emplace_back(std::move(group));
VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
}
}
void EagerReducer::InitializeDenseGroups(
const std::vector<size_t> &tensor_indices_, EagerGroup *p_group) {
VLOG(3) << "InitializeDenseGroups.";
int64_t all_length = 0;
for (size_t index = 0; index < tensor_indices_.size(); ++index) {
auto tensor_index = tensor_indices_[index];
auto &tensor = tensors_[tensor_index];
auto &tensor_name = tensor.name();
PADDLE_ENFORCE_EQ(tensor.is_initialized(), true,
platform::errors::PreconditionNotMet(
"Tensor %s is not initialized.", tensor_name));
const auto size = tensor.numel();
PADDLE_ENFORCE_GT(
size, 0, platform::errors::PreconditionNotMet(
"The number of tensor %s's elements is 0.", tensor_name));
all_length += size;
p_group->length_.push_back(size);
// for concat operator
p_group->origin_shapes_.push_back(ScalarArray(tensor.shape()));
p_group->dense_tensors_.push_back(phi::DenseTensor());
const auto &dtype = tensor.dtype();
const auto &place = tensor.place();
const auto &inner_place = tensor.impl()->place();
if (index > 0) {
PADDLE_ENFORCE_EQ(dtype, p_group->dtype_,
platform::errors::PreconditionNotMet(
"Tensor %s has unexpected dtype.", tensor_name));
PADDLE_ENFORCE_EQ(place, place_,
platform::errors::PreconditionNotMet(
"Tensor %s has different place. Expected place is "
"%s, but actual place is %s",
tensor_name, inner_place_, inner_place));
} else {
p_group->dtype_ = dtype;
place_ = place;
inner_place_ = inner_place;
}
}
p_group->all_length_ = all_length;
}
void EagerReducer::PrepareForBackward(const std::vector<Tensor> &outputs) {
VLOG(3) << "after forward, then reset count for backward.";
grad_need_hooks_ = true;
next_group_ = 0;
std::for_each(groups_.begin(), groups_.end(), [](EagerGroup &group) {
group.pending_ = group.tensor_indices_.size();
});
// reinitialize vars_marked_ready_ for next iteration
vars_marked_ready_.clear();
vars_marked_ready_.resize(tensors_.size(), false);
}
void EagerReducer::AddDistHook(size_t var_index) {
PADDLE_ENFORCE_LT(var_index, variable_locators_.size(),
platform::errors::OutOfRange(
"Out of bounds variable index. it must be less"
"than %d, but it is %d",
variable_locators_.size(), var_index));
// gradient synchronization is not required when grad_need_hooks_ is false.
if (!grad_need_hooks_) {
return;
}
auto &tensor = tensors_[var_index];
const auto &grad_node = GetGradNodeFromTensor(&tensor);
VLOG(3) << "Var[" << var_index << "] [" << (*grad_node).name()
<< "] arrived and triggered disthook";
local_used_vars_[var_index] = 1;
MarkVarReady(var_index, true);
}
void EagerReducer::MarkVarReady(const size_t var_index,
const bool is_used_var) {
const auto &var_locator = variable_locators_[var_index];
const auto group_index = var_locator.group_index;
const auto inside_group_index = var_locator.inside_group_index;
auto &group = groups_[group_index];
auto &group_tensor = group.dense_tensors_[inside_group_index];
auto *autograd_meta = tensors_[var_index].get_autograd_meta();
auto &grad_tensor = static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();
group_tensor
.ShareDataWith(
*(std::dynamic_pointer_cast<phi::DenseTensor>(grad_tensor.impl())))
.Resize({grad_tensor.numel()});
vars_marked_ready_[var_index] = true;
if (--group.pending_ == 0) {
// can start allreduce
MarkGroupReady(group_index);
}
}
void EagerReducer::MarkGroupReady(size_t group_index) {
VLOG(3) << "Group[" << group_index << "] is ready";
PADDLE_ENFORCE_GE(
group_index, next_group_,
platform::errors::PreconditionNotMet(
"The index of the incoming group must be greater "
"than or equal to the previously synchronized group index, "
"expect it to greater than or equal to %d, but got %d.",
next_group_, group_index));
if (group_index > next_group_) {
VLOG(3) << "It will adjust the order of group in next batch automatically";
return;
}
for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
++next_group_) {
UNUSED auto &group = groups_[next_group_];
FusedAllReduceSchedule(&group, next_group_);
}
}
void EagerReducer::FusedAllReduceSchedule(EagerGroup *group,
const int curr_group_index) {
// The overall timeline: concat > div_nranks > allreduce > split
distributed::AllreduceOptions opts;
opts.reduce_op = ReduceOp::SUM;
VLOG(3) << "group [" << curr_group_index << "] start fused_allreduce.";
// concat tensors
group->ConcatTensors(inner_place_);
// div nranks
double scaling = 1.0 / nranks_;
paddle::experimental::scale_(group->dense_contents_, scaling, 0.0, false);
// all_reduce
std::vector<Tensor> reduce_tensors = {group->dense_contents_};
tasks_.push_back(process_group_->AllReduce(reduce_tensors, opts));
if (tasks_.size() == groups_.size()) {
for (size_t index = 0; index < tasks_.size(); index++) {
auto &task = tasks_.back();
task->Synchronize();
tasks_.pop_back();
}
for (size_t index = 0; index < groups_.size(); index++) {
auto &group = groups_[index];
group.SplitTensors(inner_place_);
}
}
}
std::ostream &operator<<(std::ostream &out, const EagerGroup &group) {
const auto &tensors_ = group.tensor_indices_;
out << "numel: " << group.all_length_ << " ;var number: " << tensors_.size()
<< "\n";
auto begin = tensors_.begin();
auto end = tensors_.end();
out << "[";
for (int i = 0; begin != end && i < 100; ++i, ++begin) {
if (i > 0) out << ' ';
out << *begin;
}
if (begin != end) {
out << " ...";
}
out << "]\n";
return out;
}
} // namespace distributed
} // namespace paddle
......@@ -17,16 +17,109 @@
#include <map>
#include <vector>
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/utils/hook_utils.h"
#include "paddle/fluid/eager/api/utils/tensor_utils.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/ext_compat_utils.h"
#include "paddle/phi/common/data_type.h"
namespace paddle {
namespace distributed {
using Tensor = paddle::experimental::Tensor;
using Scalar = paddle::experimental::ScalarBase<paddle::experimental::Tensor>;
using ScalarArray =
paddle::experimental::ScalarArrayBase<paddle::experimental::Tensor>;
std::vector<std::vector<size_t>> Eager_AssignGroupBySize(
const std::vector<Tensor>, const std::vector<bool>& is_sparse_gradient,
const std::vector<size_t>& group_size_limits,
const std::vector<int64_t>& tensor_indices = {});
const std::vector<Tensor>, const std::vector<bool> &is_sparse_gradient,
const std::vector<size_t> &group_size_limits,
const std::vector<int64_t> &tensor_indices = {});
class EagerGroup {
public:
Tensor dense_contents_;
// for concat kernel
std::vector<phi::DenseTensor> dense_tensors_;
std::vector<int64_t> length_;
int64_t all_length_{0};
std::vector<ScalarArray> origin_shapes_;
// Global indices of participating tensors in the group
std::vector<size_t> tensor_indices_;
// Number of params that haven't been ready. When it is 0, it means
// the group is ready.
size_t pending_ = -1;
// external message of group
phi::DataType dtype_;
// context is used to select the stream for concat
void ConcatTensors(const platform::Place &);
// context is used to select the stream for split
void SplitTensors(const platform::Place &);
friend std::ostream &operator<<(std::ostream &, const EagerGroup &);
};
struct TensorLocator {
// record the index in groups_
size_t group_index;
size_t inside_group_index;
};
class EagerReducer {
public:
explicit EagerReducer(
const std::vector<Tensor> tensors,
const std::vector<std::vector<size_t>> &group_indices,
const std::vector<bool> &is_sparse_gradient,
std::shared_ptr<distributed::ProcessGroup> process_group,
const std::vector<size_t> &group_size_limits,
bool find_unused_parameters);
virtual ~EagerReducer() {}
std::shared_ptr<egr::GradNodeBase> GetGradNodeFromTensor(Tensor *tensor);
void InitializeGroups(const std::vector<std::vector<size_t>> &group_indices);
void InitializeDenseGroups(const std::vector<size_t> &tensor_indices_,
EagerGroup *p_group);
void PrepareForBackward(const std::vector<Tensor> &outputs);
void AddDistHook(size_t var_index);
void MarkVarReady(const size_t var_index, const bool is_used_var);
void MarkGroupReady(const size_t group_index);
void FusedAllReduceSchedule(EagerGroup *group, const int curr_group_index);
private:
std::vector<Tensor> tensors_;
std::vector<std::vector<size_t>> group_indices_;
std::vector<bool> is_sparse_gradient_;
std::shared_ptr<distributed::ProcessGroup> process_group_;
std::vector<size_t> group_size_limits_;
bool find_unused_vars_each_step_;
std::vector<EagerGroup> groups_;
std::vector<TensorLocator> variable_locators_;
PlaceType place_;
platform::Place inner_place_;
size_t next_group_ = 0;
int64_t nranks_ = -1;
std::vector<std::shared_ptr<paddle::distributed::ProcessGroup::Task>> tasks_;
bool grad_need_hooks_{false};
std::vector<bool> vars_marked_ready_;
std::vector<int> local_used_vars_;
};
} // namespace distributed
} // namespace paddle
......@@ -51,6 +51,18 @@ namespace pybind {
using Tensor = paddle::experimental::Tensor;
std::shared_ptr<distributed::EagerReducer> CreateEagerReducer(
py::handle py_tensors,
const std::vector<std::vector<size_t>> &group_indices,
const std::vector<bool> &is_sparse_gradient,
std::shared_ptr<distributed::ProcessGroup> process_group,
const std::vector<size_t> &group_size_limits, bool find_unused_parameters) {
auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
return std::make_shared<distributed::EagerReducer>(
params, group_indices, is_sparse_gradient, process_group,
group_size_limits, find_unused_parameters);
}
#if defined(PADDLE_WITH_GLOO)
using ProcessGroupGloo = paddle::distributed::ProcessGroupGloo;
using GlooStore = paddle::distributed::ProcessGroupGloo::GlooStore;
......@@ -271,6 +283,17 @@ void BindDistributed(py::module *m) {
py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
py::arg("tensor_indices") = std::vector<int64_t>{},
py::call_guard<py::gil_scoped_release>());
py::class_<distributed::EagerReducer,
std::shared_ptr<distributed::EagerReducer>>(*m, "EagerReducer",
R"DOC()DOC")
.def(py::init(&CreateEagerReducer))
.def("prepare_for_backward",
[](distributed::EagerReducer &self, py::handle py_tensors) {
auto params = CastPyArg2VectorOfTensor(py_tensors.ptr(), 0);
self.PrepareForBackward(params);
},
py::arg("tensors"), py::call_guard<py::gil_scoped_release>());
}
} // end namespace pybind
......
......@@ -30,7 +30,7 @@ from paddle.fluid.dygraph import to_variable, no_grad
from paddle.utils import deprecated
from ..layers import collective
from paddle.fluid.dygraph import base as imperative_base
from paddle.fluid.framework import ParamBase
from paddle.fluid.framework import ParamBase, _in_eager_mode
__all__ = ["prepare_context", "ParallelEnv", "DataParallel"]
......@@ -397,6 +397,16 @@ def sync_params_buffers(model,
'axis': 0})
@imperative_base.no_grad
@framework.dygraph_only
def sync_eager_params(model, comm_group=None, src_rank=0):
for _, param in model._obtain_parameters_buffers().items():
if not isinstance(param, core.eager.Tensor):
raise TypeError("The data type of '%s' must be '%s'" %
(param.name, core.eager.Tensor))
comm_group.broadcast(param, src_rank).synchronize()
class DataParallel(layers.Layer):
"""
Run the dygraph module with data parallelism.
......@@ -576,6 +586,7 @@ class DataParallel(layers.Layer):
self.process_group = process_group
self.gradient_as_buffer_view = gradient_as_buffer_view
self.static_graph = static_graph
self.var_dtype = core.eager.Tensor if _in_eager_mode() else core.VarBase
# NOTE(chenweihang): The ParallelStrategy here is not strictly a strategy.
# It just stores some environment variables, which can be constructed by
......@@ -592,10 +603,19 @@ class DataParallel(layers.Layer):
"ParallelContext must be initialized before. You should use init_parallel_env() before" \
"constructing the DataParallel."
if self.process_group is None and _in_eager_mode():
raise RuntimeError(
"Process group should be built in DataParallel of eager mode."
)
# sync buffer and params
# TODO(liuyuhui) Currently not support xpu. xpu is
# still broadcasting parameters when calling layer
if not paddle.is_compiled_with_xpu():
if _in_eager_mode():
sync_eager_params(
self._layers, comm_group=self.process_group)
else:
sync_params_buffers(self._layers)
self.comm_buffer_size = int(comm_buffer_size * 1024 * 1024)
......@@ -620,9 +640,9 @@ class DataParallel(layers.Layer):
if param is None or param in params_set:
continue
params_set.add(param)
if not isinstance(param, core.VarBase):
raise TypeError("The data type of '%s' must be Varbase" %
param.name)
if not isinstance(param, self.var_dtype):
raise TypeError("The data type of '%s' must be '%s'" %
(param.name, self.var_dtype))
if param.trainable:
layers_param.append((sublayer, param))
......@@ -649,6 +669,18 @@ class DataParallel(layers.Layer):
check_layer_sparse(sublayer) for sublayer, _ in layers_param
]
if _in_eager_mode():
self.group_indices = core.eager_assign_group_by_size(
trainable_parameters, is_sparse_gradient,
[self.last_comm_buffer_size, self.comm_buffer_size])
self._reducer = core.EagerReducer(
trainable_parameters,
list(reversed(self.group_indices)), is_sparse_gradient,
self.process_group,
[self.last_comm_buffer_size, self.comm_buffer_size],
self.find_unused_parameters)
else:
self.group_indices = core.assign_group_by_size(
trainable_parameters, is_sparse_gradient,
[self.last_comm_buffer_size, self.comm_buffer_size])
......@@ -661,7 +693,8 @@ class DataParallel(layers.Layer):
self.find_unused_parameters)
def _find_varbase(self, obj):
if isinstance(obj, core.VarBase):
var_type = core.eager.Tensor if _in_eager_mode() else core.VarBase
if isinstance(obj, var_type):
return [obj]
if isinstance(obj, (list, tuple)):
return itertools.chain(*map(self._find_varbase, obj))
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
import unittest
import os
import numpy as np
import random
import paddle
import paddle.nn as nn
from paddle.fluid.dygraph.nn import Linear
import paddle.fluid.core as core
from paddle.fluid.framework import _test_eager_guard
import paddle.distributed as dist
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.optimizer import SGD
from paddle.fluid.initializer import NumpyArrayInitializer
def init_process_group(strategy=None):
nranks = ParallelEnv().nranks
rank = ParallelEnv().local_rank
is_master = True if rank == 0 else False
store = paddle.fluid.core.TCPStore("127.0.0.1", 6172, is_master, nranks)
group = core.ProcessGroupNCCL(store, rank, nranks)
return group
class LinearModel(nn.Layer):
def __init__(self, attr_list):
super(LinearModel, self).__init__()
self._linear1 = paddle.nn.Linear(
50, 30, weight_attr=attr_list[0], bias_attr=False)
self._linear2 = paddle.nn.Linear(
30, 10, weight_attr=attr_list[1], bias_attr=False)
self._linear3 = paddle.nn.Linear(
10, 10, weight_attr=attr_list[2], bias_attr=False)
def forward(self, x):
output = self._linear1(x)
output = self._linear2(output)
output = self._linear3(output)
return output
class TestDistTraning(unittest.TestCase):
def test_multiple_gpus(self):
process_group = init_process_group()
self.generate_reducer("float32", process_group)
self.generate_reducer("float16", process_group)
def generate_reducer(self, dtype, process_group):
dev_id = ParallelEnv().dev_id
np.random.seed(2022 + dev_id)
paddle.set_default_dtype(dtype)
w_1 = paddle.ParamAttr(initializer=NumpyArrayInitializer(
np.random.rand(50, 30).astype(dtype)))
w_2 = paddle.ParamAttr(initializer=NumpyArrayInitializer(
np.random.rand(30, 10).astype(dtype)))
w_3 = paddle.ParamAttr(initializer=NumpyArrayInitializer(
np.random.rand(10, 10).astype(dtype)))
attr_list = [w_1, w_2, w_3]
inp = np.random.rand(10, 50).astype(dtype)
# original reducer
params_a = self.model_train(attr_list, inp)
# refactored reducer in eager mode
with _test_eager_guard():
params_b = self.model_train(
attr_list, inp, process_group=process_group)
for i in range(len(params_a)):
np.testing.assert_allclose(params_a[i].numpy(), params_b[i].numpy())
def model_train(self, attr_list, inp, process_group=None):
model = LinearModel(attr_list)
model = paddle.DataParallel(model, process_group=process_group)
optimizer = SGD(learning_rate=0.0003, parameters=model.parameters())
x = paddle.to_tensor(inp)
x.stop_gradient = False
for step in range(10):
y = model(x)
loss = y.mean()
loss.backward()
optimizer.step()
optimizer.clear_grad()
return model.parameters()
class TestCatchErrors1(unittest.TestCase):
def test_multiple_gpus(self):
linear = paddle.nn.Linear(2, 4)
with _test_eager_guard():
self.assertRaises(RuntimeError, paddle.DataParallel, linear)
class TestCatchErrors2(unittest.TestCase):
def test_multiple_gpus(self):
with _test_eager_guard():
linear = paddle.nn.Linear(2, 4)
self.assertRaises(RuntimeError, paddle.DataParallel, linear)
if __name__ == '__main__':
dist.init_parallel_env()
unittest.main()
......@@ -200,5 +200,10 @@ class TestDataParallelWithPyLayer(TestMultipleGpus):
self.run_mnist_2gpu('parallel_dygraph_dataparallel_with_pylayer.py')
class TestDataParallelInEagerMode(TestMultipleGpus):
def test_multiple_gpus_dynamic(self):
self.run_mnist_2gpu('parallel_dygraph_dataparallel_in_eager_mode.py')
if __name__ == "__main__":
unittest.main()
......@@ -42,6 +42,7 @@ from .. import compat as cpt
from .lr import LRScheduler
import copy
from paddle import _C_ops
from paddle.fluid.framework import _in_eager_mode
__all__ = []
......@@ -1108,6 +1109,12 @@ class Optimizer(object):
for p in param_group['params']:
if not p.stop_gradient:
param_list.append(p)
if _in_eager_mode():
for p in param_list:
clear_func = p._zero_grads if set_to_zero else p.clear_gradient
clear_func()
else:
core.clear_gradients(param_list, set_to_zero)
@imperative_base.no_grad
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册