提交 19db989e 编写于 作者: W wanghaoshuang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_avg

...@@ -36,11 +36,41 @@ ...@@ -36,11 +36,41 @@
- Trainer Count: 100 - Trainer Count: 100
- Metrics: mini-batch / sec - Metrics: mini-batch / sec
| Batch Size | 32 | 64 | 128 | 256 |
| -- | -- | -- | -- | -- | <table>
| PaddlePaddle Fluid | - | - | - | - | <thead>
| PaddlePaddle v2 | - | - | - | - | <tr>
| TensorFlow | - | - | - | - | <th>Batch Size </th>
<th> 32</th>
<th>64</th>
<th>128 </th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td> PaddlePaddle Fluid</td>
<td>-</td>
<td>- </td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td>PaddlePaddle v2 </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td>TensorFlow </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>- </td>
</tr>
</tbody>
</table>
### Measure the Performance for Different PServer Count ### Measure the Performance for Different PServer Count
...@@ -48,11 +78,41 @@ ...@@ -48,11 +78,41 @@
- Batch Size: 64 - Batch Size: 64
- Metrics: mini-batch / sec - Metrics: mini-batch / sec
| PServer Count | 10 | 20 | 40 | 60 |
| -- | -- | -- | -- | -- | <table>
| PaddlePaddle Fluid | - | - | - | - | <thead>
| PaddlePaddle v2 | - | - | - | - | <tr>
| TensorFlow | - | - | - | - | <th>PServer Count </th>
<th>10</th>
<th>20</th>
<th>40 </th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td> PaddlePaddle Fluid</td>
<td>-</td>
<td>- </td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td>PaddlePaddle v2 </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td>TensorFlow </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>- </td>
</tr>
</tbody>
</table>
### Measure Parallel Efficiency By Increasing Trainer Count ### Measure Parallel Efficiency By Increasing Trainer Count
...@@ -67,11 +127,69 @@ The parallel efficiency is: ...@@ -67,11 +127,69 @@ The parallel efficiency is:
$E = \div(S, N)$ $E = \div(S, N)$
| Trainer Counter | 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | <table>
| -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | <thead>
| PaddlePaddle Fluid | - | - | - | - | - | - | - | - | - | - | - | <tr>
| PaddlePaddle v2 | - | - | - | - | - | - | - | - | - | - | - | - | <th>Trainer Counter </th>
| TensorFlow | - | - | - | - | - | - | - | - | - | - | - | - | - | <th>1</th>
<th>10</th>
<th>20 </th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60 </th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100 </th>
</tr>
</thead>
<tbody>
<tr>
<td> PaddlePaddle Fluid</td>
<td>-</td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>-</td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>-</td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td>PaddlePaddle v2 </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>-</td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>-</td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td>TensorFlow </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>-</td>
<td>- </td>
<td>- </td>
<td>- </td>
<td>-</td>
<td>- </td>
<td>- </td>
</tr>
</tbody>
</table>
## Reproduce the benchmark ## Reproduce the benchmark
......
...@@ -16,11 +16,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`. ...@@ -16,11 +16,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Metrics: samples / sec - Metrics: samples / sec
| Batch Size | 32 | 64 | 128 | 256 | <table>
| -- | -- | -- | -- | -- | <thead>
| PaddlePaddle Fluid | 15.44 | 16.32 | 16.74 | 16.79 | <tr>
| PaddlePaddle v2 | 15.97 | 17.04 | 17.60 | 17.83 | <th>Batch Size </th>
| TensorFlow | 9.09 | 9.10 | 9.24 | 8.66 | <th> 32</th>
<th>64</th>
<th>128 </th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td> PaddlePaddle Fluid</td>
<td> 15.44 </td>
<td> 16.32 </td>
<td> 16.74 </td>
<td> 16.79 </td>
</tr>
<tr>
<td>PaddlePaddle v2 </td>
<td> 15.97 </td>
<td> 17.04 </td>
<td> 17.60 </td>
<td> 17.83 </td>
</tr>
<tr>
<td>TensorFlow </td>
<td> 9.09 </td>
<td> 9.10 </td>
<td> 9.24 </td>
<td> 8.66 </td>
</tr>
</tbody>
</table>
### Different Batch Size ### Different Batch Size
...@@ -28,12 +58,40 @@ Setting environment variable: `MKL_NUM_THREADS=1`. ...@@ -28,12 +58,40 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Trainer Count: 20 - Trainer Count: 20
- Metrics: samples / sec - Metrics: samples / sec
| Batch Size | 32 | 64 | 128 | 256 | <table>
| -- | -- | -- | -- | -- | <thead>
| PaddlePaddle Fluid | 190.20 | 222.15 | 247.40 | 258.18 | <tr>
| PaddlePaddle v2 | 170.96 | 233.71 | 256.14 | 329.23 | <th>Batch Size </th>
| TensorFlow | - | - | - | - | <th> 32</th>
<th>64</th>
<th>128 </th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td> PaddlePaddle Fluid</td>
<td> 190.20 </td>
<td> 222.15 </td>
<td> 247.40 </td>
<td> 258.18 </td>
</tr>
<tr>
<td>PaddlePaddle v2 </td>
<td> 170.96 </td>
<td> 233.71 </td>
<td> 256.14 </td>
<td> 329.23 </td>
</tr>
<tr>
<td>TensorFlow </td>
<td> - </td>
<td> - </td>
<td> - </td>
<td> - </td>
</tr>
</tbody>
</table>
### Accelerate Rate ### Accelerate Rate
...@@ -41,11 +99,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`. ...@@ -41,11 +99,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Batch Size: 128 - Batch Size: 128
- Metrics: samples / sec - Metrics: samples / sec
| Trainer Count | 20 | 40 | 80 | 100 | <table>
| -- | -- | -- | -- | -- | <thead>
| PaddlePaddle Fluid | 263.29 (78.64%) | 518.80 (77.47%) | 836.26 (62.44%) | 1019.29 (60.89%) | <tr>
| PaddlePaddle v2 (need more tests) | 326.85 (92.85%) | 534.58 (75.93%) | 853.30 (60.60%) | 1041.99 (59.20%) | <th>Trainer Count </th>
| TensorFlow | - | - | - | - | <th>20</th>
<th>40</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td> PaddlePaddle Fluid</td>
<td> 263.29 (78.64%) </td>
<td> 518.80 (77.47%) </td>
<td> 836.26 (62.44%) </td>
<td> 1019.29 (60.89%) </td>
</tr>
<tr>
<td>PaddlePaddle v2 (need more tests) </td>
<td> 326.85 (92.85%) </td>
<td> 534.58 (75.93%) </td>
<td> 853.30 (60.60%) </td>
<td> 1041.99 (59.20%) </td>
</tr>
<tr>
<td>TensorFlow </td>
<td> - </td>
<td> - </td>
<td> - </td>
<td> - </td>
</tr>
</tbody>
</table>
### Different Pserver Count ### Different Pserver Count
...@@ -53,11 +141,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`. ...@@ -53,11 +141,41 @@ Setting environment variable: `MKL_NUM_THREADS=1`.
- Batch Size: 128 - Batch Size: 128
- Metrics: samples/ sec - Metrics: samples/ sec
| PServer Count | 3 | 6 |10 | 20 | <table>
| -- | -- | -- | -- | -- | <thead>
| PaddlePaddle Fluid(should fix in next PR) | 589.1 | 592.6 | 656.4 | 655.8 | <tr>
| PaddlePaddle v2 | 593.4 | 791.3 | 729.7 | 821.7 | <th>PServer Count </th>
| TensorFlow | - | - | - | - | <th>3</th>
<th>6</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td> PaddlePaddle Fluid(should fix in next PR) </td>
<td> 589.1 </td>
<td> 592.6 </td>
<td> 656.4 </td>
<td> 655.8 </td>
</tr>
<tr>
<td>PaddlePaddle v2 (need more tests) </td>
<td> 593.4 </td>
<td> 791.3 </td>
<td> 729.7 </td>
<td> 821.7 </td>
</tr>
<tr>
<td>TensorFlow </td>
<td> - </td>
<td> - </td>
<td> - </td>
<td> - </td>
</tr>
</tbody>
</table>
*The performance gap between Fuild and v2 comes from the network interference.* *The performance gap between Fuild and v2 comes from the network interference.*
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""seq2seq model for fluid."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import argparse
import time
import distutils.util
import paddle.v2 as paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--embedding_dim",
type=int,
default=512,
help="The dimension of embedding table. (default: %(default)d)")
parser.add_argument(
"--encoder_size",
type=int,
default=512,
help="The size of encoder bi-rnn unit. (default: %(default)d)")
parser.add_argument(
"--decoder_size",
type=int,
default=512,
help="The size of decoder rnn unit. (default: %(default)d)")
parser.add_argument(
"--batch_size",
type=int,
default=16,
help="The sequence number of a mini-batch data. (default: %(default)d)")
parser.add_argument(
"--dict_size",
type=int,
default=30000,
help="The dictionary capacity. Dictionaries of source sequence and "
"target dictionary have same capacity. (default: %(default)d)")
parser.add_argument(
"--pass_num",
type=int,
default=2,
help="The pass number to train. (default: %(default)d)")
parser.add_argument(
"--learning_rate",
type=float,
default=0.0002,
help="Learning rate used to train the model. (default: %(default)f)")
parser.add_argument(
"--infer_only", action='store_true', help="If set, run forward only.")
parser.add_argument(
"--beam_size",
type=int,
default=3,
help="The width for beam searching. (default: %(default)d)")
parser.add_argument(
"--use_gpu",
type=distutils.util.strtobool,
default=True,
help="Whether to use gpu. (default: %(default)d)")
parser.add_argument(
"--max_length",
type=int,
default=250,
help="The maximum length of sequence when doing generation. "
"(default: %(default)d)")
def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
def linear(inputs):
return fluid.layers.fc(input=inputs, size=size, bias_attr=True)
forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t]))
cell_t = fluid.layers.sums(input=[
fluid.layers.elementwise_mul(
x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul(
x=input_gate, y=cell_tilde)
])
hidden_t = fluid.layers.elementwise_mul(
x=output_gate, y=fluid.layers.tanh(x=cell_t))
return hidden_t, cell_t
def seq_to_seq_net(embedding_dim, encoder_size, decoder_size, source_dict_dim,
target_dict_dim, is_generating, beam_size, max_length):
"""Construct a seq2seq network."""
def bi_lstm_encoder(input_seq, gate_size):
# Linear transformation part for input gate, output gate, forget gate
# and cell activation vectors need be done outside of dynamic_lstm.
# So the output size is 4 times of gate_size.
input_forward_proj = fluid.layers.fc(input=input_seq,
size=gate_size * 4,
act=None,
bias_attr=False)
forward, _ = fluid.layers.dynamic_lstm(
input=input_forward_proj, size=gate_size * 4, use_peepholes=False)
input_reversed_proj = fluid.layers.fc(input=input_seq,
size=gate_size * 4,
act=None,
bias_attr=False)
reversed, _ = fluid.layers.dynamic_lstm(
input=input_reversed_proj,
size=gate_size * 4,
is_reverse=True,
use_peepholes=False)
return forward, reversed
src_word_idx = fluid.layers.data(
name='source_sequence', shape=[1], dtype='int64', lod_level=1)
src_embedding = fluid.layers.embedding(
input=src_word_idx,
size=[source_dict_dim, embedding_dim],
dtype='float32')
src_forward, src_reversed = bi_lstm_encoder(
input_seq=src_embedding, gate_size=encoder_size)
encoded_vector = fluid.layers.concat(
input=[src_forward, src_reversed], axis=1)
encoded_proj = fluid.layers.fc(input=encoded_vector,
size=decoder_size,
bias_attr=False)
backward_first = fluid.layers.sequence_pool(
input=src_reversed, pool_type='first')
decoder_boot = fluid.layers.fc(input=backward_first,
size=decoder_size,
bias_attr=False,
act='tanh')
def lstm_decoder_with_attention(target_embedding, encoder_vec, encoder_proj,
decoder_boot, decoder_size):
def simple_attention(encoder_vec, encoder_proj, decoder_state):
decoder_state_proj = fluid.layers.fc(input=decoder_state,
size=decoder_size,
bias_attr=False)
decoder_state_expand = fluid.layers.sequence_expand(
x=decoder_state_proj, y=encoder_proj)
concated = fluid.layers.concat(
input=[encoder_proj, decoder_state_expand], axis=1)
attention_weights = fluid.layers.fc(input=concated,
size=1,
act='tanh',
bias_attr=False)
attention_weights = fluid.layers.sequence_softmax(
input=attention_weights)
weigths_reshape = fluid.layers.reshape(
x=attention_weights, shape=[-1])
scaled = fluid.layers.elementwise_mul(
x=encoder_vec, y=weigths_reshape, axis=0)
context = fluid.layers.sequence_pool(input=scaled, pool_type='sum')
return context
rnn = fluid.layers.DynamicRNN()
cell_init = fluid.layers.fill_constant_batch_size_like(
input=decoder_boot,
value=0.0,
shape=[-1, decoder_size],
dtype='float32')
cell_init.stop_gradient = False
with rnn.block():
current_word = rnn.step_input(target_embedding)
encoder_vec = rnn.static_input(encoder_vec)
encoder_proj = rnn.static_input(encoder_proj)
hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True)
cell_mem = rnn.memory(init=cell_init)
context = simple_attention(encoder_vec, encoder_proj, hidden_mem)
decoder_inputs = fluid.layers.concat(
input=[context, current_word], axis=1)
h, c = lstm_step(decoder_inputs, hidden_mem, cell_mem, decoder_size)
rnn.update_memory(hidden_mem, h)
rnn.update_memory(cell_mem, c)
out = fluid.layers.fc(input=h,
size=target_dict_dim,
bias_attr=True,
act='softmax')
rnn.output(out)
return rnn()
if not is_generating:
trg_word_idx = fluid.layers.data(
name='target_sequence', shape=[1], dtype='int64', lod_level=1)
trg_embedding = fluid.layers.embedding(
input=trg_word_idx,
size=[target_dict_dim, embedding_dim],
dtype='float32')
prediction = lstm_decoder_with_attention(trg_embedding, encoded_vector,
encoded_proj, decoder_boot,
decoder_size)
label = fluid.layers.data(
name='label_sequence', shape=[1], dtype='int64', lod_level=1)
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
feeding_list = ["source_sequence", "target_sequence", "label_sequence"]
return avg_cost, feeding_list
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
lod_t = core.LoDTensor()
lod_t.set(flattened_data, place)
lod_t.set_lod([lod])
return lod_t, lod[-1]
def lodtensor_to_ndarray(lod_tensor):
dims = lod_tensor.get_dims()
ndarray = np.zeros(shape=dims).astype('float32')
for i in xrange(np.product(dims)):
ndarray.ravel()[i] = lod_tensor.get_float_element(i)
return ndarray
def train():
avg_cost, feeding_list = seq_to_seq_net(
args.embedding_dim,
args.encoder_size,
args.decoder_size,
args.dict_size,
args.dict_size,
False,
beam_size=args.beam_size,
max_length=args.max_length)
# clone from default main program
inference_program = fluid.default_main_program().clone()
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
optimizer.minimize(avg_cost)
fluid.memory_optimize(fluid.default_main_program())
train_batch_generator = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(args.dict_size), buf_size=1000),
batch_size=args.batch_size)
test_batch_generator = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.test(args.dict_size), buf_size=1000),
batch_size=args.batch_size)
place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
def do_validation():
total_loss = 0.0
count = 0
for batch_id, data in enumerate(test_batch_generator()):
src_seq = to_lodtensor(map(lambda x: x[0], data), place)[0]
trg_seq = to_lodtensor(map(lambda x: x[1], data), place)[0]
lbl_seq = to_lodtensor(map(lambda x: x[2], data), place)[0]
fetch_outs = exe.run(inference_program,
feed={
feeding_list[0]: src_seq,
feeding_list[1]: trg_seq,
feeding_list[2]: lbl_seq
},
fetch_list=[avg_cost],
return_numpy=False)
total_loss += lodtensor_to_ndarray(fetch_outs[0])[0]
count += 1
return total_loss / count
for pass_id in xrange(args.pass_num):
pass_start_time = time.time()
words_seen = 0
for batch_id, data in enumerate(train_batch_generator()):
src_seq, word_num = to_lodtensor(map(lambda x: x[0], data), place)
words_seen += word_num
trg_seq, word_num = to_lodtensor(map(lambda x: x[1], data), place)
words_seen += word_num
lbl_seq, _ = to_lodtensor(map(lambda x: x[2], data), place)
fetch_outs = exe.run(framework.default_main_program(),
feed={
feeding_list[0]: src_seq,
feeding_list[1]: trg_seq,
feeding_list[2]: lbl_seq
},
fetch_list=[avg_cost])
avg_cost_val = np.array(fetch_outs[0])
print('pass_id=%d, batch_id=%d, train_loss: %f' %
(pass_id, batch_id, avg_cost_val))
pass_end_time = time.time()
test_loss = do_validation()
time_consumed = pass_end_time - pass_start_time
words_per_sec = words_seen / time_consumed
print("pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f" %
(pass_id, test_loss, words_per_sec, time_consumed))
def infer():
pass
if __name__ == '__main__':
args = parser.parse_args()
if args.infer_only:
infer()
else:
train()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import argparse
import time
import paddle.v2 as paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
SEED = 1
DTYPE = "float32"
# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def parse_args():
parser = argparse.ArgumentParser("mnist model benchmark.")
parser.add_argument(
'--batch_size', type=int, default=128, help='The minibatch size.')
parser.add_argument(
'--iterations', type=int, default=35, help='The number of minibatches.')
parser.add_argument(
'--pass_num', type=int, default=5, help='The number of passes.')
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help='The device type.')
parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.')
parser.add_argument(
'--use_cprof', action='store_true', help='If set, use cProfile.')
parser.add_argument(
'--use_nvprof',
action='store_true',
help='If set, use nvprof for CUDA.')
args = parser.parse_args()
return args
def print_arguments(args):
vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
vars(args)['device'] == 'GPU')
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def cnn_model(data):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=data,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE = 10
input_shape = conv_pool_2.shape
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
predict = fluid.layers.fc(
input=conv_pool_2,
size=SIZE,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)))
return predict
def eval_test(exe, batch_acc, batch_size_tensor, inference_program):
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=args.batch_size)
test_pass_acc = fluid.average.WeightedAverage()
for batch_id, data in enumerate(test_reader()):
img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]),
data)).astype(DTYPE)
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([len(y_data), 1])
acc, weight = exe.run(inference_program,
feed={"pixel": img_data,
"label": y_data},
fetch_list=[batch_acc, batch_size_tensor])
test_pass_acc.add(value=acc, weight=weight)
pass_acc = test_pass_acc.eval()
return pass_acc
def run_benchmark(model, args):
if args.use_cprof:
pr = cProfile.Profile()
pr.enable()
start_time = time.time()
# Input data
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
predict = model(images)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
# inference program
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(
target_vars=[batch_acc, batch_size_tensor])
# Optimization
opt = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, beta1=0.9, beta2=0.999)
opt.minimize(avg_cost)
fluid.memory_optimize(fluid.default_main_program())
# Initialize executor
place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
exe = fluid.Executor(place)
# Parameter initialization
exe.run(fluid.default_startup_program())
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=args.batch_size)
accuracy = fluid.average.WeightedAverage()
for pass_id in range(args.pass_num):
accuracy.reset()
pass_start = time.time()
for batch_id, data in enumerate(train_reader()):
img_data = np.array(
map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE)
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([len(y_data), 1])
start = time.time()
outs = exe.run(
fluid.default_main_program(),
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost, batch_acc, batch_size_tensor]
) # The accuracy is the accumulation of batches, but not the current batch.
accuracy.add(value=outs[1], weight=outs[2])
end = time.time()
loss = np.array(outs[0])
acc = np.array(outs[1])
print("pass=%d, batch=%d, loss=%f, error=%f, elapse=%f" %
(pass_id, batch_id, loss, 1 - acc, (end - start) / 1000))
pass_end = time.time()
train_avg_acc = accuracy.eval()
test_avg_acc = eval_test(exe, batch_acc, batch_size_tensor,
inference_program)
print("pass=%d, train_avg_acc=%f, test_avg_acc=%f, elapse=%f" %
(pass_id, train_avg_acc, test_avg_acc,
(pass_end - pass_start) / 1000))
if __name__ == '__main__':
args = parse_args()
print_arguments(args)
if args.use_nvprof and args.device == 'GPU':
with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
run_benchmark(cnn_model, args)
else:
run_benchmark(cnn_model, args)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import functools
import numpy as np
import time
import cProfile, pstats, StringIO
import paddle.v2 as paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
def parse_args():
parser = argparse.ArgumentParser('Convolution model benchmark.')
parser.add_argument(
'--model',
type=str,
choices=['resnet_imagenet', 'resnet_cifar10'],
default='resnet_imagenet',
help='The model architecture.')
parser.add_argument(
'--batch_size', type=int, default=32, help='The minibatch size.')
parser.add_argument(
'--use_fake_data',
action='store_true',
help='use real data or fake data')
parser.add_argument(
'--skip_batch_num',
type=int,
default=5,
help='The first num of minibatch num to skip, for better performance test'
)
parser.add_argument(
'--iterations', type=int, default=80, help='The number of minibatches.')
parser.add_argument(
'--pass_num', type=int, default=100, help='The number of passes.')
parser.add_argument(
'--data_format',
type=str,
default='NCHW',
choices=['NCHW', 'NHWC'],
help='The data data_format, now only support NCHW.')
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help='The device type.')
parser.add_argument(
'--data_set',
type=str,
default='flowers',
choices=['cifar10', 'flowers'],
help='Optional dataset for benchmark.')
parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.')
parser.add_argument(
'--use_cprof', action='store_true', help='If set, use cProfile.')
parser.add_argument(
'--use_nvprof',
action='store_true',
help='If set, use nvprof for CUDA.')
parser.add_argument(
'--with_test',
action='store_true',
help='If set, test the testset during training.')
args = parser.parse_args()
return args
def print_arguments(args):
vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
vars(args)['device'] == 'GPU')
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
conv1 = fluid.layers.conv2d(
input=input,
filter_size=filter_size,
num_filters=ch_out,
stride=stride,
padding=padding,
act=None,
bias_attr=False)
return fluid.layers.batch_norm(input=conv1, act=act)
def shortcut(input, ch_out, stride):
ch_in = input.shape[1] if args.data_format == 'NCHW' else input.shape[-1]
if ch_in != ch_out:
return conv_bn_layer(input, ch_out, 1, stride, 0, None)
else:
return input
def basicblock(input, ch_out, stride):
short = shortcut(input, ch_out, stride)
conv1 = conv_bn_layer(input, ch_out, 3, stride, 1)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None)
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def bottleneck(input, ch_out, stride):
short = shortcut(input, ch_out * 4, stride)
conv1 = conv_bn_layer(input, ch_out, 1, stride, 0)
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1)
conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0, act=None)
return fluid.layers.elementwise_add(x=short, y=conv3, act='relu')
def layer_warp(block_func, input, ch_out, count, stride):
res_out = block_func(input, ch_out, stride)
for i in range(1, count):
res_out = block_func(res_out, ch_out, 1)
return res_out
def resnet_imagenet(input, class_dim, depth=50, data_format='NCHW'):
cfg = {
18: ([2, 2, 2, 1], basicblock),
34: ([3, 4, 6, 3], basicblock),
50: ([3, 4, 6, 3], bottleneck),
101: ([3, 4, 23, 3], bottleneck),
152: ([3, 8, 36, 3], bottleneck)
}
stages, block_func = cfg[depth]
conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3)
pool1 = fluid.layers.pool2d(
input=conv1, pool_type='avg', pool_size=3, pool_stride=2)
res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
res2 = layer_warp(block_func, res1, 128, stages[1], 2)
res3 = layer_warp(block_func, res2, 256, stages[2], 2)
res4 = layer_warp(block_func, res3, 512, stages[3], 2)
pool2 = fluid.layers.pool2d(
input=res4,
pool_size=7,
pool_type='avg',
pool_stride=1,
global_pooling=True)
out = fluid.layers.fc(input=pool2, size=class_dim, act='softmax')
return out
def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'):
assert (depth - 2) % 6 == 0
n = (depth - 2) // 6
conv1 = conv_bn_layer(
input=input, ch_out=16, filter_size=3, stride=1, padding=1)
res1 = layer_warp(basicblock, conv1, 16, n, 1)
res2 = layer_warp(basicblock, res1, 32, n, 2)
res3 = layer_warp(basicblock, res2, 64, n, 2)
pool = fluid.layers.pool2d(
input=res3, pool_size=8, pool_type='avg', pool_stride=1)
out = fluid.layers.fc(input=pool, size=class_dim, act='softmax')
return out
def run_benchmark(model, args):
if args.use_cprof:
pr = cProfile.Profile()
pr.enable()
if args.data_set == "cifar10":
class_dim = 10
if args.data_format == 'NCHW':
dshape = [3, 32, 32]
else:
dshape = [32, 32, 3]
else:
class_dim = 102
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
predict = model(input, class_dim)
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(
target_vars=[batch_acc, batch_size_tensor])
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
opts = optimizer.minimize(avg_cost)
fluid.memory_optimize(fluid.default_main_program())
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
batch_size=args.batch_size)
def test(exe):
test_accuracy = fluid.average.WeightedAverage()
for batch_id, data in enumerate(test_reader()):
img_data = np.array(map(lambda x: x[0].reshape(dshape),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])
acc, weight = exe.run(inference_program,
feed={"data": img_data,
"label": y_data},
fetch_list=[batch_acc, batch_size_tensor])
test_accuracy.add(value=acc, weight=weight)
return test_accuracy.eval()
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
accuracy = fluid.average.WeightedAverage()
if args.use_fake_data:
data = train_reader().next()
image = np.array(map(lambda x: x[0].reshape(dshape), data)).astype(
'float32')
label = np.array(map(lambda x: x[1], data)).astype('int64')
label = label.reshape([-1, 1])
iters, num_samples, start_time = 0, 0, time.time()
for pass_id in range(args.pass_num):
accuracy.reset()
train_accs = []
train_losses = []
for batch_id, data in enumerate(train_reader()):
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
if iters == args.iterations:
break
if not args.use_fake_data:
image = np.array(map(lambda x: x[0].reshape(dshape),
data)).astype('float32')
label = np.array(map(lambda x: x[1], data)).astype('int64')
label = label.reshape([-1, 1])
loss, acc, weight = exe.run(
fluid.default_main_program(),
feed={'data': image,
'label': label},
fetch_list=[avg_cost, batch_acc, batch_size_tensor])
iters += 1
num_samples += label[0]
accuracy.add(value=acc, weight=weight)
train_losses.append(loss)
train_accs.append(acc)
print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
(pass_id, iters, loss, acc))
pass_train_acc = accuracy.eval()
# evaluation
if args.with_test:
pass_test_acc = test(exe)
train_elapsed = time.time() - start_time
print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
(pass_id, np.mean(train_losses), np.mean(train_accs)))
examples_per_sec = num_samples / train_elapsed
print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
(num_samples, train_elapsed, examples_per_sec))
if args.use_cprof:
pr.disable()
s = StringIO.StringIO()
sortby = 'cumulative'
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
print(s.getvalue())
if __name__ == '__main__':
model_map = {
'resnet_imagenet': resnet_imagenet,
'resnet_cifar10': resnet_cifar10
}
args = parse_args()
print_arguments(args)
if args.data_format == 'NHWC':
raise ValueError('Only support NCHW data_format now.')
if args.use_nvprof and args.device == 'GPU':
with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
run_benchmark(model_map[args.model], args)
else:
run_benchmark(model_map[args.model], args)
#!/bin/bash
# This script benchmarking the PaddlePaddle Fluid on
# single thread single GPU.
export CUDNN_PATH=/paddle/cudnn_v5/cuda/lib
# disable openmp and mkl parallel
#https://github.com/PaddlePaddle/Paddle/issues/7199
export MKL_NUM_THREADS=1
export OMP_NUM_THREADS=1
ht=`lscpu |grep "per core"|awk -F':' '{print $2}'|xargs`
if [ $ht -eq 1 ]; then # HT is OFF
if [ -z "$KMP_AFFINITY" ]; then
export KMP_AFFINITY="granularity=fine,compact,0,0"
fi
if [ -z "$OMP_DYNAMIC" ]; then
export OMP_DYNAMIC="FALSE"
fi
else # HT is ON
if [ -z "$KMP_AFFINITY" ]; then
export KMP_AFFINITY="granularity=fine,compact,1,0"
fi
fi
# disable multi-gpu if have more than one
export CUDA_VISIBLE_DEVICES=0
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$CUDNN_PATH:$LD_LIBRARY_PATH
# vgg16
# cifar10 gpu cifar10 128
FLAGS_benchmark=true python fluid/vgg.py \
--device=GPU \
--batch_size=128 \
--skip_batch_num=5 \
--iterations=30 \
2>&1 > vgg16_gpu_128.log
# resnet50
# resnet50 gpu cifar10 128
FLAGS_benchmark=true python fluid/resnet.py \
--device=GPU \
--batch_size=128 \
--data_set=cifar10 \
--model=resnet_cifar10 \
--skip_batch_num=5 \
--iterations=30 \
2>&1 > resnet50_gpu_128.log
# lstm
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import cPickle
import os
import random
import time
import numpy
import paddle.v2 as paddle
import paddle.v2.dataset.imdb as imdb
import paddle.fluid as fluid
from paddle.v2 import batch
import paddle.fluid.profiler as profiler
def parse_args():
parser = argparse.ArgumentParser("Understand Sentiment by Dynamic RNN.")
parser.add_argument(
'--batch_size',
type=int,
default=32,
help='The sequence number of a batch data. (default: %(default)d)')
parser.add_argument(
'--emb_dim',
type=int,
default=512,
help='Dimension of embedding table. (default: %(default)d)')
parser.add_argument(
'--hidden_dim',
type=int,
default=512,
help='Hidden size of lstm unit. (default: %(default)d)')
parser.add_argument(
'--pass_num',
type=int,
default=100,
help='Epoch number to train. (default: %(default)d)')
parser.add_argument(
'--device',
type=str,
default='CPU',
choices=['CPU', 'GPU'],
help='The device type.')
parser.add_argument(
'--crop_size',
type=int,
default=int(os.environ.get('CROP_SIZE', '1500')),
help='The max sentence length of input. Since this model use plain RNN,'
' Gradient could be explored if sentence is too long')
args = parser.parse_args()
return args
word_dict = imdb.word_dict()
def crop_sentence(reader, crop_size):
unk_value = word_dict['<unk>']
def __impl__():
for item in reader():
if len([x for x in item[0] if x != unk_value]) < crop_size:
yield item
return __impl__
def main():
args = parse_args()
lstm_size = args.hidden_dim
data = fluid.layers.data(
name="words", shape=[1], lod_level=1, dtype='int64')
sentence = fluid.layers.embedding(
input=data, size=[len(word_dict), args.emb_dim])
sentence = fluid.layers.fc(input=sentence, size=lstm_size, act='tanh')
rnn = fluid.layers.DynamicRNN()
with rnn.block():
word = rnn.step_input(sentence)
prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
prev_cell = rnn.memory(value=0.0, shape=[lstm_size])
def gate_common(
ipt,
hidden,
size, ):
gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
gate = fluid.layers.sums(input=[gate0, gate1])
return gate
forget_gate = fluid.layers.sigmoid(
x=gate_common(word, prev_hidden, lstm_size))
input_gate = fluid.layers.sigmoid(
x=gate_common(word, prev_hidden, lstm_size))
output_gate = fluid.layers.sigmoid(
x=gate_common(word, prev_hidden, lstm_size))
cell_gate = fluid.layers.tanh(
x=gate_common(word, prev_hidden, lstm_size))
cell = fluid.layers.sums(input=[
fluid.layers.elementwise_mul(
x=forget_gate, y=prev_cell), fluid.layers.elementwise_mul(
x=input_gate, y=cell_gate)
])
hidden = fluid.layers.elementwise_mul(
x=output_gate, y=fluid.layers.tanh(x=cell))
rnn.update_memory(prev_cell, cell)
rnn.update_memory(prev_hidden, hidden)
rnn.output(hidden)
last = fluid.layers.sequence_pool(rnn(), 'last')
logit = fluid.layers.fc(input=last, size=2, act='softmax')
loss = fluid.layers.cross_entropy(
input=logit,
label=fluid.layers.data(
name='label', shape=[1], dtype='int64'))
loss = fluid.layers.mean(x=loss)
# add acc
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(input=logit, label=fluid.layers.data(name='label', \
shape=[1], dtype='int64'), total=batch_size_tensor)
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(
target_vars=[batch_acc, batch_size_tensor])
adam = fluid.optimizer.Adam()
adam.minimize(loss)
fluid.memory_optimize(fluid.default_main_program())
place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
def train_loop(pass_num, crop_size):
with profiler.profiler(args.device, 'total') as prof:
for pass_id in range(pass_num):
train_reader = batch(
paddle.reader.shuffle(
crop_sentence(imdb.train(word_dict), crop_size),
buf_size=25000),
batch_size=args.batch_size)
word_nums = 0
pass_start_time = time.time()
for batch_id, data in enumerate(train_reader()):
tensor_words = to_lodtensor([x[0] for x in data], place)
for x in data:
word_nums += len(x[0])
label = numpy.array([x[1] for x in data]).astype("int64")
label = label.reshape((-1, 1))
loss_np, acc, weight = exe.run(
fluid.default_main_program(),
feed={"words": tensor_words,
"label": label},
fetch_list=[loss, batch_acc, batch_size_tensor])
print("pass_id=%d, batch_id=%d, loss=%f, acc=%f" %
(pass_id, batch_id, loss_np, acc))
pass_end_time = time.time()
time_consumed = pass_end_time - pass_start_time
words_per_sec = word_nums / time_consumed
print("pass_id=%d, sec/pass: %f, words/s: %f" %
(pass_id, time_consumed, words_per_sec))
train_loop(args.pass_num, args.crop_size)
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = numpy.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = fluid.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
if __name__ == '__main__':
main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VGG16 benchmark in Fluid"""
from __future__ import print_function
import sys
import time
import numpy as np
import paddle.v2 as paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import argparse
import functools
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
'--skip_batch_num',
type=int,
default=5,
help='The first num of minibatch num to skip, for better performance test')
parser.add_argument(
'--iterations', type=int, default=80, help='The number of minibatches.')
parser.add_argument(
'--learning_rate',
type=float,
default=1e-3,
help="Learning rate for training.")
parser.add_argument('--pass_num', type=int, default=50, help="No. of passes.")
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help="The device type.")
parser.add_argument(
'--data_format',
type=str,
default='NCHW',
choices=['NCHW', 'NHWC'],
help='The data order, now only support NCHW.')
parser.add_argument(
'--data_set',
type=str,
default='cifar10',
choices=['cifar10', 'flowers'],
help='Optional dataset for benchmark.')
parser.add_argument(
'--with_test',
action='store_true',
help='If set, test the testset during training.')
args = parser.parse_args()
def vgg16_bn_drop(input):
def conv_block(input, num_filter, groups, dropouts):
return fluid.nets.img_conv_group(
input=input,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act='relu',
conv_with_batchnorm=True,
conv_batchnorm_drop_rate=dropouts,
pool_type='max')
conv1 = conv_block(input, 64, 2, [0.3, 0])
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
fc1 = fluid.layers.fc(input=drop, size=512, act=None)
bn = fluid.layers.batch_norm(input=fc1, act='relu')
drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
return fc2
def main():
if args.data_set == "cifar10":
classdim = 10
if args.data_format == 'NCHW':
data_shape = [3, 32, 32]
else:
data_shape = [32, 32, 3]
else:
classdim = 102
if args.data_format == 'NCHW':
data_shape = [3, 224, 224]
else:
data_shape = [224, 224, 3]
# Input data
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
net = vgg16_bn_drop(images)
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size_tensor)
# inference program
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(
target_vars=[batch_acc, batch_size_tensor])
# Optimization
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
opts = optimizer.minimize(avg_cost)
fluid.memory_optimize(fluid.default_main_program())
# Initialize executor
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
exe = fluid.Executor(place)
# Parameter initialization
exe.run(fluid.default_startup_program())
# data reader
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
batch_size=args.batch_size)
# test
def test(exe):
test_accuracy = fluid.average.WeightedAverage()
for batch_id, data in enumerate(test_reader()):
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])
acc, weight = exe.run(inference_program,
feed={"pixel": img_data,
"label": y_data},
fetch_list=[batch_acc, batch_size_tensor])
test_accuracy.add(value=acc, weight=weight)
return test_accuracy.eval()
iters, num_samples, start_time = 0, 0, time.time()
accuracy = fluid.average.WeightedAverage()
for pass_id in range(args.pass_num):
accuracy.reset()
train_accs = []
train_losses = []
for batch_id, data in enumerate(train_reader()):
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
if iters == args.iterations:
break
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])
loss, acc, weight = exe.run(
fluid.default_main_program(),
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost, batch_acc, batch_size_tensor])
accuracy.add(value=acc, weight=weight)
iters += 1
num_samples += len(data)
print(
"Pass = %d, Iter = %d, Loss = %f, Accuracy = %f" %
(pass_id, iters, loss, acc)
) # The accuracy is the accumulation of batches, but not the current batch.
pass_train_acc = accuracy.eval()
train_losses.append(loss)
train_accs.append(acc)
# evaluation
if args.with_test:
pass_test_acc = test(exe)
train_elapsed = time.time() - start_time
print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
(pass_id, np.mean(train_losses), np.mean(train_accs)))
def print_arguments():
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == "__main__":
print_arguments()
main()
...@@ -494,6 +494,12 @@ reshape ...@@ -494,6 +494,12 @@ reshape
.. autofunction:: paddle.fluid.layers.reshape .. autofunction:: paddle.fluid.layers.reshape
:noindex: :noindex:
pad
---
.. autofunction:: paddle.fluid.layers.pad
:noindex:
scale scale
----- -----
......
...@@ -7,7 +7,7 @@ Polyak and Juditsky (1992) showed that the test performance of simple average of ...@@ -7,7 +7,7 @@ Polyak and Juditsky (1992) showed that the test performance of simple average of
Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for <img src="./images/theta_star.gif"/><br/> . The averaging is done as follows: Hence, to accelerate the speed of Stochastic Gradient Descent, Averaged Stochastic Gradient Descent (ASGD) was proposed in Polyak and Juditsky (1992). For ASGD, the running average of parameters obtained by SGD, is used as the estimator for <img src="./images/theta_star.gif"/><br/> . The averaging is done as follows:
<img src="./images/asgd.gif" align="center"/><br/> ![](./images/asgd.gif)
We propose averaging for any optimizer similar to how ASGD performs it, as mentioned above. We propose averaging for any optimizer similar to how ASGD performs it, as mentioned above.
......
...@@ -6,11 +6,33 @@ Here are some initial thoughts. Your comments are welcome! ...@@ -6,11 +6,33 @@ Here are some initial thoughts. Your comments are welcome!
I think we need only the following few CMake functions to make a project description mean and clean: I think we need only the following few CMake functions to make a project description mean and clean:
| C++ | CUDA C++ | Go | <table>
|---|---|---| <thead>
| cc_library | nv_library | go_library | <tr>
| cc_binary | nv_binary | go_binary | <th>C++</th>
| cc_test | nv_test | go_test | <th>CUDA C++</th>
<th>Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc_library </td>
<td>nv_library </td>
<td>go_library </td>
</tr>
<tr>
<td>cc_binary </td>
<td>nv_binary </td>
<td>go_binary </td>
</tr>
<tr>
<td> cc_test </td>
<td> nv_test </td>
<td> go_test </td>
</tr>
</tbody>
</table>
- The `_library` functions generate .a files from source code. - The `_library` functions generate .a files from source code.
- The `_binary` functions generate executable binary files. - The `_binary` functions generate executable binary files.
......
...@@ -14,11 +14,29 @@ In programming languages, a block is a pair of curly braces that includes local ...@@ -14,11 +14,29 @@ In programming languages, a block is a pair of curly braces that includes local
Blocks work with control flow structures like `if`, `else`, and `for`, which have equivalents in deep learning: Blocks work with control flow structures like `if`, `else`, and `for`, which have equivalents in deep learning:
| programming languages | PaddlePaddle | <table>
|-----------------------|-----------------------| <thead>
| for, while loop | RNN, WhileOp | <tr>
| if, if-else, switch | IfElseOp, SwitchOp | <th>programming languages</th>
| sequential execution | a sequence of layers | <th>PaddlePaddle</th>
</tr>
</thead>
<tbody>
<tr>
<td>for, while loop </td>
<td>RNN, WhileOp </td>
</tr>
<tr>
<td>if, if-else, switch </td>
<td>IfElseOp, SwitchOp </td>
</tr>
<tr>
<td>sequential execution </td>
<td>a sequence of layers </td>
</tr>
</tbody>
</table>
A key difference is that a C++ program describes a one pass computation, whereas a deep learning program describes both the forward and backward passes. A key difference is that a C++ program describes a one pass computation, whereas a deep learning program describes both the forward and backward passes.
...@@ -26,12 +44,33 @@ A key difference is that a C++ program describes a one pass computation, whereas ...@@ -26,12 +44,33 @@ A key difference is that a C++ program describes a one pass computation, whereas
The existence of the backward pass makes the execution of a block of PaddlePaddle different from traditional programs: The existence of the backward pass makes the execution of a block of PaddlePaddle different from traditional programs:
| programming languages | PaddlePaddle | <table>
|-----------------------|---------------------------------| <thead>
| stack | scope hierarchy | <tr>
| stack frame | scope | <th>programming languages</th>
| push at entering block| push at entering block | <th>PaddlePaddle</th>
| pop at leaving block | destroy when minibatch completes| </tr>
</thead>
<tbody>
<tr>
<td>stack </td>
<td>scope hierarchy </td>
</tr>
<tr>
<td>stack frame </td>
<td>scope </td>
</tr>
<tr>
<td>push at entering block </td>
<td>push at entering block </td>
</tr>
<tr>
<td>pop at leaving block </td>
<td>destroy when minibatch completes </td>
</tr>
</tbody>
</table>
1. In traditional programs: 1. In traditional programs:
......
...@@ -86,12 +86,40 @@ def layer.fc(X): ...@@ -86,12 +86,40 @@ def layer.fc(X):
We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example: We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example:
<table>
| C++ functions/functors | mul | add | | | <thead>
|------------------------|--------------|--------------|-------------|----------| <tr>
| C++ operator class | mulOp | addOp | FCOp | | <th>C++ functions/functors</th>
| Python binding | operator.mul | operator.add | operator.fc | | <th>mul</th>
| Python function | | | | layer.fc | <th>add</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C++ operator class </td>
<td>mulOp</td>
<td>addOp </td>
<td>FCOp </td>
<td></td>
</tr>
<tr>
<td>Python binding </td>
<td>operator.mul</td>
<td> operator.add </td>
<td>operator.fc </td>
<td></td>
</tr>
<tr>
<td>Python function </td>
<td></td>
<td></td>
<td> </td>
<td>layer.fc</td>
</tr>
</tbody>
</table>
This is how we differentiate layer and operators in PaddlePaddle: This is how we differentiate layer and operators in PaddlePaddle:
......
...@@ -2,12 +2,38 @@ ...@@ -2,12 +2,38 @@
Like other deep learning systems, PaddlePaddle supports training models from sequence data. Also, like other systems, PaddlePaddle represent a mini-batch of sequences as a Tensor. What is different is that PaddlePaddle doesn't require all sequences in a mini-batch to be of the same length. Thus no need for padding zeros. Like other deep learning systems, PaddlePaddle supports training models from sequence data. Also, like other systems, PaddlePaddle represent a mini-batch of sequences as a Tensor. What is different is that PaddlePaddle doesn't require all sequences in a mini-batch to be of the same length. Thus no need for padding zeros.
| | TensorFlow | PaddlePaddle | <table>
|-----------------------|------------|--------------| <thead>
| RNN | Support | Support | <tr>
| recursive RNN | Support | Support | <th></th>
| padding zeros | Must | No need | <th>TensorFlow</th>
| blob data type | Tensor | LoDTensor | <th>PaddlePaddle</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNN </td>
<td>Support </td>
<td>Support </td>
</tr>
<tr>
<td>recursive RNN </td>
<td>Support </td>
<td>Support </td>
</tr>
<tr>
<td>padding zeros </td>
<td> Must </td>
<td>No need </td>
</tr>
<tr>
<td> blob data type </td>
<td> Tensor</td>
<td> LoDTensor </td>
</tr>
</tbody>
</table>
PaddlePaddle achieves this flexibility by passing through a new data type, *LoD Tensor*, which is a Tensor attached with segmentation index known as *LoD*, between operators. The LoD index doesn't only segment a tensor, but also recursively segments sub-sequences. This document presents the design of LoD and LoDTensor. PaddlePaddle achieves this flexibility by passing through a new data type, *LoD Tensor*, which is a Tensor attached with segmentation index known as *LoD*, between operators. The LoD index doesn't only segment a tensor, but also recursively segments sub-sequences. This document presents the design of LoD and LoDTensor.
......
...@@ -10,10 +10,27 @@ PaddlePaddle uses proto message to describe compile time program because : ...@@ -10,10 +10,27 @@ PaddlePaddle uses proto message to describe compile time program because :
The computation `Program` consists of nested `Blocks`. Each `Block` will consist of data(i.e. `Variable`) and `Operations`. The concept to represent them is in the table below. The computation `Program` consists of nested `Blocks`. Each `Block` will consist of data(i.e. `Variable`) and `Operations`. The concept to represent them is in the table below.
| |compile time|runtime| <table>
|---|---|---| <thead>
|Data|VarDesc(proto)|Variable(cpp)| <tr>
|Operation|OpDesc(proto)|Operator(cpp)| <th></th>
<th>compile time</th>
<th>runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data </td>
<td>VarDesc(proto) </td>
<td>Variable(cpp) </td>
</tr>
<tr>
<td>Operation </td>
<td>OpDesc(proto) </td>
<td>Operator(cpp) </td>
</tr>
</tbody>
</table>
## Definition of VarType ## Definition of VarType
......
...@@ -10,12 +10,38 @@ The answer relies on the fact that a `ProgramDesc` is similar to an abstract syn ...@@ -10,12 +10,38 @@ The answer relies on the fact that a `ProgramDesc` is similar to an abstract syn
The following table compares concepts in Fluid and Go The following table compares concepts in Fluid and Go
| Go | Fluid | <table>
|----|-------| <thead>
|user-defined functions | [layers](https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/fluid) | <tr>
| control-flow and built-in functions | [intrinsics/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators) | <th></th>
| goroutines, channels | [class ThreadPool](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework/thread_pool.h) | <th>Go</th>
| runtime | [class Executor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) | <th>Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-defined functions </td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/fluid">layers</a></td>
</tr>
<tr>
<td>control-flow and built-in functions </td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators">intrinsics/operators</a></td>
</tr>
<tr>
<td>goroutines, channels </td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework/thread_pool.h">class ThreadPool</a></td>
</tr>
<tr>
<td>runtime </td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h">class Executor</a></td>
</tr>
</tbody>
</table>
## An Example Concurrent Program ## An Example Concurrent Program
...@@ -77,11 +103,11 @@ message ProgramDesc { ...@@ -77,11 +103,11 @@ message ProgramDesc {
read(output = X) read(output = X)
kube_get_workers_addrs(output = L) kube_get_workers_addrs(output = L)
Y = tensor_array(len(L)) Y = tensor_array(len(L))
parallel_for(input = X, output = Y, parallel_for(input = X, output = Y,
attrs = {L, block_id(1)}) # referring to block 1 attrs = {L, block_id(1)}) # referring to block 1
] ]
} }
block[1] = Block { block[1] = Block {
parent = 0, parent = 0,
vars = [x, y, index], vars = [x, y, index],
...@@ -102,7 +128,7 @@ func main() { //// block 0 ...@@ -102,7 +128,7 @@ func main() { //// block 0
X = fluid.read(...) X = fluid.read(...)
L = fluid.k8s.get_worker_addrs() L = fluid.k8s.get_worker_addrs()
Y = fluid.tensor_array(len(L)) Y = fluid.tensor_array(len(L))
fluid.parallel_for(X, L, fluid.parallel_for(X, L,
func(index int) { //// block 1 func(index int) { //// block 1
x = X[index] x = X[index]
fluid.send(L[index], x) fluid.send(L[index], x)
...@@ -116,7 +142,7 @@ An explanation of the above program: ...@@ -116,7 +142,7 @@ An explanation of the above program:
- `fluid.k8s` is a package that provides access to Kubernetes API. - `fluid.k8s` is a package that provides access to Kubernetes API.
- `fluid.k8s.get_worker_addrs` returns the list of IP and ports of all pods of the current job except for the current one (the master pod). - `fluid.k8s.get_worker_addrs` returns the list of IP and ports of all pods of the current job except for the current one (the master pod).
- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed, - `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h). `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed,
1. creates `len(L)` scopes, each for the concurrent running of the sub-block (block 1 in this case), and initializes a variable named "index" in the scope to an integer value in the range `[0, len(L)-1]`, and 1. creates `len(L)` scopes, each for the concurrent running of the sub-block (block 1 in this case), and initializes a variable named "index" in the scope to an integer value in the range `[0, len(L)-1]`, and
2. creates `len(L)` threads by calling into the `ThreadPool` singleton, each thread 2. creates `len(L)` threads by calling into the `ThreadPool` singleton, each thread
......
...@@ -13,14 +13,41 @@ Most DL systems, including TensorFlow, Caffe2, and MxNet, can asynchronously exe ...@@ -13,14 +13,41 @@ Most DL systems, including TensorFlow, Caffe2, and MxNet, can asynchronously exe
There were many concurrent programming models, implemented in various forms: There were many concurrent programming models, implemented in various forms:
| concurrent programming model | implementation | <table>
|-----|-----| <thead>
| mutex | types and functions in standard libraries | <tr>
| semaphore | types and functions in standard libraries | <th>concurrent programming model</th>
| communicating sequential processes (CSP) | Go programming language | <th>implementation</th>
| actor model | Erlang programming language | </tr>
| message passing | MPI | </thead>
| bulk synchronous parallel (BSP) | Pregel distributed programming framework | <tbody>
<tr>
<td>mutex </td>
<td>types and functions in standard libraries </td>
</tr>
<tr>
<td>semaphore </td>
<td> types and functions in standard libraries </td>
</tr>
<tr>
<td> communicating sequential processes (CSP) </td>
<td> Go programming language </td>
</tr>
<tr>
<td> actor model </td>
<td> Erlang programming language </td>
</tr>
<tr>
<td> message passing </td>
<td> MPI </td>
</tr>
<tr>
<td> bulk synchronous parallel (BSP) </td>
<td> Pregel distributed programming framework </td>
</tr>
</tbody>
</table>
Since Fluid was designed to be a programming language, we would like to implement CSP in Fluid. Since Fluid was designed to be a programming language, we would like to implement CSP in Fluid.
...@@ -118,9 +145,9 @@ There are four types of actions with a channel: ...@@ -118,9 +145,9 @@ There are four types of actions with a channel:
```go ```go
close(ch) close(ch)
``` ```
Please be aware that a closed channel is not a nil channel, which is `var ch chan int`. Please be aware that a closed channel is not a nil channel, which is `var ch chan int`.
There are some [axioms with channels](https://dave.cheney.net/2014/03/19/channel-axioms): There are some [axioms with channels](https://dave.cheney.net/2014/03/19/channel-axioms):
1. A send to a nil channel blocks forever 1. A send to a nil channel blocks forever
......
...@@ -2,12 +2,33 @@ ...@@ -2,12 +2,33 @@
Due to the refactorization of the PaddlePaddle core, we need Python classes to construct corresponding protobuf messages that describe a DL program. Due to the refactorization of the PaddlePaddle core, we need Python classes to construct corresponding protobuf messages that describe a DL program.
| Python classes | Protobuf messages | <table>
| --- | --- | <thead>
| Program | ProgramDesc | <tr>
| Block | BlockDesc | <th>Python classes</th>
| Operator | OpDesc | <th>Protobuf messages</th>
| Variable | VarDesc | </tr>
</thead>
<tbody>
<tr>
<td>Program </td>
<td>ProgramDesc </td>
</tr>
<tr>
<td>Block </td>
<td>BlockDesc </td>
</tr>
<tr>
<td>Operator </td>
<td>OpDesc </td>
</tr>
<tr>
<td>Variable </td>
<td>VarDesc </td>
</tr>
</tbody>
</table>
Please be aware that these Python classes need to maintain some construction-time information, which are not part of the protobuf messages. Please be aware that these Python classes need to maintain some construction-time information, which are not part of the protobuf messages.
......
...@@ -10,11 +10,37 @@ Fluid is the answer. Fluid is similar to PyTorch and TensorFlow Eager Execution ...@@ -10,11 +10,37 @@ Fluid is the answer. Fluid is similar to PyTorch and TensorFlow Eager Execution
Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented. Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented.
| Existed since | model as sequence of layers | model as graph of operators | No model | <table>
|--|--|--|--| <thead>
| 2013 | Caffe, Theano, Torch, PaddlePaddle | | | <tr>
| 2015 | | TensorFlow, MxNet, Caffe2, ONNX, n-graph | | <th>Existed since</th>
| 2016 | | | PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid | <th>model as sequence of layers</th>
<th>model as graph of operators</th>
<th>No model</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 </td>
<td>Caffe, Theano, Torch, PaddlePaddle </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>2015 </td>
<td> </td>
<td>TensorFlow, MxNet, Caffe2, ONNX, n-graph </td>
<td> </td>
</tr>
<tr>
<td>2016 </td>
<td> </td>
<td> </td>
<td> PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid</td>
</tr>
</tbody>
</table>
From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model. To understand the reasons behind this direction, a comparison of the *programming paradigms* or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these. From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model. To understand the reasons behind this direction, a comparison of the *programming paradigms* or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these.
......
...@@ -36,11 +36,37 @@ At compile time, the Python program generates a protobuf message representation ...@@ -36,11 +36,37 @@ At compile time, the Python program generates a protobuf message representation
At runtime, the C++ program realizes the graph and runs it. At runtime, the C++ program realizes the graph and runs it.
| | Representation (protobuf messages) | Realization (C++ class objects) | <table>
|---|---|---| <thead>
|Data|[VarDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107)|[Variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24)| <tr>
|Operation|[OpDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35)|[Operator](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64)| <th></th>
|Block|BlockDesc|Block| <th>Representation (protobuf messages)</th>
<th>Realization (C++ class objects) </th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107">VarDesc</a></td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24">Variable</a></td>
</tr>
<tr>
<td>Operation </td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35">OpDesc</a></td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64">Operator</a></td>
</tr>
<tr>
<td>Block </td>
<td>BlockDesc </td>
<td>Block </td>
</tbody>
</table>
The word *graph* is interchangeable with *block* in this document. A graph consists of computation steps and local variables similar to a C++/Java program block, or a pair of parentheses(`{` and `}`). The word *graph* is interchangeable with *block* in this document. A graph consists of computation steps and local variables similar to a C++/Java program block, or a pair of parentheses(`{` and `}`).
......
# DeepSpeech2 on PaddlePaddle: Design Doc # DeepSpeech2 on PaddlePaddle: Design Doc
We are planning to build Deep Speech 2 (DS2) \[[1](#references)\], a powerful Automatic Speech Recognition (ASR) engine, on PaddlePaddle. For the first-stage plan, we have the following short-term goals: We are planning to build Deep Speech 2 (DS2) \[[1](#references)\], a powerful Automatic Speech Recognition (ASR) engine, on PaddlePaddle. For the first-stage plan, we have the following short-term goals:
...@@ -68,11 +68,33 @@ We roughly break down the project into 14 tasks: ...@@ -68,11 +68,33 @@ We roughly break down the project into 14 tasks:
Tasks parallelizable within phases: Tasks parallelizable within phases:
Roadmap | Description | Parallelizable Tasks <table>
----------- | :------------------------------------ | :-------------------- <thead>
Phase I | Simplified model & components | *Task 1* ~ *Task 8* <tr>
Phase II | Standard model & benchmarking & profiling | *Task 9* ~ *Task 12* <th>Roadmap</th>
Phase III | Documentations | *Task13* ~ *Task14* <th>Description</th>
<th> Parallelizable Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I </td>
<td>Simplified model & components </td>
<td>Task 1 ~ Task 8</td>
</tr>
<tr>
<td>Phase II </td>
<td> Standard model & benchmarking & profiling</td>
<td>Task 9 ~ Task 12 </td>
</tr>
<tr>
<td>Phase III </td>
<td> Documentations</td>
<td> Task13 ~ Task14 </td>
</tr>
</tbody>
</table>
Issue for each task will be created later. Contributions, discussions and comments are all highly appreciated and welcomed! Issue for each task will be created later. Contributions, discussions and comments are all highly appreciated and welcomed!
...@@ -102,37 +124,82 @@ We don't have to persist on this 2-3-7-1-1-1 depth \[[2](#references)\]. Similar ...@@ -102,37 +124,82 @@ We don't have to persist on this 2-3-7-1-1-1 depth \[[2](#references)\]. Similar
Key ingredients about the layers: Key ingredients about the layers:
- **Data Layers**: - **Data Layers**:
- Frame sequences data of audio **spectrogram** (with FFT). - Frame sequences data of audio **spectrogram** (with FFT).
- Token sequences data of **transcription** text (labels). - Token sequences data of **transcription** text (labels).
- These two type of sequences do not have the same lengthes, thus a CTC-loss layer is required. - These two type of sequences do not have the same lengthes, thus a CTC-loss layer is required.
- **2D Convolution Layers**: - **2D Convolution Layers**:
- Not only temporal convolution, but also **frequency convolution**. Like a 2D image convolution, but with a variable dimension (i.e. temporal dimension). - Not only temporal convolution, but also **frequency convolution**. Like a 2D image convolution, but with a variable dimension (i.e. temporal dimension).
- With striding for only the first convlution layer. - With striding for only the first convlution layer.
- No pooling for all convolution layers. - No pooling for all convolution layers.
- **Uni-directional RNNs** - **Uni-directional RNNs**
- Uni-directional + row convolution: for low-latency inference. - Uni-directional + row convolution: for low-latency inference.
- Bi-direcitional + without row convolution: if we don't care about the inference latency. - Bi-direcitional + without row convolution: if we don't care about the inference latency.
- **Row convolution**: - **Row convolution**:
- For looking only a few steps ahead into the feature, instead of looking into a whole sequence in bi-directional RNNs. - For looking only a few steps ahead into the feature, instead of looking into a whole sequence in bi-directional RNNs.
- Not nessesary if with bi-direcitional RNNs. - Not nessesary if with bi-direcitional RNNs.
- "**Row**" means convolutions are done within each frequency dimension (row), and no convolution kernels shared across. - "**Row**" means convolutions are done within each frequency dimension (row), and no convolution kernels shared across.
- **Batch Normalization Layers**: - **Batch Normalization Layers**:
- Added to all above layers (except for data and loss layer). - Added to all above layers (except for data and loss layer).
- Sequence-wise normalization for RNNs: BatchNorm only performed on input-state projection and not state-state projection, for efficiency consideration. - Sequence-wise normalization for RNNs: BatchNorm only performed on input-state projection and not state-state projection, for efficiency consideration.
<table>
Required Components | PaddlePaddle Support | Need to Develop <thead>
:------------------------------------- | :-------------------------------------- | :----------------------- <tr>
Data Layer I (Spectrogram) | Not supported yet. | TBD (Task 3) <th>Required Components</th>
Data Layer II (Transcription) | `paddle.data_type.integer_value_sequence` | - <th> PaddlePaddle Support</th>
2D Convolution Layer | `paddle.layer.image_conv_layer` | - <th> Need to Develop</th>
DataType Converter (vec2seq) | `paddle.layer.block_expand` | - </tr>
Bi-/Uni-directional RNNs | `paddle.layer.recurrent_group` | - </thead>
Row Convolution Layer | Not supported yet. | TBD (Task 4) <tbody>
CTC-loss Layer | `paddle.layer.warp_ctc` | - <tr>
Batch Normalization Layer | `paddle.layer.batch_norm` | - <td>Data Layer I (Spectrogram) </td>
CTC-Beam search | Not supported yet. | TBD (Task 6) <td>Not supported yet.</td>
<td>TBD (Task 3)</td>
</tr>
<tr>
<td>Data Layer II (Transcription) </td>
<td> paddle.data_type.integer_value_sequence</td>
<td> - </td>
</tr>
<tr>
<td>2D Convolution Layer </td>
<td> paddle.layer.image_conv_layer</td>
<td> - </td>
</tr>
<tr>
<td>DataType Converter (vec2seq)</td>
<td> paddle.layer.block_expand</td>
<td> - </td>
</tr>
<tr>
<td>Bi-/Uni-directional RNNs </td>
<td>paddle.layer.recurrent_group</td>
<td> - </td>
</tr>
<tr>
<td>Row Convolution Layer </td>
<td>Not supported yet.</td>
<td>TBD (Task 4)</td>
</tr>
<tr>
<td>CTC-loss Layer </td>
<td>paddle.layer.warp_ctc</td>
<td> - </td>
</tr>
<tr>
<td>Batch Normalization Layer </td>
<td>paddle.layer.batch_norm</td>
<td> - </td>
</tr>
<tr>
<td>CTC-Beam search </td>
<td>Not supported yet.</td>
<td> TBD (Task 6) </td>
</tr>
</tbody>
</table>
### Row Convolution ### Row Convolution
...@@ -145,14 +212,14 @@ TODO by Assignees ...@@ -145,14 +212,14 @@ TODO by Assignees
Figure 2. Algorithm for CTC Beam Search Decoder. Figure 2. Algorithm for CTC Beam Search Decoder.
</div> </div>
- The **Beam Search Decoder** for DS2 CTC-trained network follows the similar approach in \[[3](#references)\] as shown in Figure 2, with two important modifications for the ambiguous parts: - The **Beam Search Decoder** for DS2 CTC-trained network follows the similar approach in \[[3](#references)\] as shown in Figure 2, with two important modifications for the ambiguous parts:
- 1) in the iterative computation of probabilities, the assignment operation is changed to accumulation for one prefix may comes from different paths; - 1) in the iterative computation of probabilities, the assignment operation is changed to accumulation for one prefix may comes from different paths;
- 2) the if condition ```if l^+ not in A_prev then``` after probabilities' computation is deprecated for it is hard to understand and seems unnecessary. - 2) the if condition ```if l^+ not in A_prev then``` after probabilities' computation is deprecated for it is hard to understand and seems unnecessary.
- An **external scorer** would be passed into the decoder to evaluate a candidate prefix during decoding whenever a white space appended in English decoding and any character appended in Mandarin decoding. - An **external scorer** would be passed into the decoder to evaluate a candidate prefix during decoding whenever a white space appended in English decoding and any character appended in Mandarin decoding.
- Such external scorer consists of language model, word count or any other custom scorers. - Such external scorer consists of language model, word count or any other custom scorers.
- The **language model** is built from Task 5, with parameters should be carefully tuned to achieve minimum WER/CER (c.f. Task 7) - The **language model** is built from Task 5, with parameters should be carefully tuned to achieve minimum WER/CER (c.f. Task 7)
- This decoder needs to perform with **high efficiency** for the convenience of parameters tuning and speech recognition in reality. - This decoder needs to perform with **high efficiency** for the convenience of parameters tuning and speech recognition in reality.
## Future Work ## Future Work
......
...@@ -4,9 +4,9 @@ ...@@ -4,9 +4,9 @@
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
new_op_en.md new_op_cn.md
new_op_kernel_en.md new_op_kernel.md
use_eigen_en.md use_eigen_cn.md
name_convention.md name_convention.md
support_new_device.md support_new_device.md
releasing_process.md releasing_process.md
......
...@@ -5,7 +5,7 @@ Development ...@@ -5,7 +5,7 @@ Development
:maxdepth: 1 :maxdepth: 1
new_op_en.md new_op_en.md
new_op_kernel_en.md new_op_kernel.md
use_eigen_en.md use_eigen_en.md
name_convention.md name_convention.md
support_new_device.md support_new_device.md
......
...@@ -26,13 +26,32 @@ ...@@ -26,13 +26,32 @@
依据是否包含kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorWithKernel`,后者继承自`OperatorBase`。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下: 依据是否包含kernel,可以将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorWithKernel`,后者继承自`OperatorBase`。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下:
<table>
内容 | 定义位置 <thead>
-------------- | :---------------------- <tr>
OpProtoMake定义 | `.cc`文件,Backward Op不需要定义OpProtoMake <th>内容</th>
Op定义 | `.cc`文件 <th>定义位置</th>
Kernel实现 | CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。 </tr>
注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中 </thead>
<tbody>
<tr>
<td>OpProtoMake定义 </td>
<td>`.cc`文件,Backward Op不需要定义OpProtoMake </td>
</tr>
<tr>
<td>Op定义 </td>
<td> `.cc`文件</td>
</tr>
<tr>
<td>Kernel实现 </td>
<td> CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。</td>
</tr>
<tr>
<td>注册Op </td>
<td> Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中</td>
</tr>
</tbody>
</table>
实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc``*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。** 实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc``*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。**
......
...@@ -33,6 +33,33 @@ Op definition | `.cc` files ...@@ -33,6 +33,33 @@ Op definition | `.cc` files
Kernel implementation | The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files. Kernel implementation | The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files.
Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation. Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation.
<table>
<thead>
<tr>
<th>Information</th>
<th> Where is it defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpProtoMake definition </td>
<td> `.cc`files, Backward Op does not need an OpProtoMake interface. </td>
</tr>
<tr>
<td>Op definition </td>
<td> `.cc` files</td>
</tr>
<tr>
<td>Kernel implementation </td>
<td> The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files.</td>
</tr>
<tr>
<td>Registering the Op </td>
<td> Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation.</td>
</tr>
</tbody>
</table>
New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions.** New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions.**
...@@ -279,7 +306,7 @@ A forward operator unit test inherits `unittest.TestCase` and defines metaclass ...@@ -279,7 +306,7 @@ A forward operator unit test inherits `unittest.TestCase` and defines metaclass
def test_check_output(self): def test_check_output(self):
self.check_output() self.check_output()
def test_check_grad_normal(self): def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5)
......
...@@ -66,7 +66,7 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git- ...@@ -66,7 +66,7 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-
* 建议,开发者fork的版本库使用`develop`分支同步主版本库的`develop`分支 * 建议,开发者fork的版本库使用`develop`分支同步主版本库的`develop`分支
* 建议,开发者fork的版本库中,再基于`develop`版本fork出自己的功能分支。 * 建议,开发者fork的版本库中,再基于`develop`版本fork出自己的功能分支。
* 当功能分支开发完毕后,向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。 * 当功能分支开发完毕后,向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。
* 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。 * 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。
* BugFix分支也是在开发者自己的fork版本库维护,与功能分支不同的是,BugFix分支需要分别给主版本库的`master``develop`与可能有的`release/版本号`分支,同时提起`Pull Request` * BugFix分支也是在开发者自己的fork版本库维护,与功能分支不同的是,BugFix分支需要分别给主版本库的`master``develop`与可能有的`release/版本号`分支,同时提起`Pull Request`
...@@ -78,13 +78,116 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git- ...@@ -78,13 +78,116 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-
PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。 PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。
| | 新手入门章节 | 识别数字 | 图像分类 | 词向量 | 情感分析 | 语意角色标注 | 机器翻译 | 个性化推荐 | <table>
| --- | --- | --- | --- | --- | --- | --- | --- | --- | <thead>
| API.V2 + Docker + GPU | | | | | | | | | <tr>
| API.V2 + Docker + CPU | | | | | | | | | <th></th>
| `paddle_trainer` + Docker + GPU | | | | | | | | | <th>新手入门章节 </th>
| `paddle_trainer` + Docker + CPU | | | | | | | | | <th> 识别数字</th>
| API.V2 + Ubuntu + GPU | | | | | | | | | <th> 图像分类</th>
| API.V2 + Ubuntu + CPU | | | | | | | | | <th>词向量</th>
| `paddle_trainer` + Ubuntu + GPU | | | | | | | | | <th> 情感分析</th>
| `paddle_trainer` + Ubuntu + CPU | | | | | | | | | <th>语意角色标注</th>
<th> 机器翻译</th>
<th>个性化推荐</th>
</tr>
</thead>
<tbody>
<tr>
<td>API.V2 + Docker + GPU </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> API.V2 + Docker + CPU </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>`paddle_trainer` + Docker + GPU </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>`paddle_trainer` + Docker + CPU </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> API.V2 + Ubuntu + GPU</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>API.V2 + Ubuntu + CPU </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> `paddle_trainer` + Ubuntu + GPU</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> `paddle_trainer` + Ubuntu + CPU</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>
...@@ -4,30 +4,70 @@ ...@@ -4,30 +4,70 @@
A model is an output of the training process. One complete model consists of two parts, the **topology** and the **parameters**. In order to support industrial deployment, the model format must be self-complete and must not expose any training source code. A model is an output of the training process. One complete model consists of two parts, the **topology** and the **parameters**. In order to support industrial deployment, the model format must be self-complete and must not expose any training source code.
As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters. As a result, In PaddlePaddle, the **topology** is represented as a [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/doc/design/program.md), which describes the model structure. The **parameters** contain all the trainable weights in the model. We must support large size parameters and efficient serialization/deserialization of parameters.
## Implementation ## Implementation
The topology is saved as a plain text in a detailed self-contain protobuf file. The topology is saved as a plain text in a detailed self-contain protobuf file.
The parameters are saved as a binary file. As we all know, the protobuf message has a limit of [64M size](https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.io.coded_stream#CodedInputStream.SetTotalBytesLimit.details). We have done a [benchmark experiment](https://github.com/PaddlePaddle/Paddle/pull/4610), which shows that protobuf is not fit for the task. The parameters are saved as a binary file. As we all know, the protobuf message has a limit of [64M size](https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.io.coded_stream#CodedInputStream.SetTotalBytesLimit.details). We have done a [benchmark experiment](https://github.com/PaddlePaddle/Paddle/pull/4610), which shows that protobuf is not fit for the task.
As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is, As a result, we design a particular format for tensor serialization. By default, an arbitrary tensor in Paddle is a [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md), and has a description information proto of [LoDTensorDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L99). We save the DescProto as the byte string header. It contains all the necessary information, such as the `dims`, and the `LoD` information in [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/1c0a4c901c9fc881d120249c703b15d1c50dae7d/paddle/framework/lod_tensor.md). A tensor stores values in a continuous memory buffer. For speed we dump the raw memory to disk and save it as the byte string content. So, the binary format of one tensor is,
The table below shows a tensor's byte view in detail. Note that all the signed values are written in the little-endian format. The table below shows a tensor's byte view in detail. Note that all the signed values are written in the little-endian format.
|field name | type | description | <table>
| --- | --- | --- | <thead>
| version | uint32_t | Version of saved file. Always 0 now. | <tr>
| tensor desc length | uint32_t | TensorDesc(Protobuf message) length in bytes. | <th>field name</th>
| tensor desc | void* | TensorDesc protobuf binary message | <th>type </th>
| tensor data | void* | Tensor's data in binary format. The length of `tensor_data` is decided by `TensorDesc.dims()` and `TensorDesc.data_type()` | <th>description </th>
| lod_level | uint64_t | Level of LoD | </tr>
| length of lod[0] | uint64_t | [Optional] length of lod[0] in bytes. | </thead>
| data of lod[0] | uint64_t* | [Optional] lod[0].data() | <tbody>
| ... | ... | ... | <tr>
<td> version</td>
<td> uint32_t </td>
<td> Version of saved file. Always 0 now.</td>
</tr>
<tr>
<td> tensor desc length </td>
<td> uint32_t </td>
<td> TensorDesc(Protobuf message) length in bytes. </td>
</tr>
<tr>
<td>tensor desc </td>
<td> void*</td>
<td> TensorDesc protobuf binary message </td>
</tr>
<tr>
<td> tensor data </td>
<td> void* </td>
<td> Tensor's data in binary format. The length of `tensor_data` is decided by `TensorDesc.dims()` and `TensorDesc.data_type()` </td>
</tr>
<tr>
<td> lod_level</td>
<td> uint64_t </td>
<td> Level of LoD </td>
</tr>
<tr>
<td> length of lod[0] </td>
<td> uint64_t </td>
<td> [Optional] length of lod[0] in bytes. </td>
</tr>
<tr>
<td> data of lod[0] </td>
<td> uint64_t* </td>
<td> [Optional] lod[0].data() </td>
</tr>
<tr>
<td>... </td>
<td> ... </td>
<td> ... </td>
</tr>
</tbody>
</table>
## Summary ## Summary
......
...@@ -65,10 +65,10 @@ exit(1) ...@@ -65,10 +65,10 @@ exit(1)
**因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是Parameter Server和Trainer。** **因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是Parameter Server和Trainer。**
### 分布式训练 ### 分布式训练
Fliud专门提供了工具[Distributed Transpiler](https://github.com/PaddlePaddle/Paddle/blob/ba65d54d9d3b41cd3c5171b00f476d4e60133ddb/doc/fluid/design/dist_train/distributed_architecture.md#distributed-transpiler)用于将单机版的训练程序转换为分布式版本的训练程序。工具背后的理念是找出程序的优化算子和梯度参数,将他们分隔为两部分,通过send/recv 操作算子进行连接,优化算子和梯度参数可以在优化器的minimize函数的返回值中获取到。 Fliud专门提供了工具[Distributed Transpiler](https://github.com/PaddlePaddle/Paddle/blob/ba65d54d9d3b41cd3c5171b00f476d4e60133ddb/doc/fluid/design/dist_train/distributed_architecture.md#distributed-transpiler)用于将单机版的训练程序转换为分布式版本的训练程序。工具背后的理念是找出程序的优化算子和梯度参数,将他们分隔为两部分,通过send/recv 操作算子进行连接,优化算子和梯度参数可以在优化器的minimize函数的返回值中获取到。
```python ```python
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
``` ```
将Distributed Transpiler、优化算子和梯度函数放在一个代码中如下: 将Distributed Transpiler、优化算子和梯度函数放在一个代码中如下:
```python ```python
...@@ -99,15 +99,51 @@ for pass_id in range(100): ...@@ -99,15 +99,51 @@ for pass_id in range(100):
### 分布式训练脚本运行说明 ### 分布式训练脚本运行说明
分布式任务的运行需要将表格中说明的多个参数进行赋值: 分布式任务的运行需要将表格中说明的多个参数进行赋值:
| 参数名 | 值类型 | 说明 | 示例 | <table>
|:-------------|:------|:---------------------------------------|:-------------| <thead>
| trainer_id | int | 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 | 0/1/2/3 | <tr>
| pservers | str | parameter server 列表 | 127.0.0.1:6710,127.0.0.1:6711 | <th>参数名</th>
| trainers | int | 训练节点的总个数,>0的数字 | 4 | <th> 值类型</th>
| server_endpoint | str | 当前所起的服务节点的IP:PORT | 127.0.0.1:8789 | <th>说明</th>
| training_role | str | 节点角色, TRAINER/PSERVER | PSERVER | <th> 示例</th>
</tr>
**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下: </thead>
<tbody>
<tr>
<td>trainer_id </td>
<td> int</td>
<td> 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 </td>
<td> 0/1/2/3 </td>
</tr>
<tr>
<td>pservers </td>
<td> str</td>
<td> parameter server 列表 </td>
<td> 127.0.0.1:6710,127.0.0.1:6711 </td>
</tr>
<tr>
<td>trainers </td>
<td>int </td>
<td> 训练节点的总个数,>0的数字 </td>
<td> 4 </td>
</tr>
<tr>
<td> server_endpoint</td>
<td> str </td>
<td> 当前所起的服务节点的IP:PORT </td>
<td> 127.0.0.1:8789 </td>
</tr>
<tr>
<td> training_role</td>
<td>str </td>
<td> 节点角色, TRAINER/PSERVER </td>
<td> PSERVER </td>
</tr>
</tbody>
</table>
**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下:
```python ```python
t = fluid.DistributeTranspiler() t = fluid.DistributeTranspiler()
......
...@@ -42,14 +42,40 @@ cprofilev -a 0.0.0.0 -p 3214 -f profile.out main.py ...@@ -42,14 +42,40 @@ cprofilev -a 0.0.0.0 -p 3214 -f profile.out main.py
每一列的含义是: 每一列的含义是:
| 列名 | 含义 | <table>
| --- | --- | <thead>
| ncalls | 函数的调用次数 | <tr>
| tottime | 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间 | <th>列名</th>
| percall | tottime的每次调用平均时间 | <th>含义 </th>
| cumtime | 函数总时间。包含这个函数调用其他函数的时间 | </tr>
| percall | cumtime的每次调用平均时间 | </thead>
| filename:lineno(function) | 文件名, 行号,函数名 | <tbody>
<tr>
<td> ncalls</td>
<td> 函数的调用次数</td>
</tr>
<tr>
<td>tottime</td>
<td> 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间</td>
</tr>
<tr>
<td> percall </td>
<td> tottime的每次调用平均时间</td>
</tr>
<tr>
<td> cumtime</td>
<td> 函数总时间。包含这个函数调用其他函数的时间</td>
</tr>
<tr>
<td> percall</td>
<td> cumtime的每次调用平均时间</td>
</tr>
<tr>
<td> filename:lineno(function) </td>
<td> 文件名, 行号,函数名 </td>
</tr>
</tbody>
</table>
### 寻找性能瓶颈 ### 寻找性能瓶颈
......
...@@ -57,14 +57,40 @@ port, we will see the output like the following: ...@@ -57,14 +57,40 @@ port, we will see the output like the following:
where each line corresponds to Python function, and the meaning of where each line corresponds to Python function, and the meaning of
each column is as follows: each column is as follows:
| column | meaning | <table>
| --- | --- | <thead>
| ncalls | the number of calls into a function | <tr>
| tottime | the total execution time of the function, not including the execution time of other functions called by the function | <th>column</th>
| percall | tottime divided by ncalls | <th>meaning </th>
| cumtime | the total execution time of the function, including the execution time of other functions being called | </tr>
| percall | cumtime divided by ncalls | </thead>
| filename:lineno(function) | where the function is defined | <tbody>
<tr>
<td> ncalls</td>
<td> the number of calls into a function</td>
</tr>
<tr>
<td>tottime</td>
<td> the total execution time of the function, not including the execution time of other functions called by the function</td>
</tr>
<tr>
<td> percall </td>
<td> tottime divided by ncalls</td>
</tr>
<tr>
<td> cumtime</td>
<td> the total execution time of the function, including the execution time of other functions being called</td>
</tr>
<tr>
<td> percall</td>
<td> cumtime divided by ncalls</td>
</tr>
<tr>
<td> filename:lineno(function) </td>
<td> where the function is define </td>
</tr>
</tbody>
</table>
### Identify Performance Bottlenecks ### Identify Performance Bottlenecks
......
############################ .. _install_faq:
Install, Build and Unit test
############################
TBD ###############################
Compile, Install, and Unit Test
###############################
.. contents::
1. Insufficient CUDA driver version
----------------------------------------------------------------
Many users usually face issues like `Cuda Error: CUDA driver version is insufficient for CUDA runtime version` when running the PaddlePaddle GPU Docker image. The cause is that you may not map the local CUDA driver to a container directory.
You can solve the issue by running the following commands:
.. code-block:: bash
$ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
$ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
$ docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu
For more infomation about Docker's installation and usage, please refer to `PaddlePaddle Docker documentation <http://www.paddlepaddle.org/docs/0.11.0/documentation/zh/getstarted/build_and_install/docker_install_en.html>`_ .
2. Version mismatch between PythonLibs and PythonInterpreter
----------------------------------------------------------------
It is a common bug when CMake looks up Python. If you install multiple versions of Python, Cmake may find the version mismatch between PythonLibs and PythonInterpreter . You are forced to specify a Python version, as follows.
.. code-block:: bash
cmake .. -DPYTHON_EXECUTABLE=<exc_path> -DPYTHON_LIBRARY=<lib_path> -DPYTHON_INCLUDE_DIR=<inc_path>
You should specify ``<exc_path>``, ``<lib_path>``, ``<inc_path>`` to your local paths.
3. PaddlePaddle version is 0.0.0
------------------------------------------------
This issue would happen when you run the code `paddle version` or `cmake ..`
.. code-block:: bash
CMake Warning at cmake/version.cmake:20 (message):
Cannot add paddle version from git tag
You should pull all remote branches to your local machine with the command :code:`git fetch upstream` and then run :code:`cmake`
4. paddlepaddle\*.whl is not a supported wheel on this platform.
------------------------------------------------------------------------
The primary cause for this issue is that it can not find the correct PaddlePaddle installation package that matches your current system.The latest PaddlePaddle Python installation package supports Linux x86_64 and MacOS 10.12 os including Python2.7 and Pip 9.0.1.
You can upgrade Pip with the following command\:
.. code-block:: bash
pip install --upgrade pip
If it does not work for you, you can run the command :code:`python -c "import pip; print(pip.pep425tags.get_supported())"` to get the suffix of Python package which your system may support and then compare it with the suffix of your installation.
If the system supports :code:`linux_x86_64` and the installation package is :code:`manylinux1_x86_64`, you should upgrade pip to the latest
if the system supports :code:`manylinux_x86_64` and the local installation package is :code:`linux1_x86_64`, you can rename the whl package to :code:`manylinux1_x86_64` and then try again.
5. ImportError: No module named v2
----------------------------------
Please uninstall Paddle V1 if you have installed it before.
.. code-block:: bash
pip uninstall py_paddle paddle
Then install Python for PaddlePaddle , enter the build directory and run the following commands
pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl
6. Illegal instruction
-----------------------
This issue may be caused by the wrong usage of PaddlePaddle binary version which uses avx SIMD instructions to increase the performance of cpu. Please choose the correct version.
7. Python unittest fails
--------------------------------
If the following python unittest testcases fail:
.. code-block:: bash
24 - test_PyDataProvider (Failed)
26 - test_RecurrentGradientMachine (Failed)
27 - test_NetworkCompare (Failed)
28 - test_PyDataProvider2 (Failed)
32 - test_Prediction (Failed)
33 - test_Compare (Failed)
34 - test_Trainer (Failed)
35 - test_TrainerOnePass (Failed)
36 - test_CompareTwoNets (Failed)
37 - test_CompareTwoOpts (Failed)
38 - test_CompareSparse (Failed)
39 - test_recurrent_machine_generation (Failed)
40 - test_PyDataProviderWrapper (Failed)
41 - test_config_parser (Failed)
42 - test_swig_api (Failed)
43 - layers_test (Failed)
Please check the PaddlePaddle unittest logs which may suggest the following:
.. code-block:: bash
paddle package is already in your PYTHONPATH. But unittest need a clean environment.
Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'.
The solution is:
* Remove old PaddlePaddle to make a clean environment for the unit tests. If PaddlePaddle package is already in Python's site-packages, unit tests would refer Python package in site-packages instead of Python package in the :code:`/python` directory of the source directory. Setting :code:`PYTHONPATH` to :code:`/python` is also useless because Python's search path would give the priority to the installed Python package.
8. Failed to download the MKLML library
----------------------------------------------
.. code-block:: bash
make[2]: *** [third_party/mklml/src/extern_mklml-stamp/extern_mklml-download] error 4
make[1]: *** [CMakeFiles/extern_mklml.dir/all] error 2
make[1]: *** waiting for the unfinished jobs....
Cause: The network speed or SSL link causes the MKLML library to download unsuccessfully.
The solution is: manually download and install, the specific steps are as follows.
.. code-block:: bash
// 1. enter the directory
cd build/third_party/mklml/src/extern_mklml
// 2. check the size of the package, normally 75M, if less than 75M, the download fails
du -sh mklml_lnx_2018.0.1.20171007.tgz
// 3. manually download and unzip and make the download success tag:
wget --no-check-certificate https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz -c -O mklml_lnx_2018.0.1.20171007.tgz
tar zxf mklml_lnx_2018.0.1.20171007.tgz
touch ../extern_mklml-stamp/extern_mklml-download
// 4. then compile
# Recurrent Group Tutorial # Recurrent Group Tutorial
TBD ## Overview
Sequential data is common in natural language processing.
A sentence is a sequence of words and many sentences form a paragraph further. Therefore, a paragraph can be viewed as a nested sequence with two level, where each element of the sequence is another sequence. That is to say, sequential data could be recursive. An example of two-level recursive sequential data is that an article is composed of a sequence of sentences, and each sentence a sequence of words.
PaddlePaddle and PaddlePaddle v2 support two-level recursive sequential data. The two-level sequence is a very flexible data, which helps us to better describe more complex language data such as discribing paragraphs and several rounds of dialogues. Based on two-level sequence input, we can design and build a flexible, hierarchical RNN model that encodes input data from the word and sentence level. For the support of arbitrary levels, please refer to PaddlePaddle Fluid.
In PaddlePaddle, `recurrent_group` is an arbitrarily complex RNN unit. The user only needs to define the calculation that the RNN will complete in one time step. PaddlePaddle is responsible for the propagation of information and error in time series.
Furthermore, `recurrent_group` can also be extended to handle two-level sequence. By defining two nested `recurrent_group` operations at the clause level and the word level respectively, a hierarchical and complex RNN is finally achieved.
Currently, in the PaddlePaddle, there are `recurrent_group` and some Layers that can process bidirectional sequences. For details, refer to the document: <a href = "hierarchical_layer_en.html">Layers for supporting double-layer sequences as input.</a>
## Related Concepts
### Basic Principle
`recurrent_group` is an arbitrarily complex RNN unit supported by PaddlePaddle. The user only needs to focus on the calculations that the RNN is designed to complete within a single time step. The PaddlePaddle is responsible for completing the propagation of information and gradients over time.
In PaddlePaddle, a simple call to `recurrent_group` is as follows:
``` python
recurrent_group(step, input, reverse)
```
- step: A callable function that defines the calculations completed by the RNN unit within a time step
- input: The input must be a single-layer sequence or a double-layer sequence
- reverse: Whether to process the input sequence in reverse order
The core of using `recurrent_group` is to design the logic of the step function. The step function can be freely combined with various layers supported by PaddlePaddle to complete arbitrary arithmetic logic. The input of `recurrent_group` (input) becomes the input of the step function. Since the step function only focuses on the calculation within one time step of RNN, here `recurrent_group` completes the splitting of the original input data for us.
### Input
The input sequence processed by `recurrent_group` is mainly divided into the following three types:
- **Input Data**: When putting a two-level sequence into `recurrent_group`, it will be disassembled into a single-level sequence. When putting a single-level sequence into `recurrent_group`, it will be disassembled into a non-sequence and then passed to the step function. This process is completely transparent to the user. There are two possible types: 1) User input via data_layer; 2) Output from other layers.
- **Read-only Memory Input**: `StaticInput` defines a read-only Memory. The input specified by `StaticInput` will not be disassembled by `recurrent_group`, and each time step of the `recurrent_group` loop will always be able to reference all inputs. It may be a non-sequence or a single-layer sequence.
- **Input of Sequence Generation Task**: `GeneratedInput` is only used to specify input data in a sequence generation task.
### Input Example
Sequence generation tasks mostly follow the encoder-decoer architecture. The encoder and decoder can be arbitrary neural network units capable of processing sequences and RNN is the most popular choice.
Given the encoder output and the current word, the decoder predicts the next most likely word each time. In this structure, the decoder accepts two inputs:
- Target sequence to be generated: a input of the decoder and the basis of the decoder loop. `recurrent_group` will disassemble this input type.
- Encoder output, an non-sequencce or single-sequence: a unbounded memory. Each time step in the decoder loop will reference the entire result and should not be disassembled. This type of input must be specified via `StaticInput`. For more discussion on Unbounded Memory, please refer to the paper [Neural Turning Machine](https://arxiv.org/abs/1410.5401).
In a sequence generation task, the decoder RNN always refers to the word vector of the word predicted at the previous moment as the current time input. `GeneratedInput` will automate this process.
### Output
The `step` function must return the output of one or more Layers. The output of this Layer will be the final output of the entire `recurrent_group`. In the output process, `recurrent_group` will concatenate the output of each time step, which is also transparent to the user.
### Memory
Memory can only be defined and used in `recurrent_group`. Memory cannot exist independently and must point to a layer defined by PaddlePaddle. Memory is referenced to get a momentary output from this layer, so memory can be interpreted as a delay operation.
The user can explicitly specify the output of a layer to initialize the memory. When not specified, memory is initialized to 0 by default.
## Sequence-level RNN Introduction
`recurrent_group` helps us to split the input sequence, merge the output, and loop through the sequence of computational logic.
Using this feature, the two nested `recurrent_group` can handle the nested two-level sequences, implementing sequence-level RNN structures at both the word and sentence levels.
- Word-level RNN: each state corresponds to a word.
- Sequence-level RNN: a sequence-layer RNN consists of multiple word-layer RNNs. Each word-layer RNN (ie, each state of a sequence-layer RNN) has a subsequence.
For convenience of description, the following takes the NLP task as an example. A paragraph containing a subsequence is defined as a two-level sequence, and a sentence containing a word is defined as a single-layer sequence. Then, the zero-level sequence is a word.
## Usage of Sequence-level RNN
### Usage of Training Process
Using `recurrent_group` requires the following conventions:
- **Single-input Single-output**: Both input and output are single layer sequences.
- If there are multiple inputs, the number of words in different input sequences must be exactly equal.
- A single-layer sequence is output, and the number of words in the output sequence is the same as the input sequence.
- memory: define memory to point to a layer in the step function, get a moment output from this layer by referencing memory to form a recurrent connection. The is_seq parameter of memory must be false. If memory is not defined, the operations within each time step are independent.
- boot_layer: the initial state of memory, set 0 by default. is_seq in memory must be false.
- **Double-input Double-output**: Both input and output are two-level sequence.
- If there are multiple input sequences, the number of subsequence contained in different inputs must be strictly equal, but the number of words in the subsequence may not be equal.
- output a two-level sequence. The number of subsequence and the number of words are the same as the specified input sequence and the first input is default.
- memory: defining memory in the step function, pointing to a layer, by referring to the memory to get the output of this layer at a time, forming a recurrent connection. The memory defined in the outer `recurrent_group` step function can record the state of the previous subsequence, either as a single-level sequence (only as read-only memory) or as a word. If memory is not defined, the operations between subsequence are independent.
- boot_layer: the initial state of memory. It is either a single-level sequence (only as read-only memory) or a vector. The default is not set, that is, the initial state is 0.
- **Double-input Single-output**: not support for now, and output the error with "In hierachical RNN, all out links should be from sequences now".
### Usage of Generation Process
Using `beam_search` need follow those conventions:
- Word-level RNN: generate the next word from a word.
- Sequence-level RNN: the single-layer RNN generated subsequence is concatenated into a new double-layer sequence. Semantically, there is no case where a subsequence generates the next subseq directly.
...@@ -55,6 +55,7 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -55,6 +55,7 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
const ProgramDesc &program) const { const ProgramDesc &program) const {
auto graph = new SSAGraph(); auto graph = new SSAGraph();
SSAGraph &result = *graph; SSAGraph &result = *graph;
std::unordered_set<std::string> og_has_been_broadcast;
result.vars_.resize(places_.size()); result.vars_.resize(places_.size());
bool is_forwarding = true; bool is_forwarding = true;
...@@ -122,9 +123,15 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -122,9 +123,15 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
if (!is_forwarding) { if (!is_forwarding) {
auto var_names = op->OutputArgumentNames(); auto var_names = op->OutputArgumentNames();
// Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once. But there are no
// other cases, for example, we need to adjust the gradient according to
// the input when we get the gradient, which is not considered at present.
for (auto &og : var_names) { for (auto &og : var_names) {
if (grad_names_.count(og) != 0) { // is param grad if (grad_names_.count(og) != 0 &&
// Insert NCCL AllReduce Op og_has_been_broadcast.count(og) == 0) { // is param grad
// Insert NCCL AllReduce Op
og_has_been_broadcast.insert(og);
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
result.ops_.emplace_back( result.ops_.emplace_back(
new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_)); new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
......
...@@ -76,7 +76,7 @@ void NCCLAllReduceOpHandle::RunImpl() { ...@@ -76,7 +76,7 @@ void NCCLAllReduceOpHandle::RunImpl() {
} }
} }
std::string NCCLAllReduceOpHandle::Name() const { return "NCCL AllReduce"; } std::string NCCLAllReduceOpHandle::Name() const { return "nccl_all_reduce"; }
} // namespace details } // namespace details
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -14,6 +14,9 @@ ...@@ -14,6 +14,9 @@
#pragma once #pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h" #include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/scope.h"
...@@ -34,6 +37,10 @@ struct NCCLAllReduceOpHandle : public OpHandleBase { ...@@ -34,6 +37,10 @@ struct NCCLAllReduceOpHandle : public OpHandleBase {
std::string Name() const override; std::string Name() const override;
// Delay and buffer nccl_all_reduce together can significantly increase
// performance. Disable this feature by returning false.
bool IsMultiDeviceTransfer() override { return true; };
protected: protected:
void RunImpl() override; void RunImpl() override;
}; };
......
...@@ -13,6 +13,8 @@ ...@@ -13,6 +13,8 @@
// limitations under the License. // limitations under the License.
#pragma once #pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/var_handle.h" #include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
...@@ -53,6 +55,10 @@ class OpHandleBase { ...@@ -53,6 +55,10 @@ class OpHandleBase {
void AddOutput(VarHandleBase *out); void AddOutput(VarHandleBase *out);
// If the Op involves data transfer of multiple devices that
// will likely block other computations.
virtual bool IsMultiDeviceTransfer() { return false; }
protected: protected:
virtual void RunImpl() = 0; virtual void RunImpl() = 0;
}; };
......
...@@ -23,22 +23,36 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor( ...@@ -23,22 +23,36 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
size_t num_threads, bool use_event, size_t num_threads, bool use_event,
const std::vector<Scope *> &local_scopes, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
std::unique_ptr<SSAGraph> &&graph) std::unique_ptr<SSAGraph> &&graph, bool allow_op_delay)
: SSAGraphExecutor(std::move(graph)), : SSAGraphExecutor(std::move(graph)),
pool_(num_threads >= 2 ? new ::ThreadPool(num_threads) : nullptr), pool_(num_threads >= 2 ? new ::ThreadPool(num_threads) : nullptr),
local_scopes_(local_scopes), local_scopes_(local_scopes),
places_(places), places_(places),
fetch_ctxs_(places), fetch_ctxs_(places),
use_event_(use_event) {} use_event_(use_event),
running_ops_(0),
allow_op_delay_(allow_op_delay) {}
void ThreadedSSAGraphExecutor::RunDelayedOps(
const std::unordered_set<OpHandleBase *> &delayed_ops) {
for (auto op : delayed_ops) {
op->Run(use_event_);
}
}
FeedFetchList ThreadedSSAGraphExecutor::Run( FeedFetchList ThreadedSSAGraphExecutor::Run(
const std::vector<std::string> &fetch_tensors) { const std::vector<std::string> &fetch_tensors) {
std::unordered_map<OpHandleBase *, size_t> pending_ops; std::unordered_map<OpHandleBase *, size_t> pending_ops;
std::unordered_set<VarHandleBase *> pending_vars; std::unordered_set<VarHandleBase *> pending_vars;
BlockingQueue<VarHandleBase *> ready_vars; BlockingQueue<VarHandleBase *> ready_vars;
std::unordered_set<OpHandleBase *> ready_ops; std::unordered_set<OpHandleBase *> ready_ops;
// For ops (e.g. nccl_all_reduce) that need to coordinate multiple
// streams from multiple GPUs, it's faster to buffer them and schedule
// together since we currently cannot overlap computation and memcpy streams.
// Should revisit it if overlapping is available.
std::unordered_set<OpHandleBase *> delayed_ops;
std::unordered_set<OpHandleBase *> blocked_by_delayed_ops;
std::unordered_set<VarHandleBase *> delayed_vars;
auto InsertPendingVar = [&pending_vars, &ready_vars](VarHandleBase &var) { auto InsertPendingVar = [&pending_vars, &ready_vars](VarHandleBase &var) {
pending_vars.insert(&var); pending_vars.insert(&var);
...@@ -106,7 +120,14 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -106,7 +120,14 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto run_all_ready_ops = [&] { auto run_all_ready_ops = [&] {
for (auto *op : ready_ops) { for (auto *op : ready_ops) {
RunOp(ready_vars, op); if (op->IsMultiDeviceTransfer() && allow_op_delay_) {
delayed_ops.insert(op);
delayed_vars.insert(op->outputs_.begin(), op->outputs_.end());
ready_vars.Extend(op->outputs_);
continue;
}
running_ops_++;
RunOp(&ready_vars, op);
} }
ready_ops.clear(); ready_ops.clear();
}; };
...@@ -118,13 +139,13 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -118,13 +139,13 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
} }
// Step 3. Execution // Step 3. Execution
while (!pending_vars.empty()) { while (!pending_vars.empty() || !ready_ops.empty() || !delayed_ops.empty()) {
// 1. Run All Ready ops // 1. Run All Ready ops
run_all_ready_ops(); run_all_ready_ops();
// 2. Find ready variable // 2. Find ready variable
bool timeout; bool timeout;
auto cur_ready_vars = ready_vars.PopAll(1000, &timeout); auto cur_ready_vars = ready_vars.PopAll(1, &timeout);
if (timeout) { if (timeout) {
if (exception_) { if (exception_) {
...@@ -141,13 +162,29 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -141,13 +162,29 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto &deps = pending_ops[op]; auto &deps = pending_ops[op];
--deps; --deps;
if (deps == 0) { if (deps == 0) {
ready_ops.insert(op); if (delayed_vars.find(ready_var) != delayed_vars.end()) {
blocked_by_delayed_ops.insert(op);
} else {
ready_ops.insert(op);
}
} }
} }
} }
// When there are no other ops to schedule, schedule buffered delayed
// ops and unblock other ops.
if (ready_ops.empty() && !delayed_ops.empty() && running_ops_ == 0) {
RunDelayedOps(delayed_ops);
delayed_ops.clear();
for (auto *op : blocked_by_delayed_ops) {
ready_ops.insert(op);
}
blocked_by_delayed_ops.clear();
}
// Keep loop until all vars are ready. // Keep loop until all vars are ready.
} }
PADDLE_ENFORCE(ready_ops.empty());
PADDLE_ENFORCE(delayed_ops.empty());
PADDLE_ENFORCE(blocked_by_delayed_ops.empty());
++computation_count_; ++computation_count_;
auto sync_computation = [&] { auto sync_computation = [&] {
...@@ -182,12 +219,13 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -182,12 +219,13 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
} }
void ThreadedSSAGraphExecutor::RunOp( void ThreadedSSAGraphExecutor::RunOp(
BlockingQueue<VarHandleBase *> &ready_var_q, details::OpHandleBase *op) { BlockingQueue<VarHandleBase *> *ready_var_q, details::OpHandleBase *op) {
auto op_run = [&ready_var_q, op, this] { auto op_run = [ready_var_q, op, this] {
try { try {
VLOG(10) << op->Name() << " : " << op->DebugString(); VLOG(10) << op->Name() << " : " << op->DebugString();
op->Run(use_event_); op->Run(use_event_);
ready_var_q.Extend(op->outputs_); running_ops_--;
ready_var_q->Extend(op->outputs_);
} catch (platform::EnforceNotMet ex) { } catch (platform::EnforceNotMet ex) {
exception_.reset(new platform::EnforceNotMet(ex)); exception_.reset(new platform::EnforceNotMet(ex));
} catch (...) { } catch (...) {
......
...@@ -14,7 +14,12 @@ ...@@ -14,7 +14,12 @@
#pragma once #pragma once
#include <chrono> #include <deque>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
#include <functional> #include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party #include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/details/ssa_graph_executor.h" #include "paddle/fluid/framework/details/ssa_graph_executor.h"
...@@ -70,7 +75,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { ...@@ -70,7 +75,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
ThreadedSSAGraphExecutor(size_t num_threads, bool use_event, ThreadedSSAGraphExecutor(size_t num_threads, bool use_event,
const std::vector<Scope *> &local_scopes, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
std::unique_ptr<SSAGraph> &&graph); std::unique_ptr<SSAGraph> &&graph,
bool allow_op_delay);
// Run a SSAGraph by a thread pool // Run a SSAGraph by a thread pool
// Use topological sort algorithm // Use topological sort algorithm
...@@ -79,9 +85,11 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { ...@@ -79,9 +85,11 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
~ThreadedSSAGraphExecutor() {} ~ThreadedSSAGraphExecutor() {}
private: private:
void RunOp(BlockingQueue<VarHandleBase *> &ready_var_q, void RunOp(BlockingQueue<VarHandleBase *> *ready_var_q,
details::OpHandleBase *op); details::OpHandleBase *op);
void RunDelayedOps(const std::unordered_set<OpHandleBase *> &delayed_ops);
private: private:
std::unique_ptr<::ThreadPool> pool_; std::unique_ptr<::ThreadPool> pool_;
std::vector<Scope *> local_scopes_; std::vector<Scope *> local_scopes_;
...@@ -89,6 +97,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { ...@@ -89,6 +97,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
platform::DeviceContextPool fetch_ctxs_; platform::DeviceContextPool fetch_ctxs_;
const bool use_event_; const bool use_event_;
std::unique_ptr<platform::EnforceNotMet> exception_; std::unique_ptr<platform::EnforceNotMet> exception_;
std::atomic<int> running_ops_;
bool allow_op_delay_;
size_t computation_count_{0}; size_t computation_count_{0};
size_t max_async_computation{100}; size_t max_async_computation{100};
......
...@@ -22,7 +22,7 @@ ...@@ -22,7 +22,7 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
struct OpHandleBase; class OpHandleBase;
// VarHandleBase is the var node in the dependency graph. // VarHandleBase is the var node in the dependency graph.
// A variable can only be generated by a single operator. i.e. // A variable can only be generated by a single operator. i.e.
......
...@@ -279,6 +279,21 @@ std::unique_ptr<ExecutorPrepareContext> Executor::Prepare( ...@@ -279,6 +279,21 @@ std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
return std::unique_ptr<ExecutorPrepareContext>(ctx); return std::unique_ptr<ExecutorPrepareContext>(ctx);
} }
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
const ProgramDesc& program, const std::vector<int>& block_ids) {
std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
for (auto& bid : block_ids) {
auto* ctx = new ExecutorPrepareContext(program, bid);
PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
auto& block = program.Block(bid);
for (auto& op_desc : block.AllOps()) {
ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
}
result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
}
return result;
}
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope, void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
bool create_local_scope, bool create_vars) { bool create_local_scope, bool create_vars) {
auto& block = ctx->prog_.Block(ctx->block_id_); auto& block = ctx->prog_.Block(ctx->block_id_);
......
...@@ -61,6 +61,9 @@ class Executor { ...@@ -61,6 +61,9 @@ class Executor {
static std::unique_ptr<ExecutorPrepareContext> Prepare( static std::unique_ptr<ExecutorPrepareContext> Prepare(
const ProgramDesc& program, int block_id); const ProgramDesc& program, int block_id);
static std::vector<std::shared_ptr<ExecutorPrepareContext>> Prepare(
const ProgramDesc& program, const std::vector<int>& block_ids);
void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope, void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
bool create_local_scope = true, bool create_local_scope = true,
bool create_vars = true); bool create_vars = true);
......
...@@ -13,9 +13,10 @@ See the License for the specific language governing permissions and ...@@ -13,9 +13,10 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h" #include "paddle/fluid/framework/parallel_executor.h"
#include <string> #include "paddle/fluid/platform/profiler.h"
#include "ThreadPool.h" #include <string>
#include <vector>
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h" #include "paddle/fluid/platform/nccl_helper.h"
...@@ -47,7 +48,7 @@ ParallelExecutor::ParallelExecutor( ...@@ -47,7 +48,7 @@ ParallelExecutor::ParallelExecutor(
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
const std::unordered_set<std::string> &params, const std::unordered_set<std::string> &params,
const ProgramDesc &startup_program, const ProgramDesc &main_program, const ProgramDesc &startup_program, const ProgramDesc &main_program,
const std::string &loss_var_name, Scope *scope) const std::string &loss_var_name, Scope *scope, bool allow_op_delay)
: member_(new ParallelExecutorPrivate(places)) { : member_(new ParallelExecutorPrivate(places)) {
member_->global_scope_ = scope; member_->global_scope_ = scope;
...@@ -82,8 +83,8 @@ ParallelExecutor::ParallelExecutor( ...@@ -82,8 +83,8 @@ ParallelExecutor::ParallelExecutor(
auto graph = builder.Build(main_program); auto graph = builder.Build(main_program);
member_->executor_.reset(new details::ThreadedSSAGraphExecutor( member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
num_threads, use_event, member_->local_scopes_, places, num_threads, use_event, member_->local_scopes_, places, std::move(graph),
std::move(graph))); allow_op_delay));
// Step 3. Create vars in each scope; // Step 3. Create vars in each scope;
for (auto *scope : member_->local_scopes_) { for (auto *scope : member_->local_scopes_) {
...@@ -151,6 +152,7 @@ void ParallelExecutor::BCastParamsToGPUs( ...@@ -151,6 +152,7 @@ void ParallelExecutor::BCastParamsToGPUs(
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors, void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
const std::string &fetched_var_name) { const std::string &fetched_var_name) {
platform::RecordBlock b(0);
auto fetch_data = member_->executor_->Run(fetch_tensors); auto fetch_data = member_->executor_->Run(fetch_tensors);
*member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() = *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
fetch_data; fetch_data;
......
...@@ -14,8 +14,9 @@ limitations under the License. */ ...@@ -14,8 +14,9 @@ limitations under the License. */
#pragma once #pragma once
#include <future> #include <string>
#include <unordered_set> #include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/program_desc.h"
...@@ -37,7 +38,8 @@ class ParallelExecutor { ...@@ -37,7 +38,8 @@ class ParallelExecutor {
const std::unordered_set<std::string>& params, const std::unordered_set<std::string>& params,
const ProgramDesc& startup_program, const ProgramDesc& startup_program,
const ProgramDesc& main_program, const ProgramDesc& main_program,
const std::string& loss_var_name, Scope* scope); const std::string& loss_var_name, Scope* scope,
bool allow_op_delay);
void Run(const std::vector<std::string>& fetch_tensors, void Run(const std::vector<std::string>& fetch_tensors,
const std::string& fetched_var_name = "fetched_var"); const std::string& fetched_var_name = "fetched_var");
......
...@@ -10,6 +10,9 @@ See the License for the specific language governing permissions and ...@@ -10,6 +10,9 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
...@@ -52,7 +55,7 @@ class SelectedRows { ...@@ -52,7 +55,7 @@ class SelectedRows {
private: private:
// Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9} here. // Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9} here.
// SelectedRows are simplely concated when adding together. Until a // SelectedRows are simply concated when adding together. Until a
// SelectedRows add a Tensor, will the duplicate rows be handled. // SelectedRows add a Tensor, will the duplicate rows be handled.
Vector<int64_t> rows_; Vector<int64_t> rows_;
std::unique_ptr<Tensor> value_{nullptr}; std::unique_ptr<Tensor> value_{nullptr};
......
...@@ -2,7 +2,7 @@ if(WITH_DISTRIBUTE) ...@@ -2,7 +2,7 @@ if(WITH_DISTRIBUTE)
grpc_library(sendrecvop_grpc SRCS bytebuffer_stream.cc sendrecvop_utils.cc grpc_client.cc grpc_library(sendrecvop_grpc SRCS bytebuffer_stream.cc sendrecvop_utils.cc grpc_client.cc
grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor selected_rows) grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor selected_rows)
set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
set_source_files_properties(serde_test.cc grpc_server_test PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) set_source_files_properties(serde_test.cc grpc_server_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(serde_test SRCS serde_test.cc variable_response.cc DEPS grpc++_unsecure grpc_unsecure gpr cc_test(serde_test SRCS serde_test.cc variable_response.cc DEPS grpc++_unsecure grpc_unsecure gpr
cares zlib protobuf sendrecvop_grpc) cares zlib protobuf sendrecvop_grpc)
cc_test(grpc_server_test SRCS grpc_server_test.cc DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf) cc_test(grpc_server_test SRCS grpc_server_test.cc DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf)
......
...@@ -12,8 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,8 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "grpc_client.h" #include "paddle/fluid/operators/detail/grpc_client.h"
#include <sys/time.h>
#include <limits>
#include "paddle/fluid/framework/threadpool.h" #include "paddle/fluid/framework/threadpool.h"
namespace paddle { namespace paddle {
...@@ -52,7 +54,7 @@ bool RPCClient::AsyncSendVariable(const std::string& ep, ...@@ -52,7 +54,7 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
auto call = s->stub_g_.PrepareUnaryCall( auto call = s->stub_g_.PrepareUnaryCall(
s->context_.get(), "/sendrecv.SendRecvService/SendVariable", req, &cq_); s->context_.get(), "/sendrecv.SendRecvService/SendVariable", req, &cq_);
call->StartCall(); call->StartCall();
call->Finish(&s->reply_, &s->status_, (void*)s); call->Finish(&s->reply_, &s->status_, static_cast<void*>(s));
}); });
req_count_++; req_count_++;
...@@ -70,8 +72,7 @@ void ProcGetResponse(const VarHandle& var_h, ...@@ -70,8 +72,7 @@ void ProcGetResponse(const VarHandle& var_h,
template <typename T> template <typename T>
void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) { void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) {
::grpc::Slice slice(proto.ByteSizeLong()); ::grpc::Slice slice(proto.ByteSizeLong());
proto.SerializeWithCachedSizesToArray( proto.SerializeWithCachedSizesToArray(const_cast<uint8_t*>(slice.begin()));
const_cast<uint8_t*>(reinterpret_cast<const uint8_t*>(slice.begin())));
::grpc::ByteBuffer tmp(&slice, 1); ::grpc::ByteBuffer tmp(&slice, 1);
result->Swap(&tmp); result->Swap(&tmp);
} }
...@@ -109,7 +110,7 @@ bool RPCClient::AsyncGetVariable(const std::string& ep, ...@@ -109,7 +110,7 @@ bool RPCClient::AsyncGetVariable(const std::string& ep,
auto call = s->stub_g_.PrepareUnaryCall( auto call = s->stub_g_.PrepareUnaryCall(
s->context_.get(), "/sendrecv.SendRecvService/GetVariable", buf, &cq_); s->context_.get(), "/sendrecv.SendRecvService/GetVariable", buf, &cq_);
call->StartCall(); call->StartCall();
call->Finish(&s->reply_, &s->status_, (void*)s); call->Finish(&s->reply_, &s->status_, static_cast<void*>(s));
}); });
req_count_++; req_count_++;
...@@ -153,7 +154,7 @@ bool RPCClient::AsyncPrefetchVariable(const std::string& ep, ...@@ -153,7 +154,7 @@ bool RPCClient::AsyncPrefetchVariable(const std::string& ep,
s->context_.get(), "/sendrecv.SendRecvService/PrefetchVariable", req, s->context_.get(), "/sendrecv.SendRecvService/PrefetchVariable", req,
&cq_); &cq_);
call->StartCall(); call->StartCall();
call->Finish(&s->reply_, &s->status_, (void*)s); call->Finish(&s->reply_, &s->status_, static_cast<void*>(s));
}); });
req_count_++; req_count_++;
...@@ -169,7 +170,7 @@ void RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) { ...@@ -169,7 +170,7 @@ void RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) {
sendrecv::VariableMessage req; sendrecv::VariableMessage req;
req.set_varname(BATCH_BARRIER_MESSAGE); req.set_varname(BATCH_BARRIER_MESSAGE);
auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_); auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, (void*)s); rpc->Finish(&s->reply_, &s->status_, static_cast<void*>(s));
req_count_++; req_count_++;
} }
...@@ -181,7 +182,7 @@ void RPCClient::AsyncSendFetchBarrier(const std::string& ep, int64_t time_out) { ...@@ -181,7 +182,7 @@ void RPCClient::AsyncSendFetchBarrier(const std::string& ep, int64_t time_out) {
sendrecv::VariableMessage req; sendrecv::VariableMessage req;
req.set_varname(FETCH_BARRIER_MESSAGE); req.set_varname(FETCH_BARRIER_MESSAGE);
auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_); auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, (void*)s); rpc->Finish(&s->reply_, &s->status_, static_cast<void*>(s));
req_count_++; req_count_++;
} }
......
...@@ -14,6 +14,9 @@ limitations under the License. */ ...@@ -14,6 +14,9 @@ limitations under the License. */
#include "paddle/fluid/operators/detail/grpc_server.h" #include "paddle/fluid/operators/detail/grpc_server.h"
#include <limits>
#include <string>
using ::grpc::ServerAsyncResponseWriter; using ::grpc::ServerAsyncResponseWriter;
namespace paddle { namespace paddle {
...@@ -156,6 +159,8 @@ class RequestPrefetch final : public RequestBase { ...@@ -156,6 +159,8 @@ class RequestPrefetch final : public RequestBase {
::grpc::ByteBuffer reply; ::grpc::ByteBuffer reply;
// TODO(Yancey1989): execute the Block which containers prefetch ops // TODO(Yancey1989): execute the Block which containers prefetch ops
VLOG(3) << "RequestPrefetch Process in";
responder_.Finish(reply, ::grpc::Status::OK, this); responder_.Finish(reply, ::grpc::Status::OK, this);
status_ = FINISH; status_ = FINISH;
} }
...@@ -221,6 +226,7 @@ void AsyncGRPCServer::ShutdownQueue() { ...@@ -221,6 +226,7 @@ void AsyncGRPCServer::ShutdownQueue() {
std::unique_lock<std::mutex> lock(cq_mutex_); std::unique_lock<std::mutex> lock(cq_mutex_);
cq_send_->Shutdown(); cq_send_->Shutdown();
cq_get_->Shutdown(); cq_get_->Shutdown();
cq_prefetch_->Shutdown();
} }
// This URL explains why shutdown is complicate: // This URL explains why shutdown is complicate:
...@@ -233,6 +239,7 @@ void AsyncGRPCServer::ShutDown() { ...@@ -233,6 +239,7 @@ void AsyncGRPCServer::ShutDown() {
void AsyncGRPCServer::TryToRegisterNewSendOne() { void AsyncGRPCServer::TryToRegisterNewSendOne() {
std::unique_lock<std::mutex> lock(cq_mutex_); std::unique_lock<std::mutex> lock(cq_mutex_);
if (is_shut_down_) { if (is_shut_down_) {
VLOG(3) << "shutdown, do not TryToRegisterNewSendOne";
return; return;
} }
RequestSend* send = new RequestSend(&service_, cq_send_.get(), scope_, RequestSend* send = new RequestSend(&service_, cq_send_.get(), scope_,
...@@ -243,6 +250,7 @@ void AsyncGRPCServer::TryToRegisterNewSendOne() { ...@@ -243,6 +250,7 @@ void AsyncGRPCServer::TryToRegisterNewSendOne() {
void AsyncGRPCServer::TryToRegisterNewGetOne() { void AsyncGRPCServer::TryToRegisterNewGetOne() {
std::unique_lock<std::mutex> lock(cq_mutex_); std::unique_lock<std::mutex> lock(cq_mutex_);
if (is_shut_down_) { if (is_shut_down_) {
VLOG(3) << "shutdown, do not TryToRegisterNewGetOne";
return; return;
} }
RequestGet* get = new RequestGet(&service_, cq_get_.get(), scope_, dev_ctx_, RequestGet* get = new RequestGet(&service_, cq_get_.get(), scope_, dev_ctx_,
...@@ -253,6 +261,7 @@ void AsyncGRPCServer::TryToRegisterNewGetOne() { ...@@ -253,6 +261,7 @@ void AsyncGRPCServer::TryToRegisterNewGetOne() {
void AsyncGRPCServer::TryToRegisterNewPrefetchOne() { void AsyncGRPCServer::TryToRegisterNewPrefetchOne() {
std::unique_lock<std::mutex> lock(cq_mutex_); std::unique_lock<std::mutex> lock(cq_mutex_);
if (is_shut_down_) { if (is_shut_down_) {
VLOG(3) << "shutdown, do not TryToRegisterNewPrefetchOne";
return; return;
} }
RequestPrefetch* prefetch = RequestPrefetch* prefetch =
...@@ -270,25 +279,28 @@ void AsyncGRPCServer::HandleRequest(::grpc::ServerCompletionQueue* cq, ...@@ -270,25 +279,28 @@ void AsyncGRPCServer::HandleRequest(::grpc::ServerCompletionQueue* cq,
void* tag = NULL; void* tag = NULL;
bool ok = false; bool ok = false;
while (true) { while (true) {
VLOG(3) << "HandleRequest for " << cq_name << " while in";
if (!cq->Next(&tag, &ok)) { if (!cq->Next(&tag, &ok)) {
LOG(INFO) << cq_name << " CompletionQueue shutdown!"; LOG(INFO) << cq_name << " CompletionQueue shutdown!";
break; break;
} }
VLOG(3) << "HandleRequest for " << cq_name << " while after Next";
PADDLE_ENFORCE(tag); PADDLE_ENFORCE(tag);
// FIXME(typhoonzero): de-couple the barriers with recv_op // FIXME(typhoonzero): de-couple the barriers with recv_op
if (!is_shut_down_ && cq_name == "cq_get") WaitCond(1); if (!is_shut_down_ && cq_name == "cq_get") WaitCond(1);
if (!is_shut_down_ && cq_name == "cq_send") WaitCond(0); if (!is_shut_down_ && cq_name == "cq_send") WaitCond(0);
RequestBase* base = (RequestBase*)tag; RequestBase* base = reinterpret_cast<RequestBase*>(tag);
// reference: // reference:
// https://github.com/tensorflow/tensorflow/issues/5596 // https://github.com/tensorflow/tensorflow/issues/5596
// https://groups.google.com/forum/#!topic/grpc-io/xftlRy-IQwM // https://groups.google.com/forum/#!topic/grpc-io/xftlRy-IQwM
// https://groups.google.com/forum/#!topic/grpc-io/ywATt88Ef_I // https://groups.google.com/forum/#!topic/grpc-io/ywATt88Ef_I
if (!ok) { if (!ok) {
LOG(WARNING) << cq_name << " recv no regular event:argument name" LOG(WARNING) << cq_name << " recv no regular event:argument name["
<< base->GetReqName(); << base->GetReqName() << "]";
TryToRegisterNewOne(); TryToRegisterNewOne();
delete base; delete base;
continue; continue;
......
...@@ -15,7 +15,8 @@ limitations under the License. */ ...@@ -15,7 +15,8 @@ limitations under the License. */
#pragma once #pragma once
#include <grpc++/grpc++.h> #include <grpc++/grpc++.h>
#include <thread> #include <string>
#include <utility>
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
...@@ -93,6 +94,7 @@ class AsyncGRPCServer final { ...@@ -93,6 +94,7 @@ class AsyncGRPCServer final {
// received variable from RPC, operators fetch variable from this queue. // received variable from RPC, operators fetch variable from this queue.
SimpleBlockQueue<MessageWithName> var_get_queue_; SimpleBlockQueue<MessageWithName> var_get_queue_;
// client send variable to this queue.
ReceivedQueue var_recv_queue_; ReceivedQueue var_recv_queue_;
// condition of the sub program // condition of the sub program
......
...@@ -28,6 +28,7 @@ std::unique_ptr<detail::AsyncGRPCServer> rpc_service_; ...@@ -28,6 +28,7 @@ std::unique_ptr<detail::AsyncGRPCServer> rpc_service_;
void StartServer(const std::string& endpoint) { void StartServer(const std::string& endpoint) {
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint)); rpc_service_.reset(new detail::AsyncGRPCServer(endpoint));
rpc_service_->RunSyncUpdate();
} }
TEST(PREFETCH, CPU) { TEST(PREFETCH, CPU) {
...@@ -39,13 +40,23 @@ TEST(PREFETCH, CPU) { ...@@ -39,13 +40,23 @@ TEST(PREFETCH, CPU) {
platform::CPUPlace place; platform::CPUPlace place;
platform::CPUDeviceContext ctx(place); platform::CPUDeviceContext ctx(place);
// create var on local scope // create var on local scope
std::string var_name("tmp_0"); std::string in_var_name("in");
auto var = scope.Var(var_name); std::string out_var_name("out");
auto tensor = var->GetMutable<framework::LoDTensor>(); auto* in_var = scope.Var(in_var_name);
tensor->Resize({10, 10}); auto* in_tensor = in_var->GetMutable<framework::LoDTensor>();
in_tensor->Resize({10, 10});
VLOG(3) << "before mutable_data";
in_tensor->mutable_data<int>(place);
scope.Var(out_var_name);
VLOG(3) << "before fetch";
detail::RPCClient client; detail::RPCClient client;
client.AsyncPrefetchVariable("127.0.0.1:8889", ctx, scope, var_name, ""); client.AsyncPrefetchVariable("127.0.0.1:8889", ctx, scope, in_var_name,
out_var_name);
client.Wait();
rpc_service_->ShutDown();
server_thread.join(); server_thread.join();
rpc_service_.reset(nullptr); rpc_service_.reset(nullptr);
} }
...@@ -80,7 +80,7 @@ enum class GrpcMethod { ...@@ -80,7 +80,7 @@ enum class GrpcMethod {
}; };
static const int kGrpcNumMethods = static const int kGrpcNumMethods =
static_cast<int>(GrpcMethod::kGetVariable) + 1; static_cast<int>(GrpcMethod::kPrefetchVariable) + 1;
inline const char* GrpcMethodName(GrpcMethod id) { inline const char* GrpcMethodName(GrpcMethod id) {
switch (id) { switch (id) {
...@@ -89,7 +89,7 @@ inline const char* GrpcMethodName(GrpcMethod id) { ...@@ -89,7 +89,7 @@ inline const char* GrpcMethodName(GrpcMethod id) {
case GrpcMethod::kGetVariable: case GrpcMethod::kGetVariable:
return "/sendrecv.SendRecvService/GetVariable"; return "/sendrecv.SendRecvService/GetVariable";
case GrpcMethod::kPrefetchVariable: case GrpcMethod::kPrefetchVariable:
return "/sendrecv.SendREcvService/PrefetchVariable"; return "/sendrecv.SendRecvService/PrefetchVariable";
} }
// Shouldn't be reached. // Shouldn't be reached.
...@@ -117,5 +117,5 @@ class GrpcService final { ...@@ -117,5 +117,5 @@ class GrpcService final {
}; };
} // namespace detail } // namespace detail
} // namespace operator } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -13,7 +13,11 @@ ...@@ -13,7 +13,11 @@
// limitations under the License. // limitations under the License.
#include "paddle/fluid/operators/detail/variable_response.h" #include "paddle/fluid/operators/detail/variable_response.h"
#include <string.h>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/operators/detail/send_recv.pb.h" #include "paddle/fluid/operators/detail/send_recv.pb.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h" #include "paddle/fluid/operators/detail/sendrecvop_utils.h"
...@@ -151,7 +155,7 @@ bool VariableResponse::CopySelectRowsTensorData( ...@@ -151,7 +155,7 @@ bool VariableResponse::CopySelectRowsTensorData(
auto* tensor = slr->mutable_value(); auto* tensor = slr->mutable_value();
tensor->Resize(dims); tensor->Resize(dims);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
tensor->numel(), static_cast<size_t>(tensor->numel()),
length / framework::SizeOfType( length / framework::SizeOfType(
paddle::operators::detail::ToTypeIndex(meta_.data_type()))); paddle::operators::detail::ToTypeIndex(meta_.data_type())));
void* tensor_data = tensor->mutable_data( void* tensor_data = tensor->mutable_data(
......
...@@ -13,22 +13,13 @@ See the License for the specific language governing permissions and ...@@ -13,22 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <stdint.h> #include <stdint.h>
#include <sys/stat.h>
#include <ostream> #include <ostream>
#include <thread>
#include <unistd.h>
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/proto_desc.h"
#include "paddle/fluid/framework/threadpool.h" #include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/detail/grpc_server.h" #include "paddle/fluid/operators/detail/grpc_server.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#include "paddle/fluid/operators/detail/simple_block_queue.h"
#include "paddle/fluid/string/printf.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -54,20 +45,23 @@ static void CreateTensorFromMessageType(framework::Variable *var, ...@@ -54,20 +45,23 @@ static void CreateTensorFromMessageType(framework::Variable *var,
} }
} }
static void ParallelExecuteBlocks(const std::vector<size_t> &parallel_blkids, static void ParallelExecuteBlocks(
framework::Executor *executor, const std::vector<size_t> &parallel_blkids, framework::Executor *executor,
framework::ProgramDesc *program, const std::vector<std::shared_ptr<framework::ExecutorPrepareContext>>
framework::Scope *scope) { &prepared,
framework::ProgramDesc *program, framework::Scope *scope) {
std::vector<std::future<void>> fs; std::vector<std::future<void>> fs;
for (size_t idx : parallel_blkids) { for (size_t idx : parallel_blkids) {
fs.push_back(framework::Async([&executor, &program, &scope, idx]() { fs.push_back(
int run_block = idx; // thread local framework::Async([&executor, &prepared, &program, &scope, idx]() {
try { int run_block = idx; // thread local
executor->Run(*program, scope, run_block, false, false); try {
} catch (std::exception &e) { executor->RunPreparedContext(prepared[run_block].get(), scope,
LOG(ERROR) << "run sub program error " << e.what(); false, false);
} } catch (std::exception &e) {
})); LOG(ERROR) << "run sub program error " << e.what();
}
}));
} }
for (size_t i = 0; i < fs.size(); ++i) fs[i].wait(); for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
} }
...@@ -105,11 +99,23 @@ class ListenAndServOp : public framework::OperatorBase { ...@@ -105,11 +99,23 @@ class ListenAndServOp : public framework::OperatorBase {
auto *block = Attr<framework::BlockDesc *>(kOptimizeBlock); auto *block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *program = block->Program(); auto *program = block->Program();
int num_blocks = program->Size(); size_t num_blocks = program->Size();
PADDLE_ENFORCE_GE(num_blocks, 2, PADDLE_ENFORCE_GE(num_blocks, 2,
"server program should have at least 2 blocks"); "server program should have at least 2 blocks");
framework::Executor executor(dev_place); framework::Executor executor(dev_place);
std::vector<int> block_list;
for (size_t blkid = 1; blkid < num_blocks; ++blkid)
block_list.push_back(blkid);
auto prepared = executor.Prepare(*program, block_list);
prepared.insert(
prepared.begin(),
std::shared_ptr<framework::ExecutorPrepareContext>(nullptr));
// TODO(qiao) set proper fields for table lookup and update
rpc_service_->SetExecutor(&executor);
rpc_service_->SetPrefetchBlkdId(0);
rpc_service_->SetProgram(program);
// TODO(typhoonzero): change this to a while_op for every cluster-batch. // TODO(typhoonzero): change this to a while_op for every cluster-batch.
bool exit_flag = false; bool exit_flag = false;
...@@ -157,23 +163,25 @@ class ListenAndServOp : public framework::OperatorBase { ...@@ -157,23 +163,25 @@ class ListenAndServOp : public framework::OperatorBase {
// The optimize blocks which have the same parent ID would run parallel // The optimize blocks which have the same parent ID would run parallel
// TODO(Yancey1989): need to use ParallelExecutor for future // TODO(Yancey1989): need to use ParallelExecutor for future
size_t last_parent_blkid = program->Block(1).Parent(); int32_t last_parent_blkid = program->Block(1).Parent();
std::vector<size_t> parallel_blkids; std::vector<size_t> parallel_blkids;
parallel_blkids.push_back(1); parallel_blkids.push_back(1);
double ts = detail::GetTimestamp(); double ts = detail::GetTimestamp();
for (size_t blkid = 2; blkid < num_blocks; ++blkid) { for (size_t blkid = 2; blkid < num_blocks; ++blkid) {
if (program->Block(blkid).Parent() != last_parent_blkid) { if (program->Block(blkid).Parent() != last_parent_blkid) {
for (size_t idx : parallel_blkids) VLOG(3) << idx; for (size_t idx : parallel_blkids) VLOG(3) << idx;
ParallelExecuteBlocks(parallel_blkids, &executor, program, ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program,
&recv_scope); &recv_scope);
parallel_blkids.clear(); parallel_blkids.clear();
last_parent_blkid = program->Block(blkid).Parent(); last_parent_blkid = program->Block(blkid).Parent();
} }
parallel_blkids.push_back(blkid); parallel_blkids.push_back(blkid);
} }
ParallelExecuteBlocks(parallel_blkids, &executor, program, &recv_scope); ParallelExecuteBlocks(parallel_blkids, &executor, prepared, program,
&recv_scope);
VLOG(2) << "run all blocks spent (ms) " << detail::GetTimestamp() - ts; VLOG(3) << "run all blocks spent " << detail::GetTimestamp() - ts
<< "(ms)";
// Reset the received sparse variables, the sum operator would not // Reset the received sparse variables, the sum operator would not
// sum the input sparse variables which rows is empty at the next // sum the input sparse variables which rows is empty at the next
...@@ -184,7 +192,8 @@ class ListenAndServOp : public framework::OperatorBase { ...@@ -184,7 +192,8 @@ class ListenAndServOp : public framework::OperatorBase {
var->GetMutable<framework::SelectedRows>()->mutable_rows()->clear(); var->GetMutable<framework::SelectedRows>()->mutable_rows()->clear();
} }
rpc_service_->SetCond(1); rpc_service_->SetCond(1);
// FIXME(typhoonzero): use another condition to sync wait clients get. // NOTE: does not consider barrier request retry in here, we may use
// global barrier id to resolve this.
rpc_service_->WaitClientGet(fan_in); rpc_service_->WaitClientGet(fan_in);
sparse_vars.clear(); sparse_vars.clear();
} // while(true) } // while(true)
......
...@@ -18,6 +18,22 @@ limitations under the License. */ ...@@ -18,6 +18,22 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
static inline framework::OpKernelType ExpectedKernelType(
const framework::ExecutionContext& ctx) {
auto* table_var = ctx.InputVar("W");
if (table_var->IsType<LoDTensor>()) {
return framework::OpKernelType(
framework::ToDataType(table_var->Get<LoDTensor>().type()),
ctx.device_context());
} else if (table_var->IsType<SelectedRows>()) {
return framework::OpKernelType(
framework::ToDataType(table_var->Get<SelectedRows>().value().type()),
ctx.device_context());
} else {
PADDLE_THROW("W should be LoDTensor or SelectedRows");
}
}
class LookupTableOp : public framework::OperatorWithKernel { class LookupTableOp : public framework::OperatorWithKernel {
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
...@@ -51,9 +67,7 @@ class LookupTableOp : public framework::OperatorWithKernel { ...@@ -51,9 +67,7 @@ class LookupTableOp : public framework::OperatorWithKernel {
protected: protected:
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType( return ExpectedKernelType(ctx);
framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
ctx.device_context());
} }
}; };
...@@ -84,7 +98,7 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -84,7 +98,7 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
"If the value is -1, it makes no effect to lookup. " "If the value is -1, it makes no effect to lookup. "
"Otherwise the given value indicates padding the output " "Otherwise the given value indicates padding the output "
"with zeros whenever lookup encounters it in Ids.") "with zeros whenever lookup encounters it in Ids.")
.SetDefault(-1); .SetDefault(kNoPadding);
AddComment(R"DOC( AddComment(R"DOC(
Lookup Table Operator. Lookup Table Operator.
...@@ -124,9 +138,7 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { ...@@ -124,9 +138,7 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
protected: protected:
framework::OpKernelType GetExpectedKernelType( framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override { const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType( return ExpectedKernelType(ctx);
framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
ctx.device_context());
} }
}; };
......
...@@ -14,6 +14,9 @@ limitations under the License. */ ...@@ -14,6 +14,9 @@ limitations under the License. */
#pragma once #pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
...@@ -25,16 +28,37 @@ namespace operators { ...@@ -25,16 +28,37 @@ namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows; using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;
static constexpr int64_t kNoPadding = -1;
inline size_t getIndex(const std::vector<int64_t> &rows, int64_t value) {
auto it = std::find(rows.begin(), rows.end(), value);
PADDLE_ENFORCE(it != rows.end(), "id should be in rows");
return static_cast<size_t>(std::distance(rows.begin(), it));
}
template <typename T> template <typename T>
class LookupTableKernel : public framework::OpKernel<T> { class LookupTableKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext &context) const override {
auto* table_t = context.Input<LoDTensor>("W"); auto *table_var = context.InputVar("W");
auto* ids_var = context.InputVar("Ids"); auto *ids_var = context.InputVar("Ids");
Tensor* output_t = context.Output<Tensor>("Out"); Tensor *output_t = context.Output<Tensor>("Out");
int64_t padding_idx = context.Attr<int64_t>("padding_idx");
DDim table_dim;
int64_t* ids; if (table_var->IsType<LoDTensor>()) {
table_dim = context.Input<LoDTensor>("W")->dims();
} else if (table_var->IsType<SelectedRows>()) {
auto *table_t = context.Input<SelectedRows>("W");
table_dim = table_t->value().dims();
} else {
PADDLE_THROW("table only support LoDTensor and SelectedRows");
}
int64_t *ids;
int64_t ids_numel; int64_t ids_numel;
// The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type // The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
...@@ -42,39 +66,50 @@ class LookupTableKernel : public framework::OpKernel<T> { ...@@ -42,39 +66,50 @@ class LookupTableKernel : public framework::OpKernel<T> {
// when Ids's type is SelectedRows, the rows of Ids contains the // when Ids's type is SelectedRows, the rows of Ids contains the
// ids to be looked up in W. // ids to be looked up in W.
if (ids_var->IsType<LoDTensor>()) { if (ids_var->IsType<LoDTensor>()) {
auto* ids_t = context.Input<LoDTensor>("Ids"); auto *ids_t = context.Input<LoDTensor>("Ids");
ids = const_cast<int64_t*>(ids_t->data<int64_t>()); ids = const_cast<int64_t *>(ids_t->data<int64_t>());
ids_numel = ids_t->numel(); ids_numel = ids_t->numel();
} else if (ids_var->IsType<SelectedRows>()) { } else if (ids_var->IsType<SelectedRows>()) {
auto* ids_t = context.Input<SelectedRows>("Ids"); auto *ids_t = context.Input<SelectedRows>("Ids");
ids = const_cast<int64_t*>(ids_t->rows().data()); ids = const_cast<int64_t *>(ids_t->rows().data());
ids_numel = ids_t->rows().size(); ids_numel = ids_t->rows().size();
output_t->Resize({ids_numel, table_t->dims()[1]}); output_t->Resize({ids_numel, table_dim[1]});
} else { } else {
PADDLE_THROW("Unsupported Variable Type of Ids"); PADDLE_THROW("Unsupported Variable Type of Ids");
} }
int64_t padding_idx = context.Attr<int64_t>("padding_idx"); if (table_var->IsType<LoDTensor>()) {
auto *table_t = context.Input<LoDTensor>("W");
int64_t row_number = table_t->dims()[0];
int64_t row_width = table_t->dims()[1];
int N = table_t->dims()[0]; auto *table = table_t->data<T>();
int D = table_t->dims()[1]; auto *output = output_t->mutable_data<T>(context.GetPlace());
auto* table = table_t->data<T>();
auto* output = output_t->mutable_data<T>(context.GetPlace());
if (padding_idx == -1) {
for (int64_t i = 0; i < ids_numel; ++i) { for (int64_t i = 0; i < ids_numel; ++i) {
PADDLE_ENFORCE_LT(ids[i], N); if (padding_idx != kNoPadding && ids[i] == padding_idx) {
PADDLE_ENFORCE_GE(ids[i], 0); memset(output + i * row_width, 0, row_width * sizeof(T));
memcpy(output + i * D, table + ids[i] * D, D * sizeof(T)); } else {
PADDLE_ENFORCE_LT(ids[i], row_number);
PADDLE_ENFORCE_GE(ids[i], 0);
memcpy(output + i * row_width, table + ids[i] * row_width,
row_width * sizeof(T));
}
} }
} else { } else if (table_var->IsType<SelectedRows>()) {
const auto &table_t = table_var->Get<SelectedRows>();
int64_t row_width = table_t.value().dims()[1];
const auto *table = table_t.value().data<T>();
auto *output = output_t->mutable_data<T>(context.GetPlace());
for (int64_t i = 0; i < ids_numel; ++i) { for (int64_t i = 0; i < ids_numel; ++i) {
if (ids[i] == padding_idx) { if (padding_idx != kNoPadding && ids[i] == padding_idx) {
memset(output + i * D, 0, D * sizeof(T)); memset(output + i * row_width, 0, row_width * sizeof(T));
} else { } else {
PADDLE_ENFORCE_LT(ids[i], N);
PADDLE_ENFORCE_GE(ids[i], 0); PADDLE_ENFORCE_GE(ids[i], 0);
memcpy(output + i * D, table + ids[i] * D, D * sizeof(T)); auto id_index = getIndex(table_t.rows(), ids[i]);
memcpy(output + i * row_width, table + id_index * row_width,
row_width * sizeof(T));
} }
} }
} }
...@@ -84,17 +119,27 @@ class LookupTableKernel : public framework::OpKernel<T> { ...@@ -84,17 +119,27 @@ class LookupTableKernel : public framework::OpKernel<T> {
template <typename T> template <typename T>
class LookupTableGradKernel : public framework::OpKernel<T> { class LookupTableGradKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext &context) const override {
auto *table_var = context.InputVar("W");
DDim table_dim;
if (table_var->IsType<LoDTensor>()) {
table_dim = context.Input<LoDTensor>("W")->dims();
} else if (table_var->IsType<SelectedRows>()) {
auto *table_t = context.Input<SelectedRows>("W");
table_dim = table_t->value().dims();
} else {
PADDLE_THROW("table only support LoDTensor and SelectedRows");
}
bool is_sparse = context.Attr<bool>("is_sparse"); bool is_sparse = context.Attr<bool>("is_sparse");
// Since paddings are not trainable and fixed in forward, the gradient of // Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward. // paddings makes no sense and we don't deal with it in backward.
if (is_sparse) { if (is_sparse) {
auto* ids = context.Input<LoDTensor>("Ids"); auto *ids = context.Input<LoDTensor>("Ids");
auto* table = context.Input<LoDTensor>("W"); auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out")); auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
auto* d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
auto* ids_data = ids->data<int64_t>(); auto *ids_data = ids->data<int64_t>();
auto ids_dim = ids->dims(); auto ids_dim = ids->dims();
framework::Vector<int64_t> new_rows; framework::Vector<int64_t> new_rows;
...@@ -104,31 +149,30 @@ class LookupTableGradKernel : public framework::OpKernel<T> { ...@@ -104,31 +149,30 @@ class LookupTableGradKernel : public framework::OpKernel<T> {
} }
d_table->set_rows(new_rows); d_table->set_rows(new_rows);
auto* d_table_value = d_table->mutable_value(); auto *d_table_value = d_table->mutable_value();
d_table_value->Resize({ids_dim[0], table->dims()[1]}); d_table_value->Resize({ids_dim[0], table_dim[1]});
d_table_value->mutable_data<T>(context.GetPlace()); d_table_value->mutable_data<T>(context.GetPlace());
d_table->set_height(table->dims()[0]); d_table->set_height(table_dim[0]);
auto* d_output_data = d_output->data<T>(); auto *d_output_data = d_output->data<T>();
auto* d_table_data = d_table_value->data<T>(); auto *d_table_data = d_table_value->data<T>();
PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims()); PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel()); memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
} else { } else {
auto* ids = context.Input<LoDTensor>("Ids"); auto *ids = context.Input<LoDTensor>("Ids");
auto* d_output = context.Input<LoDTensor>(framework::GradVarName("Out")); auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto* d_table = context.Output<LoDTensor>(framework::GradVarName("W")); auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
auto* table = context.Input<LoDTensor>("W");
auto* ids_data = ids->data<int64_t>(); auto *ids_data = ids->data<int64_t>();
auto ids_dim = ids->dims(); auto ids_dim = ids->dims();
int N = table->dims()[0]; int N = table_dim[0];
int D = d_output->dims()[1]; int D = d_output->dims()[1];
auto* d_output_data = d_output->data<T>(); auto *d_output_data = d_output->data<T>();
auto* d_table_data = d_table->mutable_data<T>(context.GetPlace()); auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
memset(d_table_data, 0, d_table->numel() * sizeof(T)); memset(d_table_data, 0, d_table->numel() * sizeof(T));
......
...@@ -137,6 +137,8 @@ class NCCLTester : public ::testing::Test { ...@@ -137,6 +137,8 @@ class NCCLTester : public ::testing::Test {
TEST_F(NCCLTester, ncclInitOp) {} TEST_F(NCCLTester, ncclInitOp) {}
// ncclAllReduceOp with desc // ncclAllReduceOp with desc
// TODO(helin): https://github.com/PaddlePaddle/Paddle/issues/9367
/*
TEST_F(NCCLTester, ncclAllReduceOp) { TEST_F(NCCLTester, ncclAllReduceOp) {
std::unique_ptr<f::OpDesc> op2(new f::OpDesc); std::unique_ptr<f::OpDesc> op2(new f::OpDesc);
op2->SetType("ncclAllReduce"); op2->SetType("ncclAllReduce");
...@@ -184,6 +186,7 @@ TEST_F(NCCLTester, ncclAllReduceOp) { ...@@ -184,6 +186,7 @@ TEST_F(NCCLTester, ncclAllReduceOp) {
} }
} }
} }
*/
// ncclReduceOp with desc // ncclReduceOp with desc
TEST_F(NCCLTester, ncclReduceOp) { TEST_F(NCCLTester, ncclReduceOp) {
...@@ -236,6 +239,8 @@ TEST_F(NCCLTester, ncclReduceOp) { ...@@ -236,6 +239,8 @@ TEST_F(NCCLTester, ncclReduceOp) {
} }
// ncclBcastOp with desc // ncclBcastOp with desc
// TODO(helin): https://github.com/PaddlePaddle/Paddle/issues/9540
/*
TEST_F(NCCLTester, ncclBcastOp) { TEST_F(NCCLTester, ncclBcastOp) {
std::unique_ptr<f::OpDesc> op2(new f::OpDesc); std::unique_ptr<f::OpDesc> op2(new f::OpDesc);
const int kRoot = 0; const int kRoot = 0;
...@@ -281,3 +286,4 @@ TEST_F(NCCLTester, ncclBcastOp) { ...@@ -281,3 +286,4 @@ TEST_F(NCCLTester, ncclBcastOp) {
ASSERT_NEAR(ct[j], result, 1e-5); ASSERT_NEAR(ct[j], result, 1e-5);
} }
} }
*/
...@@ -20,12 +20,29 @@ namespace paddle { ...@@ -20,12 +20,29 @@ namespace paddle {
namespace operators { namespace operators {
namespace reader { namespace reader {
static constexpr size_t kDoubleBufferSize = 2; // 'Double buffer' means we shall maintain two batches of input data at the same
// time. So the kCacheSize shoul be at least 2.
static constexpr size_t kCacheSize = 2;
// There will be two bacthes out of the channel during training:
// 1. the one waiting to be sent to the channel
// 2. the one just be received from the channel, which is also being used by
// subsequent operators.
// So the channel size should be kChacheSize - 2
static constexpr size_t kChannelSize = 0; // kCacheSize - 2
class DoubleBufferReader : public framework::DecoratedReader { class DoubleBufferReader : public framework::DecoratedReader {
public: public:
struct Item { struct Item {
Item() : ctx_(nullptr) {} Item() : ctx_(nullptr) {}
Item(Item&& b) {
payloads_ = std::move(b.payloads_);
ctx_ = std::move(b.ctx_);
}
Item& operator=(Item&& b) {
payloads_ = std::move(b.payloads_);
ctx_ = std::move(b.ctx_);
return *this;
}
std::vector<framework::LoDTensor> payloads_; std::vector<framework::LoDTensor> payloads_;
platform::DeviceContext* ctx_; platform::DeviceContext* ctx_;
...@@ -34,42 +51,44 @@ class DoubleBufferReader : public framework::DecoratedReader { ...@@ -34,42 +51,44 @@ class DoubleBufferReader : public framework::DecoratedReader {
explicit DoubleBufferReader( explicit DoubleBufferReader(
ReaderBase* reader, platform::Place target_place = platform::CPUPlace()) ReaderBase* reader, platform::Place target_place = platform::CPUPlace())
: DecoratedReader(reader), place_(target_place) { : DecoratedReader(reader), place_(target_place) {
for (size_t i = 0; i < kDoubleBufferSize; ++i) {
if (platform::is_gpu_place(place_)) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
for (size_t i = 0; i < kCacheSize; ++i) {
if (platform::is_gpu_place(place_)) {
ctxs_.emplace_back(new platform::CUDADeviceContext( ctxs_.emplace_back(new platform::CUDADeviceContext(
boost::get<platform::CUDAPlace>(place_))); boost::get<platform::CUDAPlace>(place_)));
#endif
} }
} }
#endif
start_thread(); StartPrefetcher();
}
void start_thread() {
buffer_ = framework::MakeChannel<Item>(kDoubleBufferSize);
prefetcher_ = std::thread([this] { PrefetchThreadFunc(); });
} }
bool HasNext() const override;
void ReadNext(std::vector<framework::LoDTensor>* out) override; void ReadNext(std::vector<framework::LoDTensor>* out) override;
void ReInit() override; void ReInit() override;
~DoubleBufferReader() { ~DoubleBufferReader() { EndPrefetcher(); }
buffer_->Close();
prefetcher_.join(); private:
delete buffer_; void StartPrefetcher() {
channel_ = framework::MakeChannel<Item>(kChannelSize);
prefetcher_ = std::thread([this] { PrefetchThreadFunc(); });
} }
bool HasNext() const override; void EndPrefetcher() {
channel_->Close();
if (prefetcher_.joinable()) {
prefetcher_.join();
}
delete channel_;
channel_ = nullptr;
}
private:
void PrefetchThreadFunc(); void PrefetchThreadFunc();
std::thread prefetcher_; std::thread prefetcher_;
framework::Channel<Item>* buffer_; framework::Channel<Item>* channel_;
platform::Place place_; platform::Place place_;
std::vector<std::unique_ptr<platform::DeviceContext>> ctxs_; std::vector<std::unique_ptr<platform::DeviceContext>> ctxs_;
mutable Item local_buffer_;
}; };
class CreateDoubleBufferReaderOp : public framework::OperatorBase { class CreateDoubleBufferReaderOp : public framework::OperatorBase {
...@@ -123,70 +142,70 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase { ...@@ -123,70 +142,70 @@ class CreateDoubleBufferReaderOpMaker : public DecoratedReaderMakerBase {
} }
}; };
bool DoubleBufferReader::HasNext() const {
while (!channel_->IsClosed() && !channel_->CanReceive()) {
}
return channel_->CanReceive();
}
void DoubleBufferReader::ReadNext(std::vector<framework::LoDTensor>* out) { void DoubleBufferReader::ReadNext(std::vector<framework::LoDTensor>* out) {
if (!HasNext()) { if (!HasNext()) {
PADDLE_THROW("There is no next data!"); PADDLE_THROW("There is no next data!");
} }
if (local_buffer_.payloads_.empty()) { Item batch;
buffer_->Receive(&local_buffer_); channel_->Receive(&batch);
} *out = batch.payloads_;
*out = local_buffer_.payloads_; if (batch.ctx_) {
local_buffer_.payloads_.clear(); batch.ctx_->Wait();
if (local_buffer_.ctx_) {
local_buffer_.ctx_->Wait();
} }
} }
void DoubleBufferReader::ReInit() { void DoubleBufferReader::ReInit() {
reader_->ReInit(); reader_->ReInit();
buffer_->Close(); EndPrefetcher();
prefetcher_.join(); StartPrefetcher();
delete buffer_;
start_thread();
} }
void DoubleBufferReader::PrefetchThreadFunc() { void DoubleBufferReader::PrefetchThreadFunc() {
VLOG(5) << "A new prefetch thread starts."; VLOG(5) << "A new prefetch thread starts.";
size_t gpu_ctx_offset = 0; std::vector<std::vector<framework::LoDTensor>> cpu_tensor_cache(kCacheSize);
std::vector<std::vector<framework::LoDTensor>> gpu_tensor_cache(kCacheSize);
size_t cached_tensor_id = 0;
while (reader_->HasNext()) { while (reader_->HasNext()) {
Item batch; Item batch;
reader_->ReadNext(&batch.payloads_); auto& cpu_batch = cpu_tensor_cache[cached_tensor_id];
reader_->ReadNext(&cpu_batch);
if (platform::is_gpu_place(place_)) { if (platform::is_gpu_place(place_)) {
std::vector<framework::LoDTensor> gpu_batch; auto& gpu_batch = gpu_tensor_cache[cached_tensor_id];
auto& gpu_ctx = this->ctxs_[gpu_ctx_offset++]; auto* gpu_ctx = ctxs_[cached_tensor_id].get();
gpu_ctx_offset %= this->ctxs_.size(); gpu_batch.resize(cpu_batch.size());
gpu_batch.resize(batch.payloads_.size()); for (size_t i = 0; i < cpu_batch.size(); ++i) {
for (size_t i = 0; i < batch.payloads_.size(); ++i) { framework::TensorCopy(cpu_batch[i], place_, *gpu_ctx, &gpu_batch[i]);
framework::TensorCopy(batch.payloads_[i], place_, *gpu_ctx, gpu_batch[i].set_lod(cpu_batch[i].lod());
&gpu_batch[i]);
gpu_batch[i].set_lod(batch.payloads_[i].lod());
} }
batch.ctx_ = gpu_ctx.get(); batch.payloads_ = gpu_batch;
std::swap(gpu_batch, batch.payloads_); batch.ctx_ = gpu_ctx;
} else {
// CPUPlace
batch.payloads_ = cpu_batch;
} }
++cached_tensor_id;
cached_tensor_id %= kCacheSize;
try { try {
buffer_->Send(&batch); channel_->Send(&batch);
} catch (paddle::platform::EnforceNotMet e) { } catch (paddle::platform::EnforceNotMet e) {
VLOG(5) << "WARNING: The double buffer channel has been closed. The " VLOG(5) << "WARNING: The double buffer channel has been closed. The "
"prefetch thread will terminate."; "prefetch thread will terminate.";
break; break;
} }
} }
buffer_->Close(); channel_->Close();
VLOG(5) << "Prefetch thread terminates."; VLOG(5) << "Prefetch thread terminates.";
} }
bool DoubleBufferReader::HasNext() const {
if (local_buffer_.payloads_.empty()) {
bool ok = buffer_->Receive(&local_buffer_);
return ok;
} else {
return true;
}
}
} // namespace reader } // namespace reader
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
......
...@@ -17,90 +17,66 @@ limitations under the License. */ ...@@ -17,90 +17,66 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
class ReshapeOp : public framework::OperatorWithKernel {
public:
ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
// input check
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of ReshapeOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ReshapeOp should not be null.");
auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty.");
auto x_dims = ctx->GetInputDim("X");
std::vector<size_t> neg_dims_idx;
// set some dimension to -1 if it is unknown
const int unknown_size = -1;
for (size_t i = 0; i < shape.size(); ++i) {
PADDLE_ENFORCE(shape[i] > 0 || shape[i] == unknown_size,
"Each dimension of Attr(shape) must be positive or %d.",
unknown_size);
if (shape[i] == unknown_size) {
neg_dims_idx.push_back(i);
PADDLE_ENFORCE(neg_dims_idx.size() <= 1,
"Only one dimension of Attr(shape) can be unknown.");
}
}
int64_t capacity =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
int64_t in_size = framework::product(x_dims);
if (neg_dims_idx.size() == 1) {
// dim infer
shape[neg_dims_idx[0]] = in_size / (-capacity);
// recalculate capacity
capacity = shape[neg_dims_idx[0]] * (-capacity);
}
// capacity check
PADDLE_ENFORCE(capacity == in_size,
"The size of Input(X) mismatches with Attr(shape).");
// resize output
std::vector<int64_t> shape_int64(shape.size(), 0);
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
[](int a) { return static_cast<int64_t>(a); });
auto out_dims = framework::make_ddim(shape_int64);
ctx->SetOutputDim("Out", out_dims);
if (shape[0] == x_dims[0]) {
// Only pass LoD when the first dimension is equal between
// output and input.
ctx->ShareLoD("X", /*->*/ "Out");
}
}
};
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker { class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker) ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensor of reshape operator."); AddInput("X", "(Tensor). The input tensor of reshape operator.");
AddOutput("Out", "The output tensor of reshape operator."); AddInput("Shape",
AddAttr<std::vector<int>>("shape", "(Tensor<int32>, optional). If provided, reshape according to "
"(vector<int>) " "this given shape. That is to say it has a higher priority than "
"Target shape of reshape operator."); "the shape attribute, while the shape attribute still should be "
"set correctly to gurantee shape inference in compile time.")
.AsDispensable();
AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
AddAttr<std::vector<int>>(
"shape", "(std::vector<int>) Target shape of reshape operator.");
AddAttr<bool>("inplace", AddAttr<bool>("inplace",
"Change the source tensor's shape without copy memory.") "(default: false) Change the source tensor's shape without "
.SetDefault(true); "memory copy. When Attr(inplace) is set true, the output "
"tensor shares memory with Input(X), otherwise, a new output "
"tensor is created, and its data are copied from Input(x).")
.SetDefault(false);
AddComment(R"DOC( AddComment(R"DOC(
Reshape Operator. Reshape Operator.
Reshape Input(X) into the shape specified by Attr(shape). Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Examples:
An example: 1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]] specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.
and target shape = [1, 4], the reshape operator will transform 2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
the tensor X into a 2-D tensor: [[1, 2, 3, 4]] specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Note:
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
2. More than one dimensions in Attr(shape) can be set to 0, which means the real
dimension value will be copied from Input(X) at runtime. Note that the index of
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
Attr(shape) still should be set correctly to gurantee shape inference in
compile-time.
One dimension in the target shape can be set -1, representing that its
size is unknown. In this case, the real dimension will be infered from
the original shape of Input(X) and other dimensions in the target shape.
)DOC"); )DOC");
} }
}; };
...@@ -119,6 +95,14 @@ class ReshapeGradOp : public framework::OperatorWithKernel { ...@@ -119,6 +95,14 @@ class ReshapeGradOp : public framework::OperatorWithKernel {
"Input(Out@GRAD) shouldn't be null."); "Input(Out@GRAD) shouldn't be null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
} }
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
}; };
} // namespace operators } // namespace operators
......
...@@ -20,17 +20,129 @@ limitations under the License. */ ...@@ -20,17 +20,129 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
class ReshapeOp : public framework::OperatorWithKernel {
public:
ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of ReshapeOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ReshapeOp should not be null.");
const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
PADDLE_ENFORCE(!shape.empty(),
"The shape information must be set by Attr(shape).");
if (ctx->HasInput("Shape") && ctx->IsRuntime()) {
// If true, set the shape of Output(Out) according to Input(Shape) in
// ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
ctx->ShareLoD("X", /*->*/ "Out");
return;
}
auto x_dims = ctx->GetInputDim("X");
auto out_dims = ValidateShape(shape, x_dims);
ctx->SetOutputDim("Out", out_dims);
if (x_dims[0] == out_dims[0]) {
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx->ShareLoD("X", /*->*/ "Out");
}
}
static framework::DDim ValidateShape(const std::vector<int> shape,
const framework::DDim &in_dims) {
const int64_t in_size = framework::product(in_dims);
// only one dimension canbe set to -1, whose size will be automatically
// infered.
const int64_t unk_dim_val = -1;
const int64_t copy_dim_val = 0;
std::vector<int64_t> output_shape(shape.size(), 0);
int64_t capacity = 1;
int unk_dim_idx = -1;
for (size_t i = 0; i < shape.size(); ++i) {
if (shape[i] == unk_dim_val) {
PADDLE_ENFORCE(
unk_dim_idx == -1,
"Only one input dimension of Attr(shape) can be unknown.");
unk_dim_idx = i;
} else if (shape[i] == copy_dim_val) {
PADDLE_ENFORCE(
static_cast<int>(i) < in_dims.size(),
"The index of dimension to copy from input shape must be less "
"than the size of input shape.");
} else {
PADDLE_ENFORCE(
shape[i] > 0,
"Each input dimension of Attr(shape) must not be negtive except "
"one unknown dimension.");
}
capacity *= (shape[i] ? shape[i] : in_dims[i]);
output_shape[i] =
(shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
}
if (unk_dim_idx != -1) {
output_shape[unk_dim_idx] = -in_size / capacity;
PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
"Invalid shape is given.");
} else {
PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
}
return framework::make_ddim(output_shape);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
};
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class ReshapeKernel : public framework::OpKernel<T> { class ReshapeKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const { void Compute(const framework::ExecutionContext &ctx) const {
auto* out = ctx.Output<framework::Tensor>("Out"); auto *out = ctx.Output<framework::LoDTensor>("Out");
auto* in = ctx.Input<framework::Tensor>("X"); auto *in = ctx.Input<framework::LoDTensor>("X");
auto *shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
framework::DDim out_dims = out->dims();
if (shape_tensor) {
auto *shape_data = shape_tensor->data<int>();
if (platform::is_gpu_place(ctx.GetPlace())) {
framework::Tensor cpu_shape_tensor;
TensorCopy(*shape_tensor, platform::CPUPlace(), ctx.device_context(),
&cpu_shape_tensor);
shape_data = cpu_shape_tensor.data<int>();
}
auto shape =
std::vector<int>(shape_data, shape_data + shape_tensor->numel());
out_dims = ReshapeOp::ValidateShape(shape, in->dims());
}
if (!in->lod().empty()) {
PADDLE_ENFORCE_EQ(
out_dims[0], in->dims()[0],
"Reshape operator cannot reshape an input sequence batch "
"into an output sequence batch that has a different "
"number of time steps. Please consider using "
"sequence_reshape op.");
}
bool inplace = ctx.Attr<bool>("inplace"); bool inplace = ctx.Attr<bool>("inplace");
auto out_dims = out->dims(); out->Resize(out_dims);
if (!inplace) { if (!inplace) {
out->mutable_data<T>(ctx.GetPlace()); out->mutable_data<T>(ctx.GetPlace());
framework::TensorCopy(*in, ctx.GetPlace(), ctx.device_context(), out); framework::TensorCopy(*in, ctx.GetPlace(), ctx.device_context(), out);
// TensorCopy will resize to in_dims.
out->Resize(out_dims); out->Resize(out_dims);
} else { } else {
out->ShareDataWith(*in); out->ShareDataWith(*in);
...@@ -42,9 +154,10 @@ class ReshapeKernel : public framework::OpKernel<T> { ...@@ -42,9 +154,10 @@ class ReshapeKernel : public framework::OpKernel<T> {
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class ReshapeGradKernel : public framework::OpKernel<T> { class ReshapeGradKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const { void Compute(const framework::ExecutionContext &ctx) const {
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X")); auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
d_x->mutable_data<T>(ctx.GetPlace()); d_x->mutable_data<T>(ctx.GetPlace());
bool inplace = ctx.Attr<bool>("inplace"); bool inplace = ctx.Attr<bool>("inplace");
......
...@@ -30,19 +30,16 @@ class SplitIdsOpKernel : public framework::OpKernel<T> { ...@@ -30,19 +30,16 @@ class SplitIdsOpKernel : public framework::OpKernel<T> {
PADDLE_THROW("SplitIds do not support GPU kernel"); PADDLE_THROW("SplitIds do not support GPU kernel");
} }
const auto* ids_t = ctx.Input<framework::LoDTensor>("Ids"); auto& ids_dims = ctx.Input<framework::LoDTensor>("Ids")->dims();
auto& ids_dims = ids_t->dims(); const T* ids = ctx.Input<framework::LoDTensor>("Ids")->data<T>();
auto outs = ctx.MultiOutput<framework::LoDTensor>("Out"); auto outs = ctx.MultiOutput<framework::LoDTensor>("Out");
const T* ids = ids_t->data<T>();
const size_t shard_num = outs.size(); const size_t shard_num = outs.size();
std::vector<std::vector<T>> out_ids; std::vector<std::vector<T>> out_ids;
out_ids.resize(outs.size()); out_ids.resize(outs.size());
// split id by their shard_num. // split id by their shard_num.
for (size_t i = 0; i < ids_dims[0]; ++i) { for (int i = 0; i < ids_dims[0]; ++i) {
T id = ids[i]; T id = ids[i];
size_t shard_id = static_cast<size_t>(id) % shard_num; size_t shard_id = static_cast<size_t>(id) % shard_num;
out_ids[shard_id].push_back(id); out_ids[shard_id].push_back(id);
......
...@@ -504,10 +504,10 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -504,10 +504,10 @@ All parameter, weight, gradient are variables in Paddle.
const std::unordered_set<std::string> &params, const std::unordered_set<std::string> &params,
const ProgramDesc &startup_program, const ProgramDesc &startup_program,
const ProgramDesc &main_program, const std::string &loss_var_name, const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope) { Scope *scope, bool allow_op_delay) {
new (&self) ParallelExecutor(num_threads, use_event, places, new (&self) ParallelExecutor(num_threads, use_event, places,
params, startup_program, main_program, params, startup_program, main_program,
loss_var_name, scope); loss_var_name, scope, allow_op_delay);
}) })
.def("run", &ParallelExecutor::Run); .def("run", &ParallelExecutor::Run);
......
...@@ -104,7 +104,9 @@ EOF ...@@ -104,7 +104,9 @@ EOF
# make install should also be test when unittest # make install should also be test when unittest
make install -j `nproc` make install -j `nproc`
pip install /usr/local/opt/paddle/share/wheels/*.whl pip install /usr/local/opt/paddle/share/wheels/*.whl
paddle version if [[ ${WITH_FLUID_ONLY:-OFF} == "OFF" ]] ; then
paddle version
fi
fi fi
} }
...@@ -183,6 +185,14 @@ EOF ...@@ -183,6 +185,14 @@ EOF
NCCL_DEPS="" NCCL_DEPS=""
fi fi
if [[ ${WITH_FLUID_ONLY:-OFF} == "OFF" ]]; then
PADDLE_VERSION="paddle version"
CMD='"paddle", "version"'
else
PADDLE_VERSION="true"
CMD='"true"'
fi
cat >> /paddle/build/Dockerfile <<EOF cat >> /paddle/build/Dockerfile <<EOF
ADD python/dist/*.whl / ADD python/dist/*.whl /
# run paddle version to install python packages first # run paddle version to install python packages first
...@@ -192,7 +202,7 @@ EOF ...@@ -192,7 +202,7 @@ EOF
pip install /*.whl; apt-get install -f -y && \ pip install /*.whl; apt-get install -f -y && \
apt-get clean -y && \ apt-get clean -y && \
rm -f /*.whl && \ rm -f /*.whl && \
paddle version && \ ${PADDLE_VERSION} && \
ldconfig ldconfig
${DOCKERFILE_CUDNN_DSO} ${DOCKERFILE_CUDNN_DSO}
${DOCKERFILE_GPU_ENV} ${DOCKERFILE_GPU_ENV}
...@@ -200,7 +210,7 @@ EOF ...@@ -200,7 +210,7 @@ EOF
ADD go/cmd/pserver/pserver /usr/bin/ ADD go/cmd/pserver/pserver /usr/bin/
ADD go/cmd/master/master /usr/bin/ ADD go/cmd/master/master /usr/bin/
# default command shows the paddle version and exit # default command shows the paddle version and exit
CMD ["paddle", "version"] CMD [${CMD}]
EOF EOF
} }
......
...@@ -81,6 +81,7 @@ if (WITH_TESTING) ...@@ -81,6 +81,7 @@ if (WITH_TESTING)
# enable v2 API unittest only when paddle swig api is compiled # enable v2 API unittest only when paddle swig api is compiled
add_subdirectory(paddle/v2/tests) add_subdirectory(paddle/v2/tests)
add_subdirectory(paddle/v2/plot/tests) add_subdirectory(paddle/v2/plot/tests)
add_subdirectory(paddle/v2/reader/tests)
endif() endif()
endif() endif()
add_subdirectory(paddle/fluid/tests) add_subdirectory(paddle/fluid/tests)
......
...@@ -37,7 +37,7 @@ __all__ = [ ...@@ -37,7 +37,7 @@ __all__ = [
'cifar', 'cifar',
'movielens', 'movielens',
'conll05', 'conll05',
'sentiment' 'sentiment',
'uci_housing', 'uci_housing',
'wmt14', 'wmt14',
'wmt16', 'wmt16',
......
...@@ -276,20 +276,25 @@ class DistributeTranspiler: ...@@ -276,20 +276,25 @@ class DistributeTranspiler:
suff_idx = v.name.find(".trainer_") suff_idx = v.name.find(".trainer_")
if suff_idx >= 0: if suff_idx >= 0:
orig_var_name = v.name[:suff_idx] orig_var_name = v.name[:suff_idx]
pserver_program.global_block().create_var( else:
orig_var_name = v.name
single_trainer_var = pserver_program.global_block().create_var(
name=orig_var_name, name=orig_var_name,
persistable=True, persistable=True,
type=v.type, type=v.type,
dtype=v.dtype, dtype=v.dtype,
shape=v.shape) shape=v.shape)
for trainer_id in xrange(self.trainers): if self.trainers > 1:
var = pserver_program.global_block().create_var( for trainer_id in xrange(self.trainers):
name="%s.trainer_%d" % (orig_var_name, trainer_id), var = pserver_program.global_block().create_var(
persistable=False, name="%s.trainer_%d" % (orig_var_name, trainer_id),
type=v.type, persistable=False,
dtype=v.dtype, type=v.type,
shape=v.shape) dtype=v.dtype,
recv_inputs.append(var) shape=v.shape)
recv_inputs.append(var)
else:
recv_inputs.append(single_trainer_var)
# step3 # step3
optimize_block = pserver_program.create_block(0) optimize_block = pserver_program.create_block(0)
...@@ -511,8 +516,11 @@ class DistributeTranspiler: ...@@ -511,8 +516,11 @@ class DistributeTranspiler:
def _append_split_op(self, program, gradblocks): def _append_split_op(self, program, gradblocks):
# Split variables that need to be split and append respective ops # Split variables that need to be split and append respective ops
add_suffix = False
if self.trainers > 1:
add_suffix = True
var_mapping = self._create_vars_from_blocklist( var_mapping = self._create_vars_from_blocklist(
program, gradblocks, add_trainer_suffix=True) program, gradblocks, add_trainer_suffix=add_suffix)
for varname, splited_vars in var_mapping.iteritems(): for varname, splited_vars in var_mapping.iteritems():
# variable that don't need to split have empty splited_vars # variable that don't need to split have empty splited_vars
if len(splited_vars) <= 1: if len(splited_vars) <= 1:
......
...@@ -48,8 +48,7 @@ def as_numpy(tensor): ...@@ -48,8 +48,7 @@ def as_numpy(tensor):
assert isinstance(tensor, core.LoDTensor) assert isinstance(tensor, core.LoDTensor)
lod = tensor.lod() lod = tensor.lod()
if len(lod) > 0: if len(lod) > 0:
raise RuntimeError( raise RuntimeError("Some of your fetched tensors hold LoD information. \
"Some of your featched tensors hold LoD information. \
They can not be completely cast to Python ndarray. \ They can not be completely cast to Python ndarray. \
Please set the parameter 'return_numpy' as 'False' to \ Please set the parameter 'return_numpy' as 'False' to \
return LoDTensor itself directly.") return LoDTensor itself directly.")
...@@ -180,60 +179,24 @@ def get_program_cache_key(feed, fetch_list): ...@@ -180,60 +179,24 @@ def get_program_cache_key(feed, fetch_list):
class Executor(object): class Executor(object):
def __init__(self, places): def __init__(self, place):
if not isinstance(places, list) and not isinstance(places, tuple): self.place = place
places = [places] p = core.Place()
p.set_place(place)
act_places = [] self.executor = core.Executor(p)
for each in places:
p = core.Place()
p.set_place(each)
act_places.append(p)
# TODO(dzhwinter) : only use the first place
self.executor = core.Executor(act_places[0])
self.places = places
self.program_caches = dict() self.program_caches = dict()
def aslodtensor(self, data): def as_lodtensor(self, data):
def accumulate(data): if isinstance(data, list):
if not isinstance(data, list): raise RuntimeError("Some of your feed data hold LoD information. \
return 1 They can not be completely cast from a list of Python \
return sum([accumulate(sub) for sub in data]) ndarray to LoDTensor. Please convert data to LoDTensor \
directly before feeding the data.\
def parselod(data): ")
seq_lens = [accumulate(seq) for seq in data] # single tensor case
cur_len = 0 tensor = core.LoDTensor()
lod = [cur_len] tensor.set(data, self.place)
for l in seq_lens: return tensor
cur_len += l
lod.append(cur_len)
return lod
assert len(self.places) != 0
if not isinstance(data, list):
# pure tensor case
tensor = core.LoDTensor()
tensor.set(data, self.places[0])
return tensor
else:
raise RuntimeError("Current implementation lacks unittests")
# lodtensor case
lod = []
if not isinstance(data[0], list):
lod.append(parselod(data))
flattened_data = np.concatenate(data, axis=0).astype("int64")
else:
while isinstance(data[0], list):
lod.append(parselod(seq))
flattened_data = [item for seq in data for item in seq]
data = flattened_data
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
tensor = core.LoDTensor()
tensor.set(flattened_data, self.places[0])
tensor.set_lod(lod)
return tensor
def _get_program_cache(self, program_cache_key): def _get_program_cache(self, program_cache_key):
return self.program_caches.get(program_cache_key, None) return self.program_caches.get(program_cache_key, None)
...@@ -293,7 +256,7 @@ class Executor(object): ...@@ -293,7 +256,7 @@ class Executor(object):
feed_target_name = op.desc.output('Out')[0] feed_target_name = op.desc.output('Out')[0]
cur_feed = feed[feed_target_name] cur_feed = feed[feed_target_name]
if not isinstance(cur_feed, core.LoDTensor): if not isinstance(cur_feed, core.LoDTensor):
cur_feed = self.aslodtensor(cur_feed) cur_feed = self.as_lodtensor(cur_feed)
idx = op.desc.attr('col') idx = op.desc.attr('col')
core.set_feed_variable(scope, cur_feed, feed_var_name, idx) core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
else: else:
......
...@@ -847,6 +847,11 @@ class Block(object): ...@@ -847,6 +847,11 @@ class Block(object):
if not self.has_var(var.name()): if not self.has_var(var.name()):
self.create_var(name=var.name(), desc=var, type=var.type()) self.create_var(name=var.name(), desc=var, type=var.type())
# sync variables removed from c++ end
for var in self.vars.keys():
if not self.desc.find_var(var):
self.vars.pop(var)
# sync operators from cpp # sync operators from cpp
ops_in_cpp = [] ops_in_cpp = []
for op_idx in range(0, self.desc.op_size()): for op_idx in range(0, self.desc.op_size()):
...@@ -881,6 +886,19 @@ class Block(object): ...@@ -881,6 +886,19 @@ class Block(object):
op = Operator(self, op_desc) op = Operator(self, op_desc)
self.ops.append(op) self.ops.append(op)
# sync ops removed from c++ end
if end_index != -1 and end_index < len(self.ops):
ops_in_cpp_index = 0
ops_in_python_index = 0
while ops_in_python_index < len(
self.ops) and ops_in_cpp_index < len(ops_in_cpp):
if self.ops[ops_in_python_index].desc != ops_in_cpp[
ops_in_cpp_index]:
del self.ops[ops_in_python_index]
else:
ops_in_cpp_index += 1
ops_in_python_index += 1
assert len(self.ops) == len(ops_in_cpp) assert len(self.ops) == len(ops_in_cpp)
for index in range(len(self.ops)): for index in range(len(self.ops)):
assert self.ops[index].desc == ops_in_cpp[index] assert self.ops[index].desc == ops_in_cpp[index]
......
...@@ -19,7 +19,6 @@ from layer_function_generator import generate_layer_fn ...@@ -19,7 +19,6 @@ from layer_function_generator import generate_layer_fn
from layer_function_generator import autodoc from layer_function_generator import autodoc
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
import tensor import tensor
import ops
import nn import nn
import math import math
...@@ -58,7 +57,7 @@ def detection_output(loc, ...@@ -58,7 +57,7 @@ def detection_output(loc,
This operation is to get the detection results by performing following This operation is to get the detection results by performing following
two steps: two steps:
1. Decode input bounding box predictions according to the prior boxes. 1. Decode input bounding box predictions according to the prior boxes.
2. Get the final detection results by applying multi-class non maximum 2. Get the final detection results by applying multi-class non maximum
suppression (NMS). suppression (NMS).
...@@ -130,9 +129,9 @@ def detection_output(loc, ...@@ -130,9 +129,9 @@ def detection_output(loc,
target_box=loc, target_box=loc,
code_type='decode_center_size') code_type='decode_center_size')
old_shape = scores.shape old_shape = scores.shape
scores = ops.reshape(x=scores, shape=(-1, old_shape[-1])) scores = nn.reshape(x=scores, shape=(-1, old_shape[-1]))
scores = nn.softmax(input=scores) scores = nn.softmax(input=scores)
scores = ops.reshape(x=scores, shape=old_shape) scores = nn.reshape(x=scores, shape=old_shape)
scores = nn.transpose(scores, perm=[0, 2, 1]) scores = nn.transpose(scores, perm=[0, 2, 1])
scores.stop_gradient = True scores.stop_gradient = True
nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype) nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
...@@ -463,7 +462,7 @@ def ssd_loss(location, ...@@ -463,7 +462,7 @@ def ssd_loss(location,
num, num_prior, num_class = confidence.shape num, num_prior, num_class = confidence.shape
def __reshape_to_2d(var): def __reshape_to_2d(var):
return ops.reshape(x=var, shape=[-1, var.shape[-1]]) return nn.reshape(x=var, shape=[-1, var.shape[-1]])
# 1. Find matched boundding box by prior box. # 1. Find matched boundding box by prior box.
# 1.1 Compute IOU similarity between ground-truth boxes and prior boxes. # 1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
...@@ -474,7 +473,7 @@ def ssd_loss(location, ...@@ -474,7 +473,7 @@ def ssd_loss(location,
# 2. Compute confidence for mining hard examples # 2. Compute confidence for mining hard examples
# 2.1. Get the target label based on matched indices # 2.1. Get the target label based on matched indices
gt_label = ops.reshape(x=gt_label, shape=gt_label.shape + (1, )) gt_label = nn.reshape(x=gt_label, shape=gt_label.shape + (1, ))
gt_label.stop_gradient = True gt_label.stop_gradient = True
target_label, _ = target_assign( target_label, _ = target_assign(
gt_label, matched_indices, mismatch_value=background_label) gt_label, matched_indices, mismatch_value=background_label)
...@@ -487,7 +486,7 @@ def ssd_loss(location, ...@@ -487,7 +486,7 @@ def ssd_loss(location,
conf_loss = nn.softmax_with_cross_entropy(confidence, target_label) conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
# 3. Mining hard examples # 3. Mining hard examples
conf_loss = ops.reshape(x=conf_loss, shape=(num, num_prior)) conf_loss = nn.reshape(x=conf_loss, shape=(num, num_prior))
conf_loss.stop_gradient = True conf_loss.stop_gradient = True
neg_indices = helper.create_tmp_variable(dtype='int32') neg_indices = helper.create_tmp_variable(dtype='int32')
dtype = matched_indices.dtype dtype = matched_indices.dtype
...@@ -556,7 +555,7 @@ def ssd_loss(location, ...@@ -556,7 +555,7 @@ def ssd_loss(location,
# 5.3 Compute overall weighted loss. # 5.3 Compute overall weighted loss.
loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
# reshape to [N, Np], N is the batch size and Np is the prior box number. # reshape to [N, Np], N is the batch size and Np is the prior box number.
loss = ops.reshape(x=loss, shape=[-1, num_prior]) loss = nn.reshape(x=loss, shape=[-1, num_prior])
loss = nn.reduce_sum(loss, dim=1, keep_dim=True) loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
if normalize: if normalize:
normalizer = nn.reduce_sum(target_loc_weight) normalizer = nn.reduce_sum(target_loc_weight)
...@@ -709,7 +708,7 @@ def multi_box_head(inputs, ...@@ -709,7 +708,7 @@ def multi_box_head(inputs,
new_shape = [ new_shape = [
-1, reduce(lambda x, y: x * y, input.shape[axis:len(input.shape)]) -1, reduce(lambda x, y: x * y, input.shape[axis:len(input.shape)])
] ]
out = ops.reshape(x=input, shape=new_shape) out = nn.reshape(x=input, shape=new_shape)
return out return out
def _is_list_or_tuple_(data): def _is_list_or_tuple_(data):
...@@ -803,7 +802,7 @@ def multi_box_head(inputs, ...@@ -803,7 +802,7 @@ def multi_box_head(inputs,
mbox_loc.shape[0], mbox_loc.shape[0],
mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3] / 4, 4 mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3] / 4, 4
] ]
mbox_loc_flatten = ops.reshape(mbox_loc, shape=new_shape) mbox_loc_flatten = nn.reshape(mbox_loc, shape=new_shape)
mbox_locs.append(mbox_loc_flatten) mbox_locs.append(mbox_loc_flatten)
# get conf # get conf
...@@ -819,7 +818,7 @@ def multi_box_head(inputs, ...@@ -819,7 +818,7 @@ def multi_box_head(inputs,
conf_loc.shape[0], conf_loc.shape[1] * conf_loc.shape[2] * conf_loc.shape[0], conf_loc.shape[1] * conf_loc.shape[2] *
conf_loc.shape[3] / num_classes, num_classes conf_loc.shape[3] / num_classes, num_classes
] ]
conf_loc_flatten = ops.reshape(conf_loc, shape=new_shape) conf_loc_flatten = nn.reshape(conf_loc, shape=new_shape)
mbox_confs.append(conf_loc_flatten) mbox_confs.append(conf_loc_flatten)
if len(box_results) == 1: if len(box_results) == 1:
......
此差异已折叠。
...@@ -49,7 +49,6 @@ __activations__ = [ ...@@ -49,7 +49,6 @@ __activations__ = [
__all__ = [ __all__ = [
'mean', 'mean',
'mul', 'mul',
'reshape',
'scale', 'scale',
'sigmoid_cross_entropy_with_logits', 'sigmoid_cross_entropy_with_logits',
'elementwise_add', 'elementwise_add',
......
...@@ -21,7 +21,11 @@ __all__ = ['ParallelExecutor'] ...@@ -21,7 +21,11 @@ __all__ = ['ParallelExecutor']
class ParallelExecutor(object): class ParallelExecutor(object):
def __init__(self, loss_name, use_cuda, num_threads=None): def __init__(self,
loss_name,
use_cuda,
num_threads=None,
allow_op_delay=False):
places = [] places = []
if use_cuda: if use_cuda:
for i in xrange(core.get_cuda_device_count()): for i in xrange(core.get_cuda_device_count()):
...@@ -35,7 +39,12 @@ class ParallelExecutor(object): ...@@ -35,7 +39,12 @@ class ParallelExecutor(object):
places.append(p) places.append(p)
if num_threads is None: if num_threads is None:
num_threads = min(len(places) * 2, multiprocessing.cpu_count()) if use_cuda:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
num_threads = len(places)
else:
min(len(places) * 2, multiprocessing.cpu_count())
startup = framework.default_startup_program() startup = framework.default_startup_program()
main = framework.default_main_program() main = framework.default_main_program()
...@@ -52,7 +61,8 @@ class ParallelExecutor(object): ...@@ -52,7 +61,8 @@ class ParallelExecutor(object):
startup.desc, startup.desc,
main.desc, main.desc,
loss_name, loss_name,
scope) scope,
allow_op_delay)
self.scope = scope self.scope = scope
def run(self, fetch_list): def run(self, fetch_list):
......
...@@ -29,6 +29,7 @@ function(py_test_modules TARGET_NAME) ...@@ -29,6 +29,7 @@ function(py_test_modules TARGET_NAME)
endfunction() endfunction()
# test time consuming OPs in a separate process for expliot parallism # test time consuming OPs in a separate process for expliot parallism
list(REMOVE_ITEM TEST_OPS test_parallel_executor)
list(REMOVE_ITEM TEST_OPS test_warpctc_op) list(REMOVE_ITEM TEST_OPS test_warpctc_op)
list(REMOVE_ITEM TEST_OPS test_dyn_rnn) list(REMOVE_ITEM TEST_OPS test_dyn_rnn)
list(REMOVE_ITEM TEST_OPS test_mul_op) list(REMOVE_ITEM TEST_OPS test_mul_op)
...@@ -64,6 +65,7 @@ else() ...@@ -64,6 +65,7 @@ else()
endif(WITH_FAST_BUNDLE_TEST) endif(WITH_FAST_BUNDLE_TEST)
# tests with high overhead # tests with high overhead
py_test_modules(test_parallel_executor MODULES test_parallel_executor)
py_test_modules(test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=${WARPCTC_LIB_DIR}) py_test_modules(test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=${WARPCTC_LIB_DIR})
py_test_modules(test_train_dyn_rnn MODULES test_dyn_rnn) py_test_modules(test_train_dyn_rnn MODULES test_dyn_rnn)
py_test_modules(test_mul_op MODULES test_mul_op) py_test_modules(test_mul_op MODULES test_mul_op)
......
...@@ -334,7 +334,7 @@ class OpTest(unittest.TestCase): ...@@ -334,7 +334,7 @@ class OpTest(unittest.TestCase):
np.allclose( np.allclose(
actual_t, expect_t, atol=atol), actual_t, expect_t, atol=atol),
"Output (" + out_name + ") has diff at " + str(place) + "Output (" + out_name + ") has diff at " + str(place) +
str(actual_t) + str(expect_t)) str(actual_t) + "\n" + str(expect_t))
if isinstance(expect, tuple): if isinstance(expect, tuple):
self.assertListEqual(actual.lod(), expect[1], self.assertListEqual(actual.lod(), expect[1],
"Output (" + out_name + "Output (" + out_name +
...@@ -568,6 +568,6 @@ class OpTest(unittest.TestCase): ...@@ -568,6 +568,6 @@ class OpTest(unittest.TestCase):
fetch_list = [g for p, g in param_grad_list] fetch_list = [g for p, g in param_grad_list]
executor = Executor(place) executor = Executor(place)
return map( return map(np.array,
np.array, executor.run(prog, feed_dict, fetch_list,
executor.run(prog, feed_dict, fetch_list, return_numpy=False)) return_numpy=False))
...@@ -23,7 +23,7 @@ import time ...@@ -23,7 +23,7 @@ import time
class TestRecvOp(unittest.TestCase): class TestRecvOp(unittest.TestCase):
def test_send(self): def no_test_send(self):
# Run init_serv in a thread # Run init_serv in a thread
place = fluid.CPUPlace() place = fluid.CPUPlace()
p = Process(target=self.init_serv, args=(place, )) p = Process(target=self.init_serv, args=(place, ))
......
文件模式从 100755 更改为 100644
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册