提交 19da59ed 编写于 作者: 翟飞跃 提交者: Tao Luo

Remove all the code, API and doc of MKL-DNN INT8v1 (#18347)

上级 8ed33bf9
...@@ -403,9 +403,6 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ (ArgSpec(args=['self', 'weight_ ...@@ -403,9 +403,6 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ (ArgSpec(args=['self', 'weight_
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 (ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 (ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program (ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None)), ('document', '909675a1ab055c69b436a7893fcae4fd')) paddle.fluid.contrib.QuantizeTranspiler.freeze_program (ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None)), ('document', '909675a1ab055c69b436a7893fcae4fd'))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile (ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6dd9909f10b283ba2892a99058a72884')) paddle.fluid.contrib.QuantizeTranspiler.training_transpile (ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6dd9909f10b283ba2892a99058a72884'))
paddle.fluid.contrib.Calibrator.__init__ (ArgSpec(args=['self'], varargs='args', keywords='kwargs', defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.Calibrator.sample_data (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '3b8c85ca1e2cf753cc8c90a6c6992958'))
paddle.fluid.contrib.Calibrator.save_int8_model (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.distributed_batch_reader (ArgSpec(args=['batch_reader'], varargs=None, keywords=None, defaults=None), ('document', 'b60796eb0a481484dd34e345f0eaa4d5')) paddle.fluid.contrib.distributed_batch_reader (ArgSpec(args=['batch_reader'], varargs=None, keywords=None, defaults=None), ('document', 'b60796eb0a481484dd34e345f0eaa4d5'))
paddle.fluid.contrib.reader.ctr_reader.ctr_reader (ArgSpec(args=['feed_dict', 'file_type', 'file_format', 'dense_slot_index', 'sparse_slot_index', 'capacity', 'thread_num', 'batch_size', 'file_list', 'slots', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b2ebf3de2a6ef1af2c3b88d2db7591ab')) paddle.fluid.contrib.reader.ctr_reader.ctr_reader (ArgSpec(args=['feed_dict', 'file_type', 'file_format', 'dense_slot_index', 'sparse_slot_index', 'capacity', 'thread_num', 'batch_size', 'file_list', 'slots', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b2ebf3de2a6ef1af2c3b88d2db7591ab'))
paddle.fluid.contrib.Compressor.__init__ (ArgSpec(args=['self', 'place', 'scope', 'train_program', 'train_reader', 'train_feed_list', 'train_fetch_list', 'eval_program', 'eval_reader', 'eval_feed_list', 'eval_fetch_list', 'teacher_programs', 'checkpoint_path', 'train_optimizer', 'distiller_optimizer', 'search_space'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, [], None, None, None, None)), ('document', 'c195b3bba26169cff9439e8c467557c0')) paddle.fluid.contrib.Compressor.__init__ (ArgSpec(args=['self', 'place', 'scope', 'train_program', 'train_reader', 'train_feed_list', 'train_fetch_list', 'eval_program', 'eval_reader', 'eval_feed_list', 'eval_fetch_list', 'teacher_programs', 'checkpoint_path', 'train_optimizer', 'distiller_optimizer', 'search_space'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, [], None, None, None, None)), ('document', 'c195b3bba26169cff9439e8c467557c0'))
......
...@@ -22,8 +22,6 @@ from . import op_frequence ...@@ -22,8 +22,6 @@ from . import op_frequence
from .op_frequence import * from .op_frequence import *
from . import quantize from . import quantize
from .quantize import * from .quantize import *
from . import int8_inference
from .int8_inference import *
from . import reader from . import reader
from .reader import * from .reader import *
from . import slim from . import slim
...@@ -44,7 +42,6 @@ __all__ += decoder.__all__ ...@@ -44,7 +42,6 @@ __all__ += decoder.__all__
__all__ += memory_usage_calc.__all__ __all__ += memory_usage_calc.__all__
__all__ += op_frequence.__all__ __all__ += op_frequence.__all__
__all__ += quantize.__all__ __all__ += quantize.__all__
__all__ += int8_inference.__all__
__all__ += reader.__all__ __all__ += reader.__all__
__all__ += slim.__all__ __all__ += slim.__all__
__all__ += utils.__all__ __all__ += utils.__all__
......
# Offline INT8 Calibration Tool
PaddlePaddle supports offline INT8 calibration to accelerate the inference speed. In this document, we provide the instructions on how to enable INT8 calibration and show the ResNet-50 and MobileNet-V1 results in accuracy.
## 0. Prerequisite
You need to install at least PaddlePaddle-1.3 python package `pip install paddlepaddle==1.3`.
## 1. How to generate INT8 model
You can refer to the unit test in [test_calibration_resnet50.py](../tests/test_calibration_resnet50.py). Basically, there are three steps:
* Construct calibration object.
```python
calibrator = int8_utility.Calibrator( # Step 1
program=infer_program, # required, FP32 program
pretrained_model=model_path, # required, FP32 pretrained model
algo=algo, # required, calibration algorithm; default is max, the alternative is KL (Kullback–Leibler divergence)
exe=exe, # required, executor
output=int8_model, # required, INT8 model
feed_var_names=feed_dict, # required, feed dict
fetch_list=fetch_targets) # required, fetch targets
```
* Call the calibrator.sample_data() after executor run.
```python
_, acc1, _ = exe.run(
program,
feed={feed_dict[0]: image,
feed_dict[1]: label},
fetch_list=fetch_targets)
calibrator.sample_data() # Step 2
```
* Call the calibrator.save_int8_model() after sampling over specified iterations (e.g., iterations = 50)
```python
calibrator.save_int8_model() # Step 3
```
## 2. How to run INT8 model
You can load INT8 model by load_inference_model [API](https://github.com/PaddlePaddle/Paddle/blob/8b50ad80ff6934512d3959947ac1e71ea3fb9ea3/python/paddle/fluid/io.py#L991) and run INT8 inference similar as [FP32](https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleCV/object_detection/eval.py "FP32").
```python
[infer_program, feed_dict,
fetch_targets] = fluid.io.load_inference_model(model_path, exe)
```
## 3. Result
We provide the results of accuracy and performance measured on Intel(R) Xeon(R) Gold 6271 (single core).
**I. Top-1 Accuracy on Intel(R) Xeon(R) Gold 6271**
| Model | Dataset | FP32 Accuracy | INT8 Accuracy | Accuracy Diff |
| :------------: | :------------: | :------------: | :------------: | :------------: |
| ResNet-50 | Full ImageNet Val | 76.63% | 76.23% | 0.40% |
| MobileNet-V1 | Full ImageNet Val | 70.78% | 70.47% | 0.31% |
**II. Throughput on Intel(R) Xeon(R) Gold 6271 (batch size 1 on single core)**
| Model | Dataset | FP32 Throughput | INT8 Throughput | Ratio(INT8/FP32) |
| :------------: | :------------: | :------------: | :------------: | :------------: |
| ResNet-50 | Full ImageNet Val | 11.54 images/s | 32.2 images/s | 2.79 |
| MobileNet-V1 | Full ImageNet Val | 49.21 images/s | 108.37 images/s | 2.2 |
Please note that [full ImageNet validation dataset](http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_img_val.tar "full ImageNet validation dataset") can be downloaded by script `test_calibration.py` with `DATASET=full`.
Notes:
* The accuracy measurement requires the model with `label`.
* The INT8 theoretical speedup is 4X on Intel® Xeon® Cascadelake Server (please refer to `The theoretical peak compute gains are 4x int8 OPS over fp32 OPS.` in [Reference](https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training "Reference")). Therefore, op-level gain is 4X and topology-level is smaller.
## 4. How to reproduce the results
* Small dataset for ResNet-50 (Single core)
```bash
FLAGS_use_mkldnn=true python python/paddle/fluid/contrib/tests/test_calibration_resnet50.py
```
>Note: Change `test_calibration_resnet50.py` to `test_calibration_mobilenetv1.py` for MobileNet-V1. Same for the following commands.
* Full dataset for ResNet-50 (Single core)
```bash
FLAGS_use_mkldnn=true DATASET=full python python/paddle/fluid/contrib/tests/test_calibration_resnet50.py
```
* Full dataset for ResNet-50 (Multi-core)
```bash
FLAGS_use_mkldnn=true OMP_NUM_THREADS=20 DATASET=full python python/paddle/fluid/contrib/tests/test_calibration_resnet50.py
```
> Notes: This is an example command with 20 cores by using set `OMP_NUM_THREADS` value.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from . import utility
from .utility import *
__all__ = utility.__all__
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
if(APPLE OR WIN32 OR NOT WITH_MKL)
list(REMOVE_ITEM TEST_OPS test_calibration_resnet50)
list(REMOVE_ITEM TEST_OPS test_calibration_mobilenetv1)
endif()
foreach(src ${TEST_OPS}) foreach(src ${TEST_OPS})
if(src MATCHES "test_calibration_*")
py_test(${src} SRCS ${src}.py ENVS FLAGS_use_mkldnn=true FLAGS_OMP_NUM_THREADS=${CPU_NUM_THREADS_ON_CI})
else()
py_test(${src} SRCS ${src}.py) py_test(${src} SRCS ${src}.py)
endif()
endforeach() endforeach()
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import sys
from test_calibration_resnet50 import TestCalibration
class TestCalibrationForMobilenetv1(TestCalibration):
def download_model(self):
# mobilenetv1 fp32 data
data_urls = [
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
data_md5s = ['13892b0716d26443a8cdea15b3c6438b']
self.model_cache_folder = self.download_data(data_urls, data_md5s,
"mobilenetv1_fp32")
self.model = "MobileNet-V1"
self.algo = "KL"
def test_calibration(self):
self.download_model()
print("Start FP32 inference for {0} on {1} images ...".format(
self.model, self.infer_iterations * self.batch_size))
(fp32_throughput, fp32_latency,
fp32_acc1) = self.run_program(self.model_cache_folder + "/model")
print("Start INT8 calibration for {0} on {1} images ...".format(
self.model, self.sample_iterations * self.batch_size))
self.run_program(
self.model_cache_folder + "/model", True, algo=self.algo)
print("Start INT8 inference for {0} on {1} images ...".format(
self.model, self.infer_iterations * self.batch_size))
(int8_throughput, int8_latency,
int8_acc1) = self.run_program(self.int8_model)
delta_value = fp32_acc1 - int8_acc1
self.assertLess(delta_value, 0.01)
print(
"FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
format(self.model, self.batch_size, fp32_throughput, fp32_latency,
fp32_acc1))
print(
"INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
format(self.model, self.batch_size, int8_throughput, int8_latency,
int8_acc1))
sys.stdout.flush()
if __name__ == '__main__':
unittest.main()
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import numpy as np
import time
import sys
import random
import paddle
import paddle.fluid as fluid
import functools
import contextlib
from paddle.dataset.common import download
from PIL import Image, ImageEnhance
import math
import paddle.fluid.contrib.int8_inference.utility as int8_utility
random.seed(0)
np.random.seed(0)
DATA_DIM = 224
THREAD = 1
BUF_SIZE = 102400
DATA_DIR = 'data/ILSVRC2012'
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
# TODO(guomingz): Remove duplicated code from resize_short, crop_image, process_image, _reader_creator
def resize_short(img, target_size):
percent = float(target_size) / min(img.size[0], img.size[1])
resized_width = int(round(img.size[0] * percent))
resized_height = int(round(img.size[1] * percent))
img = img.resize((resized_width, resized_height), Image.LANCZOS)
return img
def crop_image(img, target_size, center):
width, height = img.size
size = target_size
if center == True:
w_start = (width - size) / 2
h_start = (height - size) / 2
else:
w_start = np.random.randint(0, width - size + 1)
h_start = np.random.randint(0, height - size + 1)
w_end = w_start + size
h_end = h_start + size
img = img.crop((w_start, h_start, w_end, h_end))
return img
def process_image(sample, mode, color_jitter, rotate):
img_path = sample[0]
img = Image.open(img_path)
img = resize_short(img, target_size=256)
img = crop_image(img, target_size=DATA_DIM, center=True)
if img.mode != 'RGB':
img = img.convert('RGB')
img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
img -= img_mean
img /= img_std
return img, sample[1]
def _reader_creator(file_list,
mode,
shuffle=False,
color_jitter=False,
rotate=False,
data_dir=DATA_DIR):
def reader():
with open(file_list) as flist:
full_lines = [line.strip() for line in flist]
if shuffle:
np.random.shuffle(full_lines)
lines = full_lines
for line in lines:
img_path, label = line.split()
img_path = os.path.join(data_dir, img_path)
if not os.path.exists(img_path):
continue
yield img_path, int(label)
mapper = functools.partial(
process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)
return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)
def val(data_dir=DATA_DIR):
file_list = os.path.join(data_dir, 'val_list.txt')
return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)
class TestCalibration(unittest.TestCase):
def setUp(self):
self.int8_download = 'int8/download'
self.cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
self.int8_download)
data_urls = []
data_md5s = []
self.data_cache_folder = ''
if os.environ.get('DATASET') == 'full':
data_urls.append(
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
)
data_md5s.append('60f6525b0e1d127f345641d75d41f0a8')
data_urls.append(
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
)
data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')
self.data_cache_folder = self.download_data(data_urls, data_md5s,
"full_data", False)
else:
data_urls.append(
'http://paddle-inference-dist.bj.bcebos.com/int8/calibration_test_data.tar.gz'
)
data_md5s.append('1b6c1c434172cca1bf9ba1e4d7a3157d')
self.data_cache_folder = self.download_data(data_urls, data_md5s,
"small_data", False)
# reader/decorator.py requires the relative path to the data folder
cmd = 'rm -rf {0} && ln -s {1} {0}'.format("data",
self.data_cache_folder)
os.system(cmd)
self.batch_size = 1 if os.environ.get('DATASET') == 'full' else 50
self.sample_iterations = 50 if os.environ.get(
'DATASET') == 'full' else 1
self.infer_iterations = 50000 if os.environ.get(
'DATASET') == 'full' else 1
self.timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
self.int8_model = ''
def tearDown(self):
try:
os.system("rm -rf {}".format(self.int8_model))
except Exception as e:
print("Failed to delete {} due to {}".format(self.int8_model,
str(e)))
def cache_unzipping(self, target_folder, zip_path):
if not os.path.exists(target_folder):
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder,
zip_path)
os.system(cmd)
def download_data(self, data_urls, data_md5s, folder_name, is_model=True):
data_cache_folder = os.path.join(self.cache_folder, folder_name)
zip_path = ''
if os.environ.get('DATASET') == 'full':
file_names = []
for i in range(0, len(data_urls)):
download(data_urls[i], self.int8_download, data_md5s[i])
file_names.append(data_urls[i].split('/')[-1])
zip_path = os.path.join(self.cache_folder,
'full_imagenet_val.tar.gz')
if not os.path.exists(zip_path):
cat_command = 'cat'
for file_name in file_names:
cat_command += ' ' + os.path.join(self.cache_folder,
file_name)
cat_command += ' > ' + zip_path
os.system(cat_command)
if os.environ.get('DATASET') != 'full' or is_model:
download(data_urls[0], self.int8_download, data_md5s[0])
file_name = data_urls[0].split('/')[-1]
zip_path = os.path.join(self.cache_folder, file_name)
print('Data is downloaded at {0}'.format(zip_path))
self.cache_unzipping(data_cache_folder, zip_path)
return data_cache_folder
def download_model(self):
pass
def run_program(self, model_path, generate_int8=False, algo='direct'):
image_shape = [3, 224, 224]
fluid.memory_optimize(fluid.default_main_program())
exe = fluid.Executor(fluid.CPUPlace())
[infer_program, feed_dict,
fetch_targets] = fluid.io.load_inference_model(model_path, exe)
t = fluid.transpiler.InferenceTranspiler()
t.transpile(infer_program, fluid.CPUPlace())
val_reader = paddle.batch(val(), self.batch_size)
iterations = self.infer_iterations
if generate_int8:
self.int8_model = os.path.join(os.getcwd(),
"calibration_out_" + self.timestamp)
iterations = self.sample_iterations
try:
os.system("mkdir " + self.int8_model)
except Exception as e:
print("Failed to create {} due to {}".format(self.int8_model,
str(e)))
sys.exit(-1)
calibrator = int8_utility.Calibrator(
program=infer_program,
pretrained_model=model_path,
algo=algo,
exe=exe,
output=self.int8_model,
feed_var_names=feed_dict,
fetch_list=fetch_targets)
test_info = []
cnt = 0
periods = []
for batch_id, data in enumerate(val_reader()):
image = np.array(
[x[0].reshape(image_shape) for x in data]).astype("float32")
label = np.array([x[1] for x in data]).astype("int64")
label = label.reshape([-1, 1])
running_program = calibrator.sampling_program.clone(
) if generate_int8 else infer_program.clone()
t1 = time.time()
_, acc1, _ = exe.run(
running_program,
feed={feed_dict[0]: image,
feed_dict[1]: label},
fetch_list=fetch_targets)
t2 = time.time()
period = t2 - t1
periods.append(period)
if generate_int8:
calibrator.sample_data()
test_info.append(np.mean(acc1) * len(data))
cnt += len(data)
if (batch_id + 1) % 100 == 0:
print("{0} images,".format(batch_id + 1))
sys.stdout.flush()
if (batch_id + 1) == iterations:
break
if generate_int8:
calibrator.save_int8_model()
print(
"Calibration is done and the corresponding files are generated at {}".
format(os.path.abspath("calibration_out")))
else:
throughput = cnt / np.sum(periods)
latency = np.average(periods)
acc1 = np.sum(test_info) / cnt
return (throughput, latency, acc1)
class TestCalibrationForResnet50(TestCalibration):
def download_model(self):
# resnet50 fp32 data
data_urls = [
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
data_md5s = ['4a5194524823d9b76da6e738e1367881']
self.model_cache_folder = self.download_data(data_urls, data_md5s,
"resnet50_fp32")
self.model = "ResNet-50"
self.algo = "direct"
def test_calibration(self):
self.download_model()
print("Start FP32 inference for {0} on {1} images ...".format(
self.model, self.infer_iterations * self.batch_size))
(fp32_throughput, fp32_latency,
fp32_acc1) = self.run_program(self.model_cache_folder + "/model")
print("Start INT8 calibration for {0} on {1} images ...".format(
self.model, self.sample_iterations * self.batch_size))
self.run_program(
self.model_cache_folder + "/model", True, algo=self.algo)
print("Start INT8 inference for {0} on {1} images ...".format(
self.model, self.infer_iterations * self.batch_size))
(int8_throughput, int8_latency,
int8_acc1) = self.run_program(self.int8_model)
delta_value = fp32_acc1 - int8_acc1
self.assertLess(delta_value, 0.01)
print(
"FP32 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
format(self.model, self.batch_size, fp32_throughput, fp32_latency,
fp32_acc1))
print(
"INT8 {0}: batch_size {1}, throughput {2} images/second, latency {3} second, accuracy {4}".
format(self.model, self.batch_size, int8_throughput, int8_latency,
int8_acc1))
sys.stdout.flush()
if __name__ == '__main__':
unittest.main()
...@@ -110,7 +110,6 @@ packages=['paddle', ...@@ -110,7 +110,6 @@ packages=['paddle',
'paddle.fluid.contrib', 'paddle.fluid.contrib',
'paddle.fluid.contrib.decoder', 'paddle.fluid.contrib.decoder',
'paddle.fluid.contrib.quantize', 'paddle.fluid.contrib.quantize',
'paddle.fluid.contrib.int8_inference',
'paddle.fluid.contrib.reader', 'paddle.fluid.contrib.reader',
'paddle.fluid.contrib.slim', 'paddle.fluid.contrib.slim',
'paddle.fluid.contrib.slim.core', 'paddle.fluid.contrib.slim.core',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册