Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
19746835
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
19746835
编写于
10月 03, 2022
作者:
J
jakpiase
提交者:
GitHub
10月 03, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
OneDNN md-in-tensor refactoring: Added support for md in transpose (#46620)
* added transpose * CI fix * fix for transpose * fix after review
上级
a579e523
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
97 addition
and
110 deletion
+97
-110
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
+97
-110
未找到文件。
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
浏览文件 @
19746835
...
@@ -24,70 +24,6 @@ namespace operators {
...
@@ -24,70 +24,6 @@ namespace operators {
using
Tensor
=
phi
::
DenseTensor
;
using
Tensor
=
phi
::
DenseTensor
;
using
framework
::
DataLayout
;
using
framework
::
DataLayout
;
template
<
typename
T
>
class
TransposeMKLDNNHandler
{
public:
TransposeMKLDNNHandler
(
std
::
vector
<
int64_t
>&
dims
,
// NOLINT
std
::
vector
<
int
>&
axis
,
// NOLINT
dnnl
::
engine
engine
)
:
dims_
(
dims
),
axis_
(
axis
),
logical_axis_
(
dims
.
size
(),
0
),
engine_
(
engine
)
{}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireSrcMemory
(
const
MKLDNNMemoryFormat
&
fmt
,
void
*
ptr
)
{
// Make memory descriptor using input format, unless it
// cannot be trusted (nchw) then make up memory fmt manually
for
(
size_t
i
=
0
;
i
<
this
->
logical_axis_
.
size
();
++
i
)
{
this
->
logical_axis_
[
i
]
=
i
;
}
auto
src_md
=
fmt
!=
MKLDNNMemoryFormat
::
nchw
?
platform
::
MKLDNNMemDesc
(
dims_
,
platform
::
MKLDNNGetDataType
<
T
>
(),
fmt
)
:
Axis2MemoryDesc
(
dims_
,
logical_axis_
);
return
std
::
make_shared
<
dnnl
::
memory
>
(
src_md
,
engine_
,
ptr
);
}
std
::
shared_ptr
<
dnnl
::
memory
>
AcquireDstMemory
(
phi
::
DenseTensor
*
output
,
platform
::
Place
place
)
{
auto
dst_md
=
Axis2MemoryDesc
(
dims_
,
axis_
);
auto
dst_data
=
output
->
mutable_data
<
T
>
(
place
,
dst_md
.
get_size
());
return
std
::
make_shared
<
dnnl
::
memory
>
(
dst_md
,
engine_
,
dst_data
);
}
std
::
shared_ptr
<
dnnl
::
reorder
>
AcquireTranspose
(
std
::
shared_ptr
<
dnnl
::
memory
>
dst_memory_p
,
std
::
shared_ptr
<
dnnl
::
memory
>
src_memory_p
)
{
return
std
::
make_shared
<
dnnl
::
reorder
>
(
*
(
src_memory_p
),
*
(
dst_memory_p
));
}
protected:
dnnl
::
memory
::
desc
Axis2MemoryDesc
(
std
::
vector
<
int64_t
>&
nchw_tz
,
// NOLINT
std
::
vector
<
int
>&
axis
// NOLINT
)
{
size_t
ndims
=
axis
.
size
();
std
::
vector
<
int64_t
>
strides
(
ndims
);
unsigned
int
total_stride
=
1
;
for
(
int
i
=
ndims
-
1
;
i
>=
0
;
--
i
)
{
strides
[
axis
[
i
]]
=
total_stride
;
total_stride
*=
nchw_tz
[
axis
[
i
]];
}
dnnl
::
memory
::
desc
mem_d
(
nchw_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
strides
);
return
mem_d
;
}
private:
std
::
vector
<
int64_t
>
dims_
;
std
::
vector
<
int
>
axis_
;
std
::
vector
<
int
>
logical_axis_
;
dnnl
::
engine
engine_
;
};
template
<
typename
T
>
template
<
typename
T
>
class
TransposeMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
class
TransposeMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -98,37 +34,84 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -98,37 +34,84 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"Operator DNNL Transpose must use CPUPlace"
));
"Operator DNNL Transpose must use CPUPlace"
));
auto
&
dev_ctx
=
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
auto
&
dnnl_engine
=
dev_ctx
.
GetEngine
();
std
::
vector
<
int
>
axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
std
::
vector
<
int
>
transpose_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
int
ndims
=
axis
.
size
();
int
ndims
=
transpose_axis
.
size
();
auto
*
input
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
if
(
ndims
==
1
)
{
if
(
ndims
==
1
)
{
framework
::
TensorCopy
(
*
input
,
input
->
place
(),
outp
ut
);
framework
::
TensorCopy
(
*
x
,
x
->
place
(),
o
ut
);
out
put
->
set_format
(
input
->
format
());
out
->
set_mem_desc
(
x
->
mem_desc
());
return
;
return
;
}
}
auto
nchw_tz
=
phi
::
vectorize
<
int64_t
>
(
input
->
dims
());
auto
x_vec_dims
=
phi
::
vectorize
(
x
->
dims
());
TransposeMKLDNNHandler
<
T
>
handler
(
nchw_tz
,
axis
,
mkldnn_engine
);
framework
::
proto
::
VarType
::
Type
x_paddle_type
=
framework
::
TransToProtoVarType
(
x
->
dtype
());
dnnl
::
memory
::
data_type
x_type
=
framework
::
ToMKLDNNDataType
(
x_paddle_type
);
platform
::
ReorderMKLDNNHandler
reorder_handler
(
x_vec_dims
,
x_paddle_type
,
x_type
,
dnnl_engine
);
auto
transpose_src_memory_p
=
handler
.
AcquireSrcMemory
(
auto
reorder_src_memory_p
=
reorder_handler
.
AcquireSrcMemory
(
input
->
format
(),
platform
::
to_void_cast
<
T
>
(
input_data
));
x
->
mem_desc
(),
platform
::
to_void_cast
(
x
->
data
<
T
>
()));
auto
transpose_dst_memory_p
=
handler
.
AcquireDstMemory
(
output
,
ctx
.
GetPlace
());
auto
transpose_p
=
handler
.
AcquireTranspose
(
transpose_dst_memory_p
,
transpose_src_memory_p
);
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
auto
dst_md
=
transpose_p
->
execute
(
dnnl
::
memory
::
desc
(
x_vec_dims
,
astream
,
*
transpose_src_memory_p
,
*
transpose_dst_memory_p
);
x
->
mem_desc
().
data_type
(),
platform
::
GetPlainMKLDNNFormat
(
x_vec_dims
.
size
()));
// a trick is used here to fake transpose of out_md, so later it will be
// "untransposed", leaving output data in plain format tag
auto
dst_strides
=
FakeTranposeStrides
(
dst_md
,
transpose_axis
);
dst_md
=
dnnl
::
memory
::
desc
(
x_vec_dims
,
x
->
mem_desc
().
data_type
(),
dst_strides
);
auto
dst_data
=
out
->
mutable_data
(
ctx
.
GetPlace
(),
x
->
type
(),
dst_md
.
get_size
());
auto
reorder_dst_memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
dst_md
,
dnnl_engine
,
dst_data
);
auto
reorder_p
=
reorder_handler
.
AcquireReorder
(
reorder_dst_memory_p
,
reorder_src_memory_p
);
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
astream
.
wait
();
output
->
set_layout
(
DataLayout
::
kNCHW
);
out
->
set_mem_desc
(
reorder_dst_memory_p
->
get_desc
().
permute_axes
(
output
->
set_format
(
MKLDNNMemoryFormat
::
undef
);
TransposeToPermuteAxis
(
transpose_axis
)));
}
private:
// it is needed because oneDNN's permute axis understand axes order in
// different way PaddlePaddle's transpose
std
::
vector
<
int
>
TransposeToPermuteAxis
(
const
std
::
vector
<
int
>&
transpose_axis
)
const
{
std
::
vector
<
int
>
permute_axis
(
transpose_axis
.
size
());
for
(
size_t
i
=
0
;
i
<
transpose_axis
.
size
();
++
i
)
{
permute_axis
[
transpose_axis
[
i
]]
=
i
;
}
return
permute_axis
;
}
std
::
vector
<
int64_t
>
FakeTranposeStrides
(
const
dnnl
::
memory
::
desc
&
dst_md
,
const
std
::
vector
<
int
>&
transpose_axis
)
const
{
std
::
vector
<
int64_t
>
fake_strides
(
transpose_axis
.
size
());
auto
dims
=
dst_md
.
dims
();
int
total_stride
=
1
;
int
ndims
=
static_cast
<
int
>
(
dims
.
size
());
for
(
int
i
=
ndims
-
1
;
i
>=
0
;
--
i
)
{
fake_strides
[
transpose_axis
[
i
]]
=
total_stride
;
total_stride
*=
dims
[
transpose_axis
[
i
]];
}
return
fake_strides
;
}
}
};
};
...
@@ -140,43 +123,47 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -140,43 +123,47 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
true
,
true
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Operator DNNL TransposeGrad must use CPUPlace"
));
"Operator DNNL TransposeGrad must use CPUPlace"
));
auto
*
out_grad
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"X"
));
const
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
if
(
!
x_grad
)
return
;
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
!
dx
)
return
;
auto
&
dev_ctx
=
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
auto
&
dnnl_engine
=
dev_ctx
.
GetEngine
();
std
::
vector
<
int
>
axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
std
::
vector
<
int
>
transpose_axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
std
::
vector
<
int
>
reversed_axis
(
axis
);
int
ndims
=
axis
.
size
();
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
int
ndims
=
transpose_axis
.
size
();
if
(
ndims
==
1
)
{
if
(
ndims
==
1
)
{
framework
::
TensorCopy
(
*
out_grad
,
out_grad
->
place
(),
x_grad
);
framework
::
TensorCopy
(
*
dout
,
dout
->
place
(),
dx
);
x_grad
->
set_format
(
out_grad
->
format
());
dx
->
set_mem_desc
(
dout
->
mem_desc
());
return
;
return
;
}
}
for
(
size_t
i
=
0
;
i
<
axis
.
size
();
i
++
)
{
auto
dout_vec_dims
=
phi
::
vectorize
(
dout
->
dims
());
reversed_axis
[
axis
[
i
]]
=
i
;
}
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
framework
::
proto
::
VarType
::
Type
dout_paddle_type
=
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
framework
::
TransToProtoVarType
(
dout
->
dtype
());
dnnl
::
memory
::
data_type
dout_type
=
framework
::
ToMKLDNNDataType
(
dout_paddle_type
);
auto
nchw_tz
=
phi
::
vectorize
<
int64_t
>
(
out_grad
->
dims
());
platform
::
ReorderMKLDNNHandler
reorder_handler
(
dout_vec_dims
,
dout_paddle_type
,
dout_type
,
dnnl_engine
);
TransposeMKLDNNHandler
<
T
>
handler
(
nchw_tz
,
reversed_axis
,
mkldnn_engine
);
auto
reorder_src_memory_p
=
reorder_handler
.
AcquireSrcMemory
(
dout
->
mem_desc
(),
platform
::
to_void_cast
(
dout
->
data
<
T
>
()));
auto
transpose_src_memory_p
=
handler
.
AcquireSrcMemory
(
auto
reorder_dst_memory_p
=
out_grad
->
format
(),
platform
::
to_void_cast
<
T
>
(
out_grad_data
));
reorder_handler
.
AcquireDstMemory
(
dx
,
dout
->
mem_desc
(),
ctx
.
GetPlace
());
auto
transpose_dst_memory_p
=
handler
.
AcquireDstMemory
(
x_grad
,
ctx
.
GetPlace
());
auto
transpose_p
=
handler
.
AcquireTranspose
(
transpose_dst_memory_p
,
transpose_src_memory_p
);
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
auto
reorder_p
=
reorder_handler
.
AcquireReorder
(
reorder_dst_memory_p
,
transpose_p
->
execute
(
reorder_src_memory_p
);
astream
,
*
transpose_src_memory_p
,
*
transpose_dst_memory_p
);
reorder_p
->
execute
(
astream
,
*
reorder_src_memory_p
,
*
reorder_dst_memory_p
);
astream
.
wait
();
astream
.
wait
();
dx
->
set_mem_desc
(
reorder_dst_memory_p
->
get_desc
().
permute_axes
(
transpose_axis
));
}
}
};
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录