提交 193185b8 编写于 作者: D dengkaipeng

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into shift

......@@ -24,6 +24,8 @@ message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: "
"${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION}")
message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: "
"${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
message(STATUS "AR tools: ${CMAKE_AR}")
if(WIN32)
set(CMAKE_SUPPRESS_REGENERATION ON)
set(CMAKE_STATIC_LIBRARY_PREFIX lib)
......@@ -62,6 +64,7 @@ option(WITH_DISTRIBUTE "Compile with distributed support" OFF)
option(WITH_PSLIB "Compile with pslib support" OFF)
option(WITH_CONTRIB "Compile the third-party contributation" OFF)
option(REPLACE_ENFORCE_GLOG "Replace PADDLE_ENFORCE with glog/CHECK for better debug." OFF)
# TODO(Superjomn) Remove WITH_ANAKIN option if not needed latter.
option(WITH_ANAKIN "Compile with Anakin library" OFF)
option(ANAKIN_BUILD_FAT_BIN "Build anakin cuda fat-bin lib for all device plantform, ignored when WITH_ANAKIN=OFF" OFF)
option(ANAKIN_BUILD_CROSS_PLANTFORM "Build anakin lib for any nvidia device plantform. ignored when WITH_ANAKIN=OFF" ON)
......@@ -188,7 +191,14 @@ include(configure) # add paddle env configuration
if(WITH_GPU)
include(cuda)
include(tensorrt)
include(anakin_subgraph)
endif()
if(WITH_GPU AND NOT WIN32)
message(STATUS "add dgc lib.")
include(external/dgc)
endif()
if(WITH_MKL OR WITH_MKLML)
include(external/anakin)
elseif()
......
......@@ -156,7 +156,7 @@ python \
This will enable VLOG messages generated by `buddy_allocator.{h,cc}` and in the verbose range of 0 to 3, so you will see above example VLOG message, which is in level 3. This suggests that we output overall messages in lower verbose levels, so they display with higher probability. When coding C++, please follow the verbose level convention as follows:
- verbose level 1: [framework](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework)
- verbose level 3: [operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)
- verbose level 5: [memory](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory), [platform](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/platform)
- verbose level 7: [math](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/legacy/math)
- verbose level 1: [framework](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/framework)
- verbose level 3: [operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/operators)
- verbose level 5: [memory](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/memory), [platform](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/platform)
- verbose level 7: [math](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/fluid/operators/math/)
......@@ -75,8 +75,9 @@ RUN curl -s -q https://glide.sh/get | sh
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
RUN wget -qO- http://paddlepaddledeps.cdn.bcebos.com/TensorRT-4.0.0.3.Ubuntu-16.04.4.x86_64-gnu.cuda-8.0.cudnn7.0.tar.gz | \
tar -xz -C /usr/local && \
RUN wget -q https://paddlepaddledeps.cdn.bcebos.com/TensorRT-4.0.1.6-ubuntu14.04.x86_64-gnu.cuda.8.0.cudnn7.0.tar.gz --no-check-certificate && \
tar -zxf TensorRT-4.0.1.6-ubuntu14.04.x86_64-gnu.cuda.8.0.cudnn7.0.tar.gz -C /usr/local && \
cp -rf /usr/local/TensorRT/include /usr && \
cp -rf /usr/local/TensorRT/lib /usr
......
......@@ -179,7 +179,6 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog,
else:
build_strategy.reduce_strategy = fluid.BuildStrategy(
).ReduceStrategy.AllReduce
build_strategy.fuse_broadcast_op = args.fuse_broadcast_op
avg_loss = train_args[0]
......
if(NOT WITH_GPU)
return()
endif()
set(ANAKIN_ROOT "/usr" CACHE PATH "ANAKIN ROOT")
find_path(ANAKIN_INCLUDE_DIR anakin_config.h
PATHS ${ANAKIN_ROOT} ${ANAKIN_ROOT}/include
$ENV{ANAKIN_ROOT} $ENV{ANAKIN_ROOT}/include
NO_DEFAULT_PATH
)
find_library(ANAKIN_LIBRARY NAMES libanakin_saber_common.so libanakin.so
PATHS ${ANAKIN_ROOT}
$ENV{ANAKIN_ROOT} $ENV{ANAKIN_ROOT}/lib
NO_DEFAULT_PATH
DOC "Path to ANAKIN library.")
if(ANAKIN_INCLUDE_DIR AND ANAKIN_LIBRARY)
if(WITH_DSO)
set(ANAKIN_FOUND ON)
endif(WITH_DSO)
else()
set(ANAKIN_FOUND OFF)
endif()
if(ANAKIN_FOUND)
message(STATUS "Current ANAKIN header is ${ANAKIN_INCLUDE_DIR}/anakin_config.h. ")
include_directories(${ANAKIN_ROOT}/include)
include_directories(${ANAKIN_ROOT}/include/saber)
link_directories(${ANAKIN_ROOT})
add_definitions(-DPADDLE_WITH_ANAKIN)
endif()
......@@ -24,7 +24,7 @@ set(BOOST_PROJECT "extern_boost")
# So we use 1.41.0 here.
set(BOOST_VER "1.41.0")
set(BOOST_TAR "boost_1_41_0" CACHE STRING "" FORCE)
set(BOOST_URL "http://paddlepaddledeps.cdn.bcebos.com/${BOOST_TAR}.tar.gz" CACHE STRING "" FORCE)
set(BOOST_URL "http://paddlepaddledeps.bj.bcebos.com/${BOOST_TAR}.tar.gz" CACHE STRING "" FORCE)
MESSAGE(STATUS "BOOST_TAR: ${BOOST_TAR}, BOOST_URL: ${BOOST_URL}")
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
INCLUDE(ExternalProject)
SET(DGC_SOURCES_DIR "${THIRD_PARTY_PATH}/dgc")
SET(DGC_INSTALL_DIR "${THIRD_PARTY_PATH}/install/dgc")
SET(DGC_INCLUDE_DIR "${DGC_INSTALL_DIR}/include" CACHE PATH "dgc include directory." FORCE)
SET(DGC_LIBRARIES "${DGC_INSTALL_DIR}/lib/libdgc.a" CACHE FILEPATH "dgc library." FORCE)
INCLUDE_DIRECTORIES(${DGC_INCLUDE_DIR})
ExternalProject_Add(
extern_dgc
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/PaddlePaddle/Fleet"
GIT_TAG "2d04dc3800cdd0601f1b65d547dabcc60b0cf9dc"
SOURCE_DIR "${DGC_SOURCES_DIR}"
CONFIGURE_COMMAND ""
BUILD_COMMAND cd collective && make -j
INSTALL_COMMAND mkdir -p ${DGC_INSTALL_DIR}/lib/ ${DGC_INCLUDE_DIR}/dgc
&& cp ${DGC_SOURCES_DIR}/collective/build/lib/libdgc.a ${DGC_LIBRARIES}
&& cp ${DGC_SOURCES_DIR}/collective/build/include/dgc.h ${DGC_INCLUDE_DIR}/dgc/
BUILD_IN_SOURCE 1
)
ADD_LIBRARY(dgc SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET dgc PROPERTY IMPORTED_LOCATION ${DGC_LIBRARIES})
ADD_DEPENDENCIES(dgc extern_dgc)
LIST(APPEND external_project_dependencies dgc)
......@@ -44,7 +44,7 @@ ExternalProject_Add(
# 3. keep only zlib, cares, protobuf, boringssl under "third_party",
# checkout and clean other dirs under third_party
# 4. remove .git, and package the directory.
URL "http://paddlepaddledeps.cdn.bcebos.com/grpc-v1.10.x.tar.gz"
URL "http://paddlepaddledeps.bj.bcebos.com/grpc-v1.10.x.tar.gz"
URL_MD5 "1f268a2aff6759839dccd256adcc91cf"
PREFIX ${GRPC_SOURCES_DIR}
UPDATE_COMMAND ""
......
......@@ -31,9 +31,17 @@ IF(APPLE)
return()
ENDIF()
MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
# Introduce variables:
# * CMAKE_INSTALL_LIBDIR
INCLUDE(GNUInstallDirs)
SET(LIBDIR "lib")
if(CMAKE_INSTALL_LIBDIR MATCHES ".*lib64$")
SET(LIBDIR "lib64")
endif()
MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/l${LIBDIR} to runtime path")
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/${LIBDIR}")
INCLUDE_DIRECTORIES(${MKLDNN_INC_DIR}) # For MKLDNN code to include internal headers.
......@@ -58,7 +66,7 @@ ExternalProject_Add(
${EXTERNAL_PROJECT_LOG_ARGS}
DEPENDS ${MKLDNN_DEPENDS}
GIT_REPOSITORY "https://github.com/intel/mkl-dnn.git"
GIT_TAG "830a10059a018cd2634d94195140cf2d8790a75a"
GIT_TAG "863ff6e7042cec7d2e29897fe9f0872e0888b0fc"
PREFIX ${MKLDNN_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
......@@ -79,9 +87,9 @@ ExternalProject_Add(
-DMKLROOT:PATH=${MKLML_ROOT}
)
if(WIN32)
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/mkldnn.lib" CACHE FILEPATH "mkldnn library." FORCE)
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/${LIBDIR}/mkldnn.lib" CACHE FILEPATH "mkldnn library." FORCE)
else(WIN32)
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/${LIBDIR}/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
endif(WIN32)
ADD_LIBRARY(shared_mkldnn SHARED IMPORTED GLOBAL)
......@@ -101,7 +109,7 @@ ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT})
# copy the real so.0 lib to install dir
# it can be directly contained in wheel or capi
if(WIN32)
SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/lib/mkldnn.dll)
SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/bin/mkldnn.dll)
else(WIN32)
SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/libmkldnn.so.0)
ADD_CUSTOM_COMMAND(OUTPUT ${MKLDNN_SHARED_LIB}
......
......@@ -34,7 +34,7 @@ SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLML_ROOT}/lib")
SET(TIME_VERSION "2019.0.1.20181227")
IF(WIN32)
SET(MKLML_VER "mklml_win_${TIME_VERSION}" CACHE STRING "" FORCE)
SET(MKLML_URL "https://paddlepaddledeps.cdn.bcebos.com/${MKLML_VER}.zip" CACHE STRING "" FORCE)
SET(MKLML_URL "https://paddlepaddledeps.bj.bcebos.com/${MKLML_VER}.zip" CACHE STRING "" FORCE)
SET(MKLML_LIB ${MKLML_LIB_DIR}/mklml.lib)
SET(MKLML_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5md.lib)
SET(MKLML_SHARED_LIB ${MKLML_LIB_DIR}/mklml.dll)
......@@ -43,7 +43,7 @@ ELSE()
#TODO(intel-huying):
# Now enable Erf function in mklml library temporarily, it will be updated as offical version later.
SET(MKLML_VER "Glibc225_vsErf_mklml_lnx_${TIME_VERSION}" CACHE STRING "" FORCE)
SET(MKLML_URL "http://paddlepaddledeps.cdn.bcebos.com/${MKLML_VER}.tgz" CACHE STRING "" FORCE)
SET(MKLML_URL "http://paddlepaddledeps.bj.bcebos.com/${MKLML_VER}.tgz" CACHE STRING "" FORCE)
SET(MKLML_LIB ${MKLML_LIB_DIR}/libmklml_intel.so)
SET(MKLML_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5.so)
SET(MKLML_SHARED_LIB ${MKLML_LIB_DIR}/libmklml_intel.so)
......
......@@ -57,20 +57,25 @@ SET(NGRAPH_TBB_LIB ${NGRAPH_LIB_DIR}/${NGRAPH_TBB_LIB_NAME})
ExternalProject_Add(
${NGRAPH_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
DEPENDS ${MKLDNN_PROJECT} ${MKLML_PROJECT}
GIT_REPOSITORY ${NGRAPH_GIT_REPO}
GIT_TAG ${NGRAPH_GIT_TAG}
PREFIX ${NGRAPH_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${NGRAPH_INSTALL_DIR}
CMAKE_ARGS -DNGRAPH_UNIT_TEST_ENABLE=FALSE
CMAKE_ARGS -DNGRAPH_TOOLS_ENABLE=FALSE
CMAKE_ARGS -DNGRAPH_INTERPRETER_ENABLE=FALSE
CMAKE_ARGS -DNGRAPH_DEX_ONLY=TRUE
CMAKE_ARGS -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
CMAKE_ARGS -DMKLDNN_INCLUDE_DIR=${MKLDNN_INC_DIR}
CMAKE_ARGS -DMKLDNN_LIB_DIR=${MKLDNN_INSTALL_DIR}/${CMAKE_INSTALL_LIBDIR}
CMAKE_ARGS -DMKLML_LIB_DIR=${MKLML_INSTALL_DIR}/lib
DEPENDS ${MKLDNN_PROJECT} ${MKLML_PROJECT}
GIT_REPOSITORY ${NGRAPH_GIT_REPO}
GIT_TAG ${NGRAPH_GIT_TAG}
PREFIX ${NGRAPH_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_GENERATOR ${CMAKE_GENERATOR}
CMAKE_GENERATOR_PLATFORM ${CMAKE_GENERATOR_PLATFORM}
CMAKE_GENERATOR_TOOLSET ${CMAKE_GENERATOR_TOOLSET}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${NGRAPH_INSTALL_DIR}
CMAKE_ARGS -DNGRAPH_UNIT_TEST_ENABLE=FALSE
CMAKE_ARGS -DNGRAPH_TOOLS_ENABLE=FALSE
CMAKE_ARGS -DNGRAPH_INTERPRETER_ENABLE=FALSE
CMAKE_ARGS -DNGRAPH_DEX_ONLY=TRUE
CMAKE_ARGS -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
CMAKE_ARGS -DMKLDNN_INCLUDE_DIR=${MKLDNN_INC_DIR}
CMAKE_ARGS -DMKLDNN_LIB_DIR=${MKLDNN_INSTALL_DIR}/${CMAKE_INSTALL_LIBDIR}
CMAKE_ARGS -DMKLML_LIB_DIR=${MKLML_INSTALL_DIR}/lib
)
add_dependencies(ngraph ${NGRAPH_PROJECT})
......
......@@ -131,6 +131,15 @@ elseif (NOT CBLAS_FOUND OR WIN32)
)
endif ()
if (WITH_GPU AND NOT WIN32)
set(dgc_dir "${FLUID_INSTALL_DIR}/third_party/install/dgc")
copy(dgc_lib
SRCS ${DGC_INSTALL_DIR}/lib ${DGC_INSTALL_DIR}/include
DSTS ${dgc_dir} ${dgc_dir}
DEPS dgc)
endif()
if (WITH_MKLDNN)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/mkldnn")
copy(mkldnn_lib
......
......@@ -110,7 +110,7 @@ function(op_library TARGET)
# Define operators that don't need pybind here.
foreach(manual_pybind_op "compare_op" "logical_op" "nccl_op"
"tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op"
"fusion_transpose_flatten_concat_op" "fusion_conv_inception_op")
"fusion_transpose_flatten_concat_op" "fusion_conv_inception_op" "sync_batch_norm_op" "dgc_op")
if ("${TARGET}" STREQUAL "${manual_pybind_op}")
set(pybind_flag 1)
endif()
......
......@@ -33,5 +33,6 @@ if(TENSORRT_FOUND)
message(STATUS "Current TensorRT header is ${TENSORRT_INCLUDE_DIR}/NvInfer.h. "
"Current TensorRT version is v${TENSORRT_MAJOR_VERSION}. ")
include_directories(${TENSORRT_INCLUDE_DIR})
link_directories(${TENSORRT_LIBRARY})
add_definitions(-DPADDLE_WITH_TENSORRT)
endif()
......@@ -5,13 +5,13 @@ Kexin Zhao <zhaokexin01@baidu.com>
## Introduction
Deep learning is usually a two-stage work: training and inference. The training stage estimates model parameters (weights) from data. The inference stage loads the weights and uses them to interpret inputs. Typically, weights are 32-bit float values (float32). Some new devices, including NVIDIA Volta GPUs, support higher speed computation using 16-bit float values (float16).
This article explains our efforts with PaddlePaddle to train using float32 and to inference using float16. We describe a [*transpiler*](https://github.com/PaddlePaddle/Paddle/blob/a4d3de0071e1f3912230c3ab3f9ac74cf06b093a/doc/fluid/design/motivation/fluid_compiler.md), which converts a PaddlePaddle Fluid model, which, to be precise, should be called a [Fluid *program*](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/program.md), into the inference program, and converts the weights from float32 into float16.
This article explains our efforts with PaddlePaddle to train using float32 and to inference using float16. We describe a [*transpiler*](https://github.com/PaddlePaddle/Paddle/blob/a4d3de0071e1f3912230c3ab3f9ac74cf06b093a/doc/fluid/design/motivation/fluid_compiler.md), which converts a PaddlePaddle Fluid model, which, to be precise, should be called a [Fluid *program*](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/concepts/program.md), into the inference program, and converts the weights from float32 into float16.
## What is float16?
float16 (or FP16) is a half-precision floating-point format that uses 16 bits in memory to represent a value. The advantage over 32-bit single-precision floating-point format (commonly known as float or float32 data type) is that it requires half the storage and bandwidth at the expense of precision and range. Fortunately, DNN inference has a high tolerance for the loss of precision and range when using float16 to represent the weights, and the inference accuracy will only be minimally affected in most cases, which gives us the opportunity to use float16 data type to speed up the inference.
Interested readers can refer to our [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/data_type/float16.md) and [code](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/platform/float16.h) for more details on how we implement the float16 data type.
Interested readers can refer to our [design doc](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/data_type/float16.md) and [code](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/platform/float16.h) for more details on how we implement the float16 data type.
## Why float16?
The trend in today's deep learning community is to use bigger and deeper model, which translates to larger memory footprint, higher computation demands, and as a result higher energy consumption on computing devices. The advantages of float16 over float32 are correspondingly three-fold:
......@@ -24,12 +24,12 @@ The trend in today's deep learning community is to use bigger and deeper model,
## Fluid implementation of float16 inference
### Overview
Fluid use [Program](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#program) instead of computation graph to describe a neural network model and the optimization procedure. Fluid program is a python wrapper around a protobuf message called [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/program.md). Similar to programming languages, the basic structure of a Fluid program is some nested [blocks](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#block), where each block consists of some [variable](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#variable) definitions and a sequence of [operators](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#operator). An [executor](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/executor.md) will run a given program by sequentially executing the operators in the entrance block.
Fluid use [Program](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/modules/python_api.md#program) instead of computation graph to describe a neural network model and the optimization procedure. Fluid program is a python wrapper around a protobuf message called [ProgramDesc](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/concepts/program.md). Similar to programming languages, the basic structure of a Fluid program is some nested [blocks](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/modules/python_api.md#block), where each block consists of some [variable](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/modules/python_api.md#variable) definitions and a sequence of [operators](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/modules/python_api.md#operator). An [executor](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/concepts/executor.md) will run a given program by sequentially executing the operators in the entrance block.
### Basic requirement
When an executor runs an operator, it uses a kernel to perform computations on tensors contained in the input variables, and then writes the results to the tensors in the output variables. Each operator has multiple kernels for different combinations of data types, devices, and library types, respectively. The operator will select the appropriate kernel to run based on, among other things, the data type of the input tensors. By default, every Fluid operator has a kernel for float data type that takes float inputs and generates float outputs.
If we provide float input to the first operator in a program, then each operator will use float kernel to compute float output and send it as input to the next operator to trigger its float kernel. This chain effect will make the program run in float mode and gives us a final output of float data type.
If we provide float input to the first operator in a program, then each operator will use float kernel to compute float output and send it as input to the next operator to trigger its float kernel. This chain effect will make the program run in float mode and gives us a final output of float data type.
The same principle applies if we want a program to run in float16 mode. We provide input variable of the float16 data type to the first operator, and every subsequent operator will invoke the float16 kernel until we get the final output in float16. So the preliminary requirements for float16 inference are to add float16 kernels to operators that are needed in a specific kind of neural networks. Our current focus is on Convolutional Neural Networks (CNN) and hence we have added float16 kernels to the following operators: convolution, pooling, GEMM, elementwise addition, batch norm, dropout, various activations including relu and tanh, and softmax.
......@@ -75,7 +75,7 @@ In this scenario, we already have a float32 inference program and some associate
We can then run various inference experiments in float16 mode and save the float16 program and weights on disk for future deployment. To enhance the code usability, we maintain a consistent API so that user can use the same float32 input data to run inference program in either float32 and float16 mode and obtain output data both of float32 data type. Consequently, we need to add cast operators in the float16 inference program for conversions between the float16 tensor and float32 tensor.
The float16 transpiler is implemented to fulfill the requirements mentioned above. The details of the float16 transpiler can be found [here](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/data_type/float16.md#float16-inference).
The float16 transpiler is implemented to fulfill the requirements mentioned above. The details of the float16 transpiler can be found [here](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/data_type/float16.md#float16-inference).
### Experiment results
Simply running the following commands to reproduce the experiment results presented in this section:
......@@ -113,7 +113,7 @@ We repeat the test ten times and get the following results:
| #10 | 62.53% | 62.48% |
| average| 62.63% | 62.62% |
We can see that the accuracy of float16 inference is very close to that of float32 inference in every experiment (within 0.05% difference) and is overall 0.01% better than its float32 counterpart averaged over ten tests.
We can see that the accuracy of float16 inference is very close to that of float32 inference in every experiment (within 0.05% difference) and is overall 0.01% better than its float32 counterpart averaged over ten tests.
#### Performance benchmark
Currently, Fluid only supports float16 inference on NVIDIA GPUs. There is no motivation to support float16 inference on non-ARM CPUs where float16 is not natively supported, and float16 calculation will only be slower than its float32 counterpart.
......@@ -132,7 +132,7 @@ Average inference time for one mini-batch on Vgg16 model tested on ImageNet data
|float16| 3.32 | 4.11 | 5.88 | 9.41 | 16.54 | 30.47 | 60.23 |
|Speedup| 4.22 | 2.36  | 3.91 | 3.00 | 3.26  | 2.77 | 2.97 |
We can see that float16 inference provides **2x ~ 4x** speedup on different batch sizes.
We can see that float16 inference provides **2x ~ 4x** speedup on different batch sizes.
Convolution operation is ususally the computational bottleneck of CNN, so we also check the average time spent on the Fluid convolution operators for one mini-batch as follows:
......@@ -162,7 +162,7 @@ We find that the speedup provided by float16 inference starts relatively small a
We also did the same benchmark on a single NVIDIA GeForce GTX 1080 Ti GPU that does not support Tensor Core. The results show that for Vgg16, float16 inference provides consistent small speedup (around 1.15x) for all mini-batch sizes, while for Resnet50, float16 inference is slower than its float32 counterpart in small batch sizes (mb = 1 and 2) and then delivers around 1.15x speedup for all larger batch sizes. By comparing the benchmarks on 1080 Ti and V100, we find that Tensor Core, which is specialized for float16 computations, is a critical component of high performance float16 inference.
Please refer to [here](https://github.com/PaddlePaddle/Paddle/blob/develop/contrib/float16/float16_benchmark.md) for complete benchmark results.
Please refer to [here](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/contrib/float16/float16_benchmark.md) for complete benchmark results.
### Summary
1. Fluid is now able to run inference in float16 mode via a float16 transpiler. We currently support CNN programs, including Vgg and Resnet, to run in float16 inference mode.
......
此差异已折叠。
......@@ -38,10 +38,10 @@ if(WITH_GPU)
nv_library(tensor SRCS tensor.cc .tensor_util.cu DEPS place memory data_type device_context)
add_dependencies(tensor tensor_util)
else()
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type device_context )
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type device_context profiler)
endif(WIN32)
else()
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type device_context )
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type device_context profiler)
endif()
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
......@@ -63,7 +63,7 @@ cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto
cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory)
nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor)
cc_library(garbage_collector SRCS garbage_collector.cc DEPS device_context memory)
cc_library(garbage_collector SRCS garbage_collector.cc DEPS device_context memory gflags glog)
cc_library(reader SRCS reader.cc DEPS lod_tensor ddim)
cc_test(reader_test SRCS reader_test.cc DEPS reader)
......@@ -164,6 +164,8 @@ else()
set(NGRAPH_EXE_DEPS)
endif()
cc_library(executor_gc_helper SRCS executor_gc_helper.cc DEPS scope proto_desc operator garbage_collector)
if(WITH_DISTRIBUTE)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog
lod_rank_table feed_fetch_method sendrecvop_rpc ${GLOB_DISTRIBUTE_DEPS} graph_to_program_pass variable_helper ${NGRAPH_EXE_DEPS})
......@@ -174,7 +176,7 @@ else()
cc_test(test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op)
endif()
target_link_libraries(executor garbage_collector)
target_link_libraries(executor while_op_helper executor_gc_helper)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor parallel_ssa_graph_executor
......@@ -194,6 +196,7 @@ cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_con
cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry
proto_desc)
cc_test(inplace_op_inference_test SRCS inplace_op_inference_test.cc DEPS op_registry proto_desc op_info memory_optimize_helper)
cc_library(selected_rows SRCS selected_rows.cc DEPS tensor)
cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows)
......
......@@ -5,10 +5,12 @@ cc_library(scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_h
cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry)
cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place operator op_registry)
cc_library(fetch_barrier_op_handle SRCS fetch_barrier_op_handle.cc DEPS framework_proto scope place operator op_registry)
cc_library(multi_devices_helper SRCS multi_devices_helper.cc DEPS graph graph_helper)
cc_library(multi_devices_graph_print_pass SRCS multi_devices_graph_print_pass.cc DEPS multi_devices_helper)
cc_library(multi_devices_graph_check_pass SRCS multi_devices_graph_check_pass.cc DEPS multi_devices_helper)
cc_library(alloc_continuous_space_for_grad_pass SRCS alloc_continuous_space_for_grad_pass.cc DEPS graph graph_helper)
cc_library(variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows)
......@@ -21,6 +23,8 @@ endif()
if(WITH_GPU)
nv_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda variable_visitor dgc)
nv_library(fused_all_reduce_op_handle SRCS fused_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda variable_visitor)
if(WITH_DISTRIBUTE)
nv_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope
......@@ -35,6 +39,8 @@ if(WITH_GPU)
else()
cc_library(all_reduce_op_handle SRCS all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
variable_visitor)
cc_library(fused_all_reduce_op_handle SRCS fused_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
variable_visitor)
if(WITH_DISTRIBUTE)
cc_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope
ddim selected_rows_functor sendrecvop_rpc)
......@@ -46,9 +52,7 @@ else()
cc_library(fused_broadcast_op_handle SRCS fused_broadcast_op_handle.cc DEPS broadcast_op_handle)
endif()
cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_base scope lod_tensor)
cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor)
cc_library(fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope)
if(WITH_GPU)
cc_library(memory_optimize_helper SRCS memory_optimize_helper.cc DEPS graph graph_helper gpu_info)
......@@ -61,14 +65,17 @@ cc_library(inplace_op_pass SRCS inplace_op_pass.cc DEPS memory_optimize_pass op_
cc_library(modify_op_lock_and_record_event_pass SRCS modify_op_lock_and_record_event_pass.cc DEPS computation_op_handle op_graph_view multi_devices_helper)
cc_library(reference_count_pass_helper SRCS reference_count_pass_helper.cc DEPS garbage_collector computation_op_handle)
cc_library(eager_deletion_op_handle SRCS eager_deletion_op_handle.cc DEPS lod_tensor selected_rows reference_count_pass_helper)
cc_library(eager_deletion_pass SRCS eager_deletion_pass.cc DEPS computation_op_handle eager_deletion_op_handle graph graph_helper pass)
cc_library(while_op_eager_deletion_pass SRCS while_op_eager_deletion_pass.cc DEPS while_op_helper graph_helper pass computation_op_handle)
cc_library(eager_deletion_pass SRCS eager_deletion_pass.cc DEPS computation_op_handle eager_deletion_op_handle graph graph_helper pass while_op_eager_deletion_pass)
cc_library(reference_count_pass SRCS reference_count_pass.cc DEPS computation_op_handle graph graph_helper pass op_graph_view reference_count_pass_helper)
cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS graph graph_helper pass)
cc_library(all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_helper pass)
cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle)
scale_loss_grad_op_handle rpc_op_handle fetch_barrier_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle fused_broadcast_op_handle)
cc_library(fuse_all_reduce_op_pass SRCS fuse_all_reduce_op_pass.cc DEPS graph graph_helper fused_all_reduce_op_handle)
set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass reference_count_pass eager_deletion_pass memory_optimize_pass inplace_op_pass)
if (WITH_GPU)
......@@ -97,5 +104,5 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass multi_batch_merge_pass
fuse_relu_depthwise_conv_pass
memory_optimize_pass lock_free_optimize_pass)
fuse_relu_depthwise_conv_pass
memory_optimize_pass lock_free_optimize_pass alloc_continuous_space_for_grad_pass fuse_all_reduce_op_pass)
......@@ -13,6 +13,7 @@
// limitations under the License.
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
......@@ -52,13 +53,28 @@ std::unique_ptr<ir::Graph> AllReduceDepsPass::ApplyImpl(
// Note that must assert topology sort is stable
auto& ops = graph->Get<const std::vector<OpDesc*>>(kStaleProgramOpDescs);
for (auto* op_desc : ops) {
auto outputs = op_desc->Outputs();
for (auto& o_it : outputs) {
for (auto& v : o_it.second) { // values
vars[v] = order;
try {
bool is_bk_op =
static_cast<bool>(boost::get<int>(op_desc->GetAttr(
OpProtoAndCheckerMaker::OpRoleAttrName())) &
static_cast<int>(OpRole::kBackward));
if (!is_bk_op) continue;
auto backward_vars =
boost::get<std::vector<std::string>>(op_desc->GetNullableAttr(
OpProtoAndCheckerMaker::OpRoleVarAttrName()));
PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
auto outputs = op_desc->Outputs();
for (auto& o_it : outputs) {
for (auto& v : o_it.second) { // values
vars[v] = order;
VLOG(1) << "in all_reduce_deps_pass:" << v;
}
}
order++;
} catch (boost::bad_get e) {
}
order++;
}
std::vector<OpHandleBase*> dist_ops;
......@@ -70,7 +86,8 @@ std::unique_ptr<ir::Graph> AllReduceDepsPass::ApplyImpl(
}
}
VLOG(10) << "dist_ops size:" << dist_ops.size() << std::endl;
VLOG(10) << "dist_ops size:" << dist_ops.size()
<< ", outputs size:" << vars.size() << ", ops size:" << ops.size();
std::sort(dist_ops.begin(), dist_ops.end(), [&](OpHandleBase* op1,
OpHandleBase* op2) {
......@@ -83,6 +100,10 @@ std::unique_ptr<ir::Graph> AllReduceDepsPass::ApplyImpl(
auto l_it = vars.find(i0->name());
auto r_it = vars.find(i1->name());
PADDLE_ENFORCE(l_it != vars.end() && r_it != vars.end(),
"can't find var's name %s and %s in opdesc", i0->name(),
i1->name());
if (l_it->second < r_it->second) return true;
if (l_it->second == r_it->second) {
......
......@@ -11,12 +11,18 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include <algorithm>
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
#include "paddle/fluid/framework/operator.h"
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "dgc/dgc.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/profiler.h"
// asynchronous nccl allreduce or synchronous issue:
......@@ -34,11 +40,14 @@ namespace details {
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const platform::NCCLContextMap *ctxs)
const platform::NCCLContextMap *ctxs,
bool is_encoded, int nranks)
: OpHandleBase(node),
local_scopes_(local_scopes),
places_(places),
nccl_ctxs_(ctxs) {
nccl_ctxs_(ctxs),
is_encoded_(is_encoded),
nranks_(nranks) {
if (nccl_ctxs_) {
for (auto &p : places_) {
this->SetDeviceContext(p, nccl_ctxs_->DevCtx(p));
......@@ -52,10 +61,189 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
: OpHandleBase(node), local_scopes_(local_scopes), places_(places) {}
#endif
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
void AllReduceOpHandle::RunImplEncoded() {
platform::RecordEvent record_event(Name());
WaitInputVarGenerated();
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
PADDLE_ENFORCE_EQ(
in_var_handles.size(), places_.size(),
"The NoDummyInputSize should be equal to the number of places.");
PADDLE_ENFORCE_EQ(
in_var_handles.size(), out_var_handles.size(),
"The NoDummyInputSize and NoDummyOutputSize should be equal.");
std::vector<const LoDTensor *> ins;
std::vector<LoDTensor *> outs;
int k = -1;
for (size_t i = 0; i < local_scopes_.size(); ++i) {
auto &local_scope =
local_scopes_[i]->FindVar(kLocalExecScopeName)->Get<Scope *>();
auto original_name =
paddle::framework::GradOriginalVarName(in_var_handles[i]->name());
auto encode_var_name = original_name + g_dgc_encoded;
auto *in_var = local_scope->FindVar(encode_var_name);
PADDLE_ENFORCE_NOT_NULL(in_var);
auto &in = in_var->Get<LoDTensor>();
ins.emplace_back(&in);
auto *out = local_scope->FindVar(out_var_handles[i]->name())
->GetMutable<LoDTensor>();
outs.emplace_back(out);
if (k < 0) {
k = GetKValue(in_var_handles[i]->name());
}
}
PADDLE_ENFORCE(platform::is_gpu_place(ins[0]->place()));
PADDLE_ENFORCE(platform::is_gpu_place(outs[0]->place()));
PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr.");
int dtype = -1;
size_t in_numel = 0;
size_t out_numel = 0;
PADDLE_ENFORCE(nranks_ > 1);
std::vector<std::function<void()>> all_reduce_calls;
for (size_t i = 0; i < local_scopes_.size(); ++i) {
auto &place = places_[i];
auto &in = *ins[i];
void *in_tensor_buf = const_cast<void *>(in.data<void>());
auto &out = *outs[i];
float *out_tensor_buf = out.data<float>();
dtype = (dtype == -1) ? platform::ToNCCLDataType(in.type()) : dtype;
in_numel = (in_numel == 0) ? static_cast<size_t>(in.numel()) : in_numel;
PADDLE_ENFORCE(in_numel % 2 == 0);
PADDLE_ENFORCE(in_numel / 2 == static_cast<size_t>(k));
out_numel = (out_numel == 0) ? static_cast<size_t>(out.numel()) : out_numel;
int dev_id = boost::get<platform::CUDAPlace>(place).device;
auto &nccl_ctx = nccl_ctxs_->at(dev_id);
auto stream = nccl_ctx.stream();
auto comm = nccl_ctx.comm_;
auto &allocator =
platform::DeviceTemporaryAllocator::Instance().Get(place, stream);
int encode_size = 2 * k * sizeof(int);
// dgc use ncclAllGather to get all the encoded data
// so the buffer need nranks.
int buf_size = nranks_ * encode_size;
auto tmp_ious_data = allocator.Allocate(buf_size);
void *gather_buff = reinterpret_cast<void *>(tmp_ious_data->ptr());
VLOG(10) << "in_numel:" << in_numel << ", out_numel:" << out_numel
<< ", nranks:" << nranks_ << ", gather_buf size:" << buf_size
<< ", k:" << k << ", place:" << place << ", dtype:" << dtype;
all_reduce_calls.emplace_back([=] {
PADDLE_ENFORCE(paddle::communication::dgc::sparseAllGReduce(
in_tensor_buf, gather_buff, k, out_tensor_buf, out_numel, comm,
stream));
});
}
this->RunAndRecordEvent([&] {
if (all_reduce_calls.size() == 1UL) {
// Do not use NCCLGroup when manage NCCL by per thread per device
all_reduce_calls[0]();
} else {
platform::NCCLGroupGuard guard;
for (auto &call : all_reduce_calls) {
call();
}
}
});
if (FLAGS_sync_nccl_allreduce) {
for (auto &p : places_) {
int dev_id = boost::get<platform::CUDAPlace>(p).device;
auto &nccl_ctx = nccl_ctxs_->at(dev_id);
auto stream = nccl_ctx.stream();
cudaError_t e_sync = cudaStreamSynchronize(stream);
if (e_sync != 0) {
LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync);
}
cudaError_t e_get = cudaGetLastError();
if (e_get != 0) {
LOG(FATAL) << "cudaGetLastError " << cudaGetErrorString(e_get)
<< " errno:" << e_get;
}
}
}
}
int AllReduceOpHandle::GetKValue(const std::string &grad_name) {
auto original_name = paddle::framework::GradOriginalVarName(grad_name);
auto var_name = original_name + g_dgc_k;
PADDLE_ENFORCE(local_scopes_.size() > 0);
auto *scope = local_scopes_[0];
auto &local_scope = scope->FindVar(kLocalExecScopeName)->Get<Scope *>();
auto var = local_scope->FindVar(var_name);
PADDLE_ENFORCE_NOT_NULL(var);
auto tensor = var->Get<LoDTensor>().data<float>();
return *tensor;
}
#endif
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
bool AllReduceOpHandle::IsEncoded() {
if (!is_encoded_) {
return false;
}
auto counter_name = g_dgc_counter_name;
auto step_name = g_dgc_rampup_begin_step;
PADDLE_ENFORCE(local_scopes_.size() > 0);
auto *scope = local_scopes_[0];
auto &local_scope = scope->FindVar(kLocalExecScopeName)->Get<Scope *>();
auto count_var = local_scope->FindVar(counter_name);
auto step_var = local_scope->FindVar(step_name);
if (count_var == nullptr || step_var == nullptr) {
PADDLE_THROW("not find count_var:%s or step_var:%s", counter_name,
step_var);
}
float count = *count_var->Get<LoDTensor>().data<float>();
float step = *step_var->Get<LoDTensor>().data<float>();
if (static_cast<int>(count) < static_cast<int>(step)) {
VLOG(10) << "in all_reduce currentstep:" << count
<< " < rampup_begin_step:" << step
<< " so not use sparse all reduce";
return false;
}
return true;
}
#else
bool AllReduceOpHandle::IsEncoded() { return false; }
#endif
void AllReduceOpHandle::RunImpl() {
if (!IsEncoded()) {
RunImplNormal();
return;
}
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
RunImplEncoded();
#else
PADDLE_THROW("Not compiled with CUDA");
#endif
}
void AllReduceOpHandle::RunImplNormal() {
platform::RecordEvent record_event(Name());
WaitInputVarGenerated();
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
PADDLE_ENFORCE_EQ(
......@@ -72,6 +260,8 @@ void AllReduceOpHandle::RunImpl() {
auto &lod_tensor =
local_scope.FindVar(in_var_handles[i]->name())->Get<LoDTensor>();
lod_tensors.emplace_back(&lod_tensor);
VLOG(10) << "place:" << i << ", input_name:" << in_var_handles[i]->name()
<< ", out_name:" << out_var_handles[i]->name();
PADDLE_ENFORCE_EQ(in_var_handles[i]->name(), out_var_handles[i]->name(),
"The name of input and output should be equal.");
}
......@@ -99,13 +289,17 @@ void AllReduceOpHandle::RunImpl() {
auto &nccl_ctx = nccl_ctxs_->at(dev_id);
auto stream = nccl_ctx.stream();
auto comm = nccl_ctx.comm_;
VLOG(10) << "before all reduce buffer:" << buffer << ", numel:" << numel
<< ", dev_id:" << dev_id << ", dtype:" << dtype
<< ", place:" << p;
all_reduce_calls.emplace_back([=] {
PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
buffer, buffer, numel, static_cast<ncclDataType_t>(dtype), ncclSum,
comm, stream));
});
}
this->RunAndRecordEvent([&] {
if (all_reduce_calls.size() == 1UL) {
// Do not use NCCLGroup when manage NCCL by per thread per device
......
......@@ -28,11 +28,19 @@ namespace paddle {
namespace framework {
namespace details {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
constexpr char g_dgc_counter_name[] = "__g_dgc_counter__";
constexpr char g_dgc_rampup_begin_step[] = "__g_rampup_begin_step__";
constexpr char g_dgc_encoded[] = "__dgc_encoded__";
constexpr char g_dgc_k[] = "__dgc_k__";
#endif
struct AllReduceOpHandle : public OpHandleBase {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
AllReduceOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const platform::NCCLContextMap *ctxs);
const platform::NCCLContextMap *ctxs,
bool is_encoded = false, int nranks = -1);
#else
AllReduceOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places);
......@@ -50,8 +58,14 @@ struct AllReduceOpHandle : public OpHandleBase {
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
void RunImplEncoded();
const platform::NCCLContextMap *nccl_ctxs_;
bool is_encoded_{false};
int nranks_{-1};
int GetKValue(const std::string &grad_name);
#endif
void RunImplNormal();
bool IsEncoded();
};
} // namespace details
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
DEFINE_uint32(fuse_parameter_memory_size, 0, // 0 KB
"fuse_parameter_memory_size is up limited memory size "
"of one group parameters' gradient which is the input "
"of communication calling(e.g NCCLAllReduce). "
"The default value is 0, it means that "
"not set group according to memory_size.");
DEFINE_int32(
fuse_parameter_groups_size, 3,
"fuse_parameter_groups_size is the size of one group parameters' gradient. "
"The default value is a experimental result. If the "
"fuse_parameter_groups_size is 1, it means that the groups size is "
"the number of parameters' gradient. If the fuse_parameter_groups_size is "
"-1, it means that there are only one group. The default value is 3, it is "
"an experimental value.");
namespace paddle {
namespace framework {
namespace details {
static const char kUnKnow[] = "@UNKNOW@";
static framework::proto::VarType::Type kDefaultDtype =
framework::proto::VarType::Type::VarType_Type_BOOL;
class AllocContinuousSpaceForGradPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override {
ir::Graph &result = *graph;
auto &places = Get<const std::vector<platform::Place>>(kPlaces);
auto &local_scopes = Get<const std::vector<Scope *>>(kLocalScopes);
ResetAttribute<ParamsAndGrads>(kParamsAndGrads, &result);
ResetAttribute<GroupGradsAndParams>(kGroupGradsAndParams, &result);
// NOTE: The operator nodes should be in topology order.
std::vector<ir::Node *> topo_nodes = ir::TopologySortOperations(result);
auto &params_grads = result.Get<ParamsAndGrads>(kParamsAndGrads);
for (auto &node : topo_nodes) {
RecordParamsAndGrads(node, &params_grads);
}
if (params_grads.size() == 0) {
VLOG(10) << "Doesn't find gradients";
return std::move(graph);
}
std::unordered_map<std::string, ir::Node *> vars;
for (ir::Node *node : result.Nodes()) {
if (node->IsVar() && node->Var()) {
// Note: The graph may have the same name node. For example, parameter
// is the input of operator and it also is the output of optimizer;
vars.emplace(node->Var()->Name(), node);
}
}
auto &group_grads_params =
result.Get<GroupGradsAndParams>(kGroupGradsAndParams);
// Note: the order of params_grads may be changed by SetGroupGradsAndParams.
SetGroupGradsAndParams(vars, params_grads, &group_grads_params);
params_grads.clear();
for (auto &group_p_g : group_grads_params) {
params_grads.insert(params_grads.begin(), group_p_g.begin(),
group_p_g.end());
}
for (auto &p_g : params_grads) {
std::swap(p_g.first, p_g.second);
}
// Set Gradients as Persistable to prevent this var becoming reusable.
auto dtype = kDefaultDtype;
for (auto &p_g : params_grads) {
// Get gradient var
auto iter = vars.find(p_g.second);
PADDLE_ENFORCE(iter != vars.end(), "%s is not found.", p_g.second);
iter->second->Var()->SetPersistable(true);
PADDLE_ENFORCE(IsSupportedVarType(iter->second->Var()->GetType()));
// Get Dtype
auto ele_dtype = iter->second->Var()->GetDataType();
if (dtype == kDefaultDtype) {
dtype = ele_dtype;
PADDLE_ENFORCE_NE(ele_dtype, kDefaultDtype);
}
PADDLE_ENFORCE_EQ(ele_dtype, dtype);
}
// Create the fused variable name.
if (!result.Has(kFusedVars)) {
result.Set(kFusedVars, new FusedVars);
}
const std::string prefix(kFusedVarNamePrefix);
// The fused_var_name should be unique.
auto fused_var_name = prefix + "GRAD@" + params_grads[0].second;
auto &fused_var_set = result.Get<FusedVars>(kFusedVars);
PADDLE_ENFORCE_EQ(fused_var_set.count(fused_var_name), 0);
fused_var_set.insert(fused_var_name);
InitFusedVarsAndAllocSpaceForVars(places, local_scopes, vars,
fused_var_name, params_grads);
return std::move(graph);
}
template <typename AttrType>
void ResetAttribute(const std::string &attr_name, ir::Graph *graph) const {
if (graph->Has(attr_name)) {
VLOG(10) << attr_name << " is reset.";
graph->Erase(attr_name);
}
graph->Set(attr_name, new AttrType);
}
void SetGroupGradsAndParams(
const std::unordered_map<std::string, ir::Node *> &var_nodes,
const ParamsAndGrads &params_grads,
GroupGradsAndParams *group_grads_params) const {
SetGroupAccordingToLayers(var_nodes, params_grads, group_grads_params);
SetGroupAccordingToMemorySize(var_nodes, group_grads_params);
SetGroupAccordingToGroupSize(var_nodes, group_grads_params);
}
void SetGroupAccordingToLayers(
const std::unordered_map<std::string, ir::Node *> &var_nodes,
const ParamsAndGrads &params_grads,
GroupGradsAndParams *group_grads_params) const {
std::unordered_map<std::string, std::vector<int>> layer_params;
for (size_t i = 0; i < params_grads.size(); ++i) {
auto pos = params_grads[i].first.find_first_of(".");
if (pos == std::string::npos) {
layer_params[std::string(kUnKnow)].emplace_back(i);
} else {
layer_params[params_grads[i].first.substr(0, pos)].emplace_back(i);
}
}
group_grads_params->reserve(layer_params.size());
for (size_t i = 0; i < params_grads.size(); ++i) {
auto pos = params_grads[i].first.find_first_of(".");
std::string key = kUnKnow;
if (pos != std::string::npos) {
key = params_grads[i].first.substr(0, pos);
}
auto iter = layer_params.find(key);
if (iter == layer_params.end()) continue;
group_grads_params->emplace_back();
auto &local_group_grads_params = group_grads_params->back();
for (auto &idx : iter->second) {
local_group_grads_params.emplace_back(
std::make_pair(params_grads[idx].second, params_grads[idx].first));
}
layer_params.erase(iter);
}
VLOG(10) << "SetGroupAccordingToLayers: ";
for (size_t i = 0; i < group_grads_params->size(); ++i) {
VLOG(10) << "group " << i;
std::stringstream out;
for (auto &p_g : group_grads_params->at(i)) {
out << "(" << p_g.second << ", " << p_g.first << "), ";
}
VLOG(10) << out.str();
}
}
void SetGroupAccordingToMemorySize(
const std::unordered_map<std::string, ir::Node *> &var_nodes,
GroupGradsAndParams *group_grads_params) const {
if (FLAGS_fuse_parameter_memory_size == 0) {
return;
}
size_t group_memory_size =
static_cast<size_t>(FLAGS_fuse_parameter_memory_size);
GroupGradsAndParams local_group_grads_params;
size_t j = 0;
while (j < group_grads_params->size()) {
local_group_grads_params.emplace_back();
auto &group_p_g = local_group_grads_params.back();
size_t local_group_memory_size = 0;
while (j < group_grads_params->size()) {
std::for_each(
group_grads_params->at(j).begin(), group_grads_params->at(j).end(),
[&local_group_memory_size,
&var_nodes](const std::pair<std::string, std::string> &g_p) {
auto iter = var_nodes.find(g_p.second);
PADDLE_ENFORCE(iter != var_nodes.end(), "%s is not found.",
g_p.second);
auto shape = iter->second->Var()->GetShape();
size_t size =
framework::SizeOfType(iter->second->Var()->GetDataType());
std::for_each(shape.begin(), shape.end(),
[&size](const int64_t &n) { size *= n; });
local_group_memory_size += size;
});
group_p_g.insert(group_p_g.end(), group_grads_params->at(j).begin(),
group_grads_params->at(j).end());
++j;
if (local_group_memory_size >= group_memory_size) {
break;
}
}
}
std::swap(*group_grads_params, local_group_grads_params);
VLOG(10) << string::Sprintf(
"SetGroupAccordingToMemorySize(memory_size: %d):",
FLAGS_fuse_parameter_memory_size);
for (size_t i = 0; i < group_grads_params->size(); ++i) {
VLOG(10) << "group " << i;
std::stringstream out;
for (auto &g_p : group_grads_params->at(i)) {
auto iter = var_nodes.find(g_p.second);
PADDLE_ENFORCE(iter != var_nodes.end(), "%s is not found.", g_p.second);
auto shape = iter->second->Var()->GetShape();
size_t size = framework::SizeOfType(iter->second->Var()->GetDataType());
std::for_each(shape.begin(), shape.end(),
[&size](const int64_t &n) { size *= n; });
out << string::Sprintf("(%s(%d), %s)", g_p.second, size, g_p.first);
}
VLOG(10) << out.str();
}
}
void SetGroupAccordingToGroupSize(
const std::unordered_map<std::string, ir::Node *> &var_nodes,
GroupGradsAndParams *group_grads_params) const {
if (FLAGS_fuse_parameter_groups_size == 1) {
return;
}
size_t group_size = static_cast<size_t>(FLAGS_fuse_parameter_groups_size);
if (FLAGS_fuse_parameter_groups_size == -1) {
group_size = group_grads_params->size();
}
PADDLE_ENFORCE_GT(group_size, 1);
size_t groups = (group_grads_params->size() + group_size - 1) / group_size;
GroupGradsAndParams local_group_grads_params;
local_group_grads_params.reserve(groups);
size_t j = 0;
for (size_t i = 0; i < groups; ++i) {
local_group_grads_params.emplace_back();
auto &group_p_g = local_group_grads_params.back();
group_p_g.reserve(group_size);
while (j < group_grads_params->size()) {
group_p_g.insert(group_p_g.end(), group_grads_params->at(j).begin(),
group_grads_params->at(j).end());
++j;
if (j % group_size == 0) break;
}
}
std::swap(*group_grads_params, local_group_grads_params);
VLOG(10) << "SetGroupAccordingToGroupSize(group_size: " << group_size
<< "): ";
for (size_t i = 0; i < group_grads_params->size(); ++i) {
VLOG(10) << "group " << i;
std::stringstream out;
for (auto &p_g : group_grads_params->at(i)) {
out << "(" << p_g.second << ", " << p_g.first << "), ";
}
VLOG(10) << out.str();
}
}
private:
bool IsSupportedVarType(const proto::VarType::Type &type) const {
// Current only support LOD_TENSOR.
return type == proto::VarType::LOD_TENSOR;
}
void AppendAllocSpaceForVarsOp(const std::vector<std::string> &params_name,
const std::vector<std::string> &grads_name,
const std::string &fused_var_name,
BlockDesc *global_block) const {
auto op_desc = global_block->AppendOp();
op_desc->SetType("alloc_continuous_space");
op_desc->SetInput("Input", params_name);
op_desc->SetOutput("Output", grads_name);
op_desc->SetOutput("FusedOutput", {fused_var_name});
}
void RecordParamsAndGrads(ir::Node *node,
ParamsAndGrads *params_grads) const {
try {
bool is_bk_op =
static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
OpProtoAndCheckerMaker::OpRoleAttrName())) &
static_cast<int>(OpRole::kBackward));
if (!is_bk_op) return;
// Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once.
auto backward_vars =
boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
OpProtoAndCheckerMaker::OpRoleVarAttrName()));
PADDLE_ENFORCE_EQ(backward_vars.size() % 2, static_cast<size_t>(0));
for (size_t i = 0; i < backward_vars.size(); i += 2) {
VLOG(10) << "Trainable parameter: " << backward_vars[i]
<< ", gradient: " << backward_vars[i + 1];
params_grads->emplace_back(std::make_pair(
backward_vars[i] /*param*/, backward_vars[i + 1] /*grad*/));
}
} catch (boost::bad_get e) {
}
}
void InitFusedVarsAndAllocSpaceForVars(
const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
const std::unordered_map<std::string, ir::Node *> &vars,
const std::string &fused_var_name,
const ParamsAndGrads &params_grads) const {
// Init Gradients and FusedVars
VLOG(10) << "Init FusedVars and Gradients.";
for (auto it = local_scopes.rbegin(); it != local_scopes.rend(); ++it) {
auto &scope = *it;
PADDLE_ENFORCE(scope->FindVar(fused_var_name) == nullptr,
"%s has existed in scope.", fused_var_name);
scope->Var(fused_var_name)->GetMutable<LoDTensor>();
for (auto &p_g : params_grads) {
auto iter = vars.find(p_g.second);
PADDLE_ENFORCE(iter != vars.end());
PADDLE_ENFORCE_NOT_NULL(iter->second->Var());
PADDLE_ENFORCE_EQ(iter->second->Var()->GetType(),
proto::VarType::LOD_TENSOR);
scope->Var(p_g.second)->GetMutable<LoDTensor>();
}
}
std::vector<std::string> grads_name;
std::vector<std::string> params_name;
grads_name.reserve(params_grads.size());
params_name.reserve(params_grads.size());
for (auto &p_g : params_grads) {
params_name.emplace_back(p_g.first);
grads_name.emplace_back(p_g.second);
}
framework::ProgramDesc program_desc;
AppendAllocSpaceForVarsOp(params_name, grads_name, fused_var_name,
program_desc.MutableBlock(0));
// Run Only Once Programs
for (size_t i = 0; i < local_scopes.size(); ++i) {
for (auto &op_desc : program_desc.Block(0).AllOps()) {
auto op = OpRegistry::CreateOp(*op_desc);
op->Run(*local_scopes[i], places[i]);
}
}
}
};
} // namespace details
} // namespace framework
} // namespace paddle
REGISTER_PASS(alloc_continuous_space_for_grad_pass,
paddle::framework::details::AllocContinuousSpaceForGradPass)
.RequirePassAttr(paddle::framework::details::kPlaces)
.RequirePassAttr(paddle::framework::details::kLocalScopes);
......@@ -57,7 +57,7 @@ struct BroadcastOpHandle : public OpHandleBase {
std::string Name() const override;
bool IsMultiDeviceTransfer() override { return false; };
bool IsMultiDeviceTransfer() override { return true; };
protected:
void RunImpl() override;
......
......@@ -16,6 +16,7 @@ limitations under the License. */
#include <glog/logging.h>
#include <memory>
#include <utility>
#include "paddle/fluid/framework/details/memory_optimize_helper.h"
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
......@@ -45,12 +46,27 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
public:
explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
: ir::PassBuilder(), strategy_(strategy) {
// Add a graph viz pass to record a graph.
if (!strategy_.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass");
const std::string graph_path = string::Sprintf(
"%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph");
viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
}
if (strategy_.enable_sequential_execution_) {
VLOG(10) << "Add sequential_execution_pass";
AppendPass("sequential_execution_pass");
}
// Add op fusion.
if (strategy.sync_batch_norm_) {
AppendPass("sync_batch_norm_pass");
}
// Add op fusion.
if (strategy.fuse_relu_depthwise_conv_) {
VLOG(10) << "Add fuse_relu_depthwise_conv_pass";
AppendPass("fuse_relu_depthwise_conv_pass");
}
......@@ -62,29 +78,30 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Add automatically inplace.
if (strategy_.enable_inplace_) {
VLOG(10) << "Add inplace_pass";
AppendPass("inplace_pass");
}
if (strategy.fuse_elewise_add_act_ops_) {
VLOG(10) << "Add fuse_elewise_add_act_pass";
AppendPass("fuse_elewise_add_act_pass");
}
// for single card training, fuse_all_reduce_ops is unnecessary.
// alloc_continuous_space_for_grad_pass should be before of MultiDevPass.
if (strategy.fuse_all_reduce_ops_) {
VLOG(10) << "Add alloc_continuous_space_for_grad_pass";
AppendPass("alloc_continuous_space_for_grad_pass");
}
// Add a graph viz pass to record a graph.
if (!strategy_.debug_graphviz_path_.empty()) {
if (!strategy.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass");
const std::string graph_path = string::Sprintf(
"%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph");
"%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph");
viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
}
if (strategy.fuse_elewise_add_act_ops_) {
auto fuse_elewise_add_act_pass = AppendPass("fuse_elewise_add_act_pass");
// Add a graph viz pass to record a graph.
if (!strategy.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass");
const std::string graph_path = string::Sprintf(
"%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph");
viz_pass->Set<std::string>("graph_viz_path",
new std::string(graph_path));
}
}
CollectiveContext *context = CollectiveContext::GetInstance();
context->endpoints_ = strategy_.trainers_endpoints_;
context->trainer_id_ = strategy_.trainer_id_;
......@@ -102,11 +119,19 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// A side-effect of that, memory optimize cannot forsee the fetched vars
// , so fetchlist should be set persistable before call the Run interface.
if (strategy.memory_optimize_) {
auto memory_optimize_pass = AppendPass("memory_optimize_pass");
VLOG(10) << "Add memory_optimize_pass";
AppendPass("memory_optimize_pass");
}
AppendMultiDevPass(strategy);
if (strategy.fuse_all_reduce_ops_) {
// NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
// first, if the number is zero, fuse_all_reduce_ops will do nothing.
VLOG(10) << "Add fuse_all_reduce_op_pass";
AppendPass("fuse_all_reduce_op_pass");
}
// Add a graph print pass to record a graph with device info.
if (!strategy_.debug_graphviz_path_.empty()) {
auto multi_devices_print_pass = AppendPass("multi_devices_print_pass");
......@@ -122,28 +147,34 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Verify that the graph is correct for multi-device executor.
AppendPass("multi_devices_check_pass");
if (VLOG_IS_ON(2)) {
AppendPass("all_reduce_deps_pass");
}
if (SeqOnlyAllReduceOps(strategy)) {
VLOG(10) << "Add all_reduce_deps_pass";
AppendPass("all_reduce_deps_pass");
}
if (strategy_.remove_unnecessary_lock_) {
VLOG(10) << "Add modify_op_lock_and_record_event_pass";
AppendPass("modify_op_lock_and_record_event_pass");
}
}
// Convert graph to run on multi-devices.
void AppendMultiDevPass(const BuildStrategy &strategy) {
ir::Pass *multi_devices_pass;
ir::Pass *multi_devices_pass = nullptr;
if (strategy_.is_distribution_) {
VLOG(3) << "multi device parameter server mode";
VLOG(10) << "Add dist_multi_devices_pass";
multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
} else {
if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
VLOG(3) << "multi devices collective mode with allreduce";
VLOG(10) << "Add all_reduce_mode_multi_devices_pass";
multi_devices_pass =
AppendPass("allreduce_mode_multi_devices_pass").get();
AppendPass("all_reduce_mode_multi_devices_pass").get();
} else if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
VLOG(3) << "multi deivces collective mode with reduce";
VLOG(10) << "Add reduce_mode_multi_devices_pass";
multi_devices_pass = AppendPass("reduce_mode_multi_devices_pass").get();
} else {
PADDLE_THROW("Unknown reduce strategy.");
......@@ -200,9 +231,26 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
pass->Erase("nccl_ctxs");
pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
pass->Erase(kNCCLCtxs);
pass->SetNotOwned<platform::NCCLContextMap>(kNCCLCtxs, nctx);
#endif
} else if (pass->Type() == "fuse_all_reduce_op_pass") {
pass->Erase(kPlaces);
pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
pass->Erase(kLocalScopes);
pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
&local_scopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
pass->Erase(kNCCLCtxs);
pass->SetNotOwned<platform::NCCLContextMap>(kNCCLCtxs, nctx);
#endif
} else if (pass->Type() == "alloc_continuous_space_for_grad_pass") {
pass->Erase(kPlaces);
pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
pass->Erase(kLocalScopes);
pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
&local_scopes);
} else if (pass->Type() == "sequential_execution_pass") {
LOG(INFO) << "set enable_sequential_execution:"
<< enable_sequential_execution_;
......@@ -227,12 +275,13 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
} // namespace framework
} // namespace paddle
USE_PASS(sync_batch_norm_pass);
USE_PASS(fuse_relu_depthwise_conv_pass);
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
USE_PASS(multi_batch_merge_pass);
USE_PASS(reduce_mode_multi_devices_pass);
USE_PASS(allreduce_mode_multi_devices_pass);
USE_PASS(all_reduce_mode_multi_devices_pass);
USE_PASS(dist_multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
......@@ -242,4 +291,6 @@ USE_PASS(all_reduce_deps_pass);
USE_PASS(modify_op_lock_and_record_event_pass);
USE_PASS(inplace_pass);
USE_PASS(lock_free_optimize_pass);
USE_PASS(alloc_continuous_space_for_grad_pass);
USE_PASS(graph_to_program_pass);
USE_PASS(fuse_all_reduce_op_pass);
......@@ -16,6 +16,7 @@
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/ir/pass_builder.h"
......@@ -75,8 +76,12 @@ struct BuildStrategy {
bool fuse_elewise_add_act_ops_{false};
bool fuse_all_reduce_ops_{false};
bool fuse_relu_depthwise_conv_{false};
bool sync_batch_norm_{false};
bool memory_optimize_{true};
// TODO(dzhwinter):
// make enable_inplace, memory_optimize_
......
......@@ -14,6 +14,7 @@
#pragma once
#include <memory>
#include <string>
#include <vector>
......@@ -31,6 +32,8 @@ class ComputationOpHandle : public OpHandleBase {
ComputationOpHandle(ir::Node *node, Scope *scope, platform::Place place,
size_t scope_idx);
OperatorBase *GetOp() { return op_.get(); }
std::string Name() const override;
const Scope *GetScope() const { return scope_; }
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
#include <algorithm>
#include "paddle/fluid/framework/details/container_cast.h"
namespace paddle {
namespace framework {
namespace details {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
DataBalanceOpHandle::DataBalanceOpHandle(
ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const platform::NCCLContextMap *ctxs)
: OpHandleBase(node), local_scopes_(local_scopes), places_(places) {
if (ctxs) {
for (auto &p : places_) {
this->SetDeviceContext(p, ctxs->DevCtx(p));
}
}
}
#else
DataBalanceOpHandle::DataBalanceOpHandle(
ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places)
: OpHandleBase(node), local_scopes_(local_scopes), places_(places) {}
#endif
std::string DataBalanceOpHandle::Name() const { return "data balance"; }
std::vector<std::array<int, 3>> DataBalanceOpHandle::GetBalancePlan(
const std::vector<int> &device_sizes) {
int device_num = device_sizes.size();
int total_size = 0;
int empty_num = 0;
std::vector<std::array<int, 2>> size_device_vec;
size_device_vec.reserve(device_num);
for (int i = 0; i < device_num; ++i) {
if (device_sizes[i] == 0) {
++empty_num;
}
total_size += device_sizes[i];
size_device_vec.push_back({{device_sizes[i], i}});
}
std::vector<std::array<int, 3>> res;
if (empty_num == 0) {
// No need to do data balance.
return res;
}
if (total_size < device_num) {
// No enough data.
PADDLE_THROW_EOF();
}
std::sort(size_device_vec.begin(), size_device_vec.end(),
[](const std::array<int, 2> &a, const std::array<int, 2> &b) {
return a[0] > b[0];
});
int expected_device_size = total_size / device_num;
int src_idx = 0;
for (int dst_idx = device_num - empty_num; dst_idx < device_num; ++dst_idx) {
if (size_device_vec[src_idx][0] <= expected_device_size) {
++src_idx;
PADDLE_ENFORCE_LT(
src_idx, device_num - empty_num,
"In current srategy an empty tensor should not be copy source.");
}
size_device_vec[src_idx][0] -= expected_device_size;
size_device_vec[dst_idx][0] += expected_device_size;
res.push_back({{size_device_vec[src_idx][1], size_device_vec[dst_idx][1],
expected_device_size}});
}
return res;
}
void DataBalanceOpHandle::RunImpl() {
PADDLE_ENFORCE_GT(places_.size(), 1UL,
"Data balance can only be enabled when the number of "
"places to run larger than 1.");
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
PADDLE_ENFORCE(in_var_handles.size() % places_.size() == 0);
PADDLE_ENFORCE_EQ(
in_var_handles.size(), out_var_handles.size(),
"The NoDummyInputSize and NoDummyOutputSize should be equal.");
int data_num = in_var_handles.size() / places_.size();
WaitInputVarGenerated();
std::vector<std::vector<LoDTensor *>> lod_tensors(data_num);
std::vector<int> device_sizes;
for (int i = 0; i < static_cast<int>(in_var_handles.size()); ++i) {
PADDLE_ENFORCE_EQ(in_var_handles[i]->name(), out_var_handles[i]->name(),
"The name of input and output should be equal.");
int place_idx = i / data_num;
int data_idx = i % data_num;
auto *local_scope =
local_scopes_[place_idx]->FindVar(kLocalExecScopeName)->Get<Scope *>();
auto *tensor_var = local_scope->FindVar(in_var_handles[i]->name());
PADDLE_ENFORCE(tensor_var->IsType<LoDTensor>());
auto *tensor = tensor_var->GetMutable<LoDTensor>();
lod_tensors[data_idx].push_back(tensor);
int ins_size =
tensor->lod().empty() ? tensor->dims()[0] : tensor->NumElements();
if (data_idx == 0) {
device_sizes.emplace_back(ins_size);
} else {
PADDLE_ENFORCE_EQ(
ins_size, device_sizes.at(place_idx),
"All data on the same device shall have the same batch size.");
}
}
const auto &balance_plan = GetBalancePlan(device_sizes);
for (const auto &trans : balance_plan) {
for (int data_idx = 0; data_idx < data_num; ++data_idx) {
LoDTensor *src_tensor = lod_tensors[data_idx][trans[0]];
LoDTensor *dst_tensor = lod_tensors[data_idx][trans[1]];
int trans_ins_size = trans[2];
LoD src_lod = src_tensor->lod();
int src_ins_size =
src_lod.empty() ? src_tensor->dims()[0] : src_tensor->NumElements();
int cut_point = src_ins_size - trans_ins_size;
if (!src_lod.empty()) {
for (auto &level : src_lod) {
cut_point = level[cut_point];
}
}
TensorCopySync(src_tensor->Slice(cut_point, src_tensor->dims()[0]),
dst_tensor->place(), dst_tensor);
src_tensor->ShareDataWith(src_tensor->Slice(0, cut_point));
if (!src_lod.empty()) {
dst_tensor->set_lod(SliceInLevel(
src_lod, 0, src_ins_size - trans_ins_size, src_ins_size));
src_tensor->set_lod(
SliceInLevel(src_lod, 0, 0, src_ins_size - trans_ins_size));
}
}
}
}
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -12,6 +12,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/scope.h"
......@@ -45,6 +49,7 @@ EagerDeletionOpHandle::EagerDeletionOpHandle(
}
}
#endif
PADDLE_ENFORCE(!var_names_.empty(), "Var names cannot be empty");
}
EagerDeletionOpHandle::~EagerDeletionOpHandle() {
......@@ -60,15 +65,20 @@ EagerDeletionOpHandle::~EagerDeletionOpHandle() {
std::string EagerDeletionOpHandle::Name() const { return "eager_deletion"; }
void EagerDeletionOpHandle::RunImpl() {
auto *exec_scope = scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
Scope *exec_scope = nullptr;
std::deque<std::shared_ptr<memory::Allocation>> garbages;
for (auto &name : var_names_) {
auto it = ref_cnts_->find(name);
// Var not found, not reference count has not decreased to 0
// Reference count has not decreased to 0
if (it == ref_cnts_->end() || it->second.fetch_sub(1) != 1) {
continue;
}
if (!exec_scope) {
exec_scope = scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
}
// Var not found
auto *var = exec_scope->FindVar(name);
if (var == nullptr) {
continue;
......
......@@ -12,20 +12,168 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <functional>
#include <queue>
#include <string>
#include <tuple>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_pass.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle {
namespace framework {
namespace details {
// op -> variables which can be deleted after op runs
using OpToVarNameSetMap =
std::unordered_map<ComputationOpHandle *, std::unordered_set<std::string>>;
// Check whether the variable is LoDTensor based on static VarDesc info
static bool IsLoDTensor(VarDesc *var) {
return var->Proto()->type().type() == proto::VarType::LOD_TENSOR;
}
// Get memory size of LoDTensor
static int64_t GetMemorySize(
const std::unordered_map<std::string, std::vector<VarHandle *>> &vars,
const std::string &var_name) {
auto *var_desc = TryGetLatestVarDesc(vars.at(var_name));
PADDLE_ENFORCE_NOT_NULL(var_desc);
PADDLE_ENFORCE(IsLoDTensor(var_desc));
auto dims = var_desc->GetShape();
return SizeOfType(var_desc->GetDataType()) *
std::accumulate(dims.begin(), dims.end(), static_cast<int64_t>(1),
std::multiplies<int64_t>());
}
// Split all variables in the graph into LoDTensor and Non-LoDTensor (e.g.
// SelectedRows, LoDTensorArray)
// Since partial GC is based on static analysis of memory size of each variable
// So we should skip SelectedRows and LoDTensorArray here
static void SplitIntoLoDTensorAndNonLoDTensorVars(
const OpToVarNameSetMap &m, const GraphVars &vars,
OpToVarNameSetMap *lod_tensors, OpToVarNameSetMap *other_vars) {
lod_tensors->clear();
other_vars->clear();
for (auto &op_vars_pair : m) {
for (auto &var_name : op_vars_pair.second) {
auto *var_desc = TryGetLatestVarDesc(
vars[op_vars_pair.first->GetScopeIdx()].at(var_name));
if (IsLoDTensor(var_desc)) {
(*lod_tensors)[op_vars_pair.first].insert(var_name);
} else {
(*other_vars)[op_vars_pair.first].insert(var_name);
}
}
}
}
struct GCVarInfo {
GCVarInfo(const std::string &name, int64_t memory_size,
ComputationOpHandle *op, size_t scope_idx)
: name_(name),
memory_size_(memory_size),
op_(op),
scope_idx_(scope_idx) {}
std::string name_; // variable name
int64_t memory_size_; // memory size
ComputationOpHandle *op_; // op after which the variable could be deleted
size_t scope_idx_; // scope index where the variable locates
int64_t AbsMemorySize() const { return std::abs(memory_size_); }
};
// Delete delete_lod_tensor_only is not used currently
static OpToVarNameSetMap ShrinkGCVars(
const OpToVarNameSetMap &m, const GraphVars &vars,
const std::vector<platform::Place> &places, double fraction_of_memory_size,
bool delete_lod_tensor_only = false) {
// Do not perform gc when fraction_of_memory_size = 0
if (fraction_of_memory_size <= 0.0) return {};
/**
* Step 1: Split all variables into LoDTensor and Non-LoDTensor.
* We can only calculate memory size of LoDTensors
*/
OpToVarNameSetMap lod_tensors, other_vars;
SplitIntoLoDTensorAndNonLoDTensorVars(m, vars, &lod_tensors, &other_vars);
// Perform complete gc when fraction_of_memory_size >= 1
if (fraction_of_memory_size >= 1.0) {
return delete_lod_tensor_only ? lod_tensors : m;
}
/**
* Step 2: build GCVarInfos, and calculate total memory sizes of each device
*/
// place -> variable info (name, memory size, place, scope_idx)
std::map<platform::Place, std::vector<GCVarInfo>> place_to_vars;
// place -> total memory sizes
std::map<platform::Place, int64_t> place_to_size;
for (auto &op_vars_pair : lod_tensors) {
auto *op = op_vars_pair.first;
auto &var_names = op_vars_pair.second;
auto scope_idx = op->GetScopeIdx();
auto &place = places[scope_idx];
for (auto &var_name : var_names) {
auto var_size = GetMemorySize(vars[scope_idx], var_name);
GCVarInfo var_info(var_name, var_size, op, scope_idx);
place_to_size[place] += var_info.AbsMemorySize();
place_to_vars[place].emplace_back(std::move(var_info));
}
}
/**
* Step 3: sort GCVarInfos, and only delete the largest variables.
*/
OpToVarNameSetMap partial_vars;
for (auto &place_to_var_pair : place_to_vars) {
auto &place = place_to_var_pair.first;
auto &gc_vars = place_to_var_pair.second;
std::sort(gc_vars.begin(), gc_vars.end(),
[](const GCVarInfo &var1, const GCVarInfo &var2) {
return var1.AbsMemorySize() > var2.AbsMemorySize();
});
int64_t accumulated_size = 0;
int64_t size_threshold =
static_cast<int64_t>(fraction_of_memory_size * place_to_size[place]);
for (size_t i = 0; i < gc_vars.size() && accumulated_size < size_threshold;
++i) {
partial_vars[gc_vars[i].op_].insert(gc_vars[i].name_);
accumulated_size += gc_vars[i].AbsMemorySize();
}
}
/**
* Step 4: Combine other vars (SelectedRows, LoDTensorArray)
*/
if (!delete_lod_tensor_only) {
for (auto &op_vars_pair : other_vars) {
partial_vars[op_vars_pair.first].insert(op_vars_pair.second.begin(),
op_vars_pair.second.end());
}
}
return partial_vars;
}
class EagerDeletionPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
std::unique_ptr<ir::Graph> EagerDeletionPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
auto &ref_cnts =
......@@ -43,9 +191,7 @@ std::unique_ptr<ir::Graph> EagerDeletionPass::ApplyImpl(
// a reverse map of last_live_ops
// i.e., last op --> variable names which can be deleted.
std::unordered_map<ComputationOpHandle *, std::unordered_set<std::string>>
op_vars_map;
OpToVarNameSetMap op_vars_map;
for (auto &var_ops_map : last_live_ops) {
for (auto &var_ops_pair : var_ops_map) {
const std::string &var_name = var_ops_pair.first;
......@@ -55,6 +201,10 @@ std::unique_ptr<ir::Graph> EagerDeletionPass::ApplyImpl(
}
}
double memory_fraction = framework::GetEagerDeletionMemoryFraction();
op_vars_map = ShrinkGCVars(op_vars_map, vars, places, memory_fraction);
for (auto &pair : op_vars_map) {
auto *op = pair.first;
auto &var_names = pair.second;
......@@ -85,8 +235,12 @@ std::unique_ptr<ir::Graph> EagerDeletionPass::ApplyImpl(
eager_deletion_op->AddOutput(dummy_leaf);
}
VLOG(10) << "FLAGS_memory_fraction_of_eager_deletion = " << memory_fraction;
VLOG(10) << "Create " << op_vars_map.size() << " EagerDeletionOpHandle(s)";
return graph;
auto while_op_eager_deletion_pass =
ir::PassRegistry::Instance().Get("while_op_eager_deletion_pass");
return while_op_eager_deletion_pass->Apply(std::move(graph));
}
} // namespace details
......@@ -99,3 +253,5 @@ REGISTER_PASS(eager_deletion_pass,
.RequirePassAttr(paddle::framework::details::kLastLiveOpsOfVars)
.RequirePassAttr(paddle::framework::details::kAllPlaces)
.RequirePassAttr(paddle::framework::details::kGarbageCollector);
USE_PASS(while_op_eager_deletion_pass);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
namespace paddle {
namespace framework {
namespace details {
class EarlyDeleteOpHandle : public OpHandleBase {
public:
EarlyDeleteOpHandle(ir::Node* node, const Scope* scope,
const platform::Place& place,
const std::vector<std::string>& names,
GarbageCollector* gc)
: OpHandleBase(node),
scope_(scope),
place_(place),
names_(names),
gc_(gc) {
#ifdef PADDLE_WITH_CUDA
if (IsStreamGarabageCollector()) {
auto gpu_place = boost::get<platform::CUDAPlace>(place);
PADDLE_ENFORCE(cudaSetDevice(gpu_place.device));
PADDLE_ENFORCE(cudaEventCreateWithFlags(&event_, cudaEventDisableTiming));
}
#endif
}
~EarlyDeleteOpHandle() {
#ifdef PADDLE_WITH_CUDA
if (IsStreamGarabageCollector()) {
auto gpu_place = boost::get<platform::CUDAPlace>(dev_ctx_->GetPlace());
PADDLE_ENFORCE(cudaSetDevice(gpu_place.device));
PADDLE_ENFORCE(cudaEventDestroy(event_));
}
#endif
}
std::string Name() const override { return "early_delete"; }
protected:
void RunImpl() override {
std::vector<std::shared_ptr<memory::Allocation>> tensors;
auto* local_scope = scope_->FindVar(kLocalExecScopeName)->Get<Scope*>();
for (auto& var_name : names_) {
auto* var = local_scope->FindVar(var_name);
PADDLE_ENFORCE(var != nullptr,
string::Sprintf("Local Scope not has var %s", var_name));
if (var->IsType<LoDTensor>()) {
tensors.emplace_back(var->GetMutable<LoDTensor>()->MoveMemoryHolder());
} else if (var->IsType<SelectedRows>()) {
tensors.emplace_back(var->GetMutable<SelectedRows>()
->mutable_value()
->MoveMemoryHolder());
} else if (var->IsType<LoDTensorArray>()) {
LoDTensorArray* tensor_array = var->GetMutable<LoDTensorArray>();
for (auto& tensor : *tensor_array) {
tensors.emplace_back(tensor.MoveMemoryHolder());
}
}
}
if (!tensors.empty()) {
ClearTensors(tensors);
}
}
private:
void ClearTensors(
const std::vector<std::shared_ptr<memory::Allocation>>& tensors) {
if (platform::is_cpu_place(place_)) {
ClearCPUTensors(tensors);
} else {
ClearGPUTensors(tensors);
}
}
void ClearCPUTensors(
const std::vector<std::shared_ptr<memory::Allocation>>& tensors) {
auto* gc = dynamic_cast<CPUGarbageCollector*>(gc_);
if (gc != nullptr) {
gc->Add(tensors);
}
}
void ClearGPUTensors(
const std::vector<std::shared_ptr<memory::Allocation>>& tensors) {
#ifdef PADDLE_WITH_CUDA
auto* gc = dynamic_cast<StreamGarbageCollector*>(gc_);
if (gc != nullptr) {
auto compute_stream = dev_ctx_->stream();
auto callback_stream = gc->stream();
auto callback_func = [=]() {
PADDLE_ENFORCE(cudaEventRecord(event_, compute_stream));
PADDLE_ENFORCE(cudaStreamWaitEvent(callback_stream, event_, 0));
};
gc_->Add(tensors, callback_func);
} else {
gc_->Add(tensors);
}
}
bool IsStreamGarabageCollector() const {
return dynamic_cast<const StreamGarbageCollector*>(gc_) != nullptr;
#endif
}
const Scope* scope_;
const platform::Place place_;
std::vector<std::string> names_;
GarbageCollector* gc_;
#ifdef PADDLE_WITH_CUDA
platform::CUDADeviceContext* dev_ctx_;
cudaEvent_t event_;
#endif
};
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -12,40 +12,55 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fuse_vars_op_handle.h"
#include "paddle/fluid/framework/details/fetch_barrier_op_handle.h"
#include <string>
namespace paddle {
namespace framework {
namespace details {
FetchBarrierOpHandle::FetchBarrierOpHandle(
ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places)
// fetch_barrier op always run on place0, but output on all places.
: OpHandleBase(node),
op_(framework::OpRegistry::CreateOp(*node->Op())),
local_scopes_(local_scopes),
places_(places),
run_scope_(local_scopes[0]),
place_(places[0]) {
for (auto &p : places) {
this->SetDeviceContext(p, platform::DeviceContextPool::Instance().Get(p));
}
}
void FuseVarsOpHandle::RunImpl() {
WaitInputVarGenerated(place_);
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
PADDLE_ENFORCE_EQ(in_var_handles.size(), 0UL);
PADDLE_ENFORCE_EQ(out_var_handles.size() - 1, inputs_numel_.size(), "");
auto scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
bool FetchBarrierOpHandle::IsMultiDeviceTransfer() {
// override IsMultiDeviceTransfer to return true
return true;
}
auto out_var_handle = out_var_handles[0];
auto out_var = scope->Var(out_var_handle->name());
void FetchBarrierOpHandle::RunImpl() {
WaitInputVarGenerated(place_);
auto out_tensor = out_var->GetMutable<LoDTensor>();
out_tensor->Resize({total_numel_}).mutable_data(this->place_, type_);
auto run_func = [this]() {
op_->Run(*run_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>(), place_);
};
int64_t s = 0;
for (size_t i = 1; i < out_var_handles.size(); ++i) {
auto out_name = out_var_handles[i]->name();
auto out_t = scope->Var(out_name)->GetMutable<LoDTensor>();
auto numel = this->inputs_numel_.at(out_name);
out_t->ShareDataWith(out_tensor->Slice(s, s + numel));
s += numel;
if (is_lock_and_record_event_free_) {
run_func();
} else {
this->RunAndRecordEvent(run_func);
}
this->RunAndRecordEvent([] {});
}
std::string FuseVarsOpHandle::Name() const { return "fuse vars"; }
bool FetchBarrierOpHandle::NeedWait(VarHandleBase *in_var) {
bool need_wait =
in_var && in_var->GeneratedOp() &&
in_var->GeneratedOp()->DeviceContext(place_) != dev_ctxes_.at(place_);
return need_wait;
}
std::string FetchBarrierOpHandle::Name() const { return op_->Type(); }
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -14,13 +14,13 @@
#pragma once
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
......@@ -28,38 +28,34 @@ namespace paddle {
namespace framework {
namespace details {
struct FuseVarsOpHandle : public OpHandleBase {
// **NOTE**: fetch_barrier op is special it outputs all recved variables on
// all places if there are multiple places, must init with
// multiple dev_ctxes_ !!!!
struct FetchBarrierOpHandle : public OpHandleBase {
public:
FuseVarsOpHandle(ir::Node *node, Scope *local_scope,
const platform::Place &place,
const std::unordered_map<std::string, int64_t> &inputs_numel,
const proto::VarType::Type var_type)
: OpHandleBase(node),
local_scope_(local_scope),
place_(place),
inputs_numel_(inputs_numel),
type_(var_type) {
total_numel_ = 0;
for (auto in_numel : inputs_numel) {
PADDLE_ENFORCE_GT(in_numel.second, 0);
total_numel_ += in_numel.second;
}
}
FetchBarrierOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places);
std::string Name() const override;
bool IsMultiDeviceTransfer() override;
bool IsMultiDeviceTransfer() override { return false; };
std::string Name() const override;
protected:
void RunImpl() override;
bool NeedWait(VarHandleBase *in_var) override;
private:
Scope *local_scope_;
const platform::Place place_;
const std::unordered_map<std::string, int64_t> inputs_numel_;
const proto::VarType::Type type_;
int64_t total_numel_;
std::unique_ptr<OperatorBase> op_;
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
Scope *run_scope_;
platform::Place place_;
bool is_lock_and_record_event_free_{false};
};
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -82,6 +82,8 @@ void FetchOpHandle::WaitInputVarGenerated(const platform::Place &place) {
}
}
bool FetchOpHandle::IsMultiDeviceTransfer() { return true; }
std::string FetchOpHandle::Name() const { return "Fetch"; }
} // namespace details
......
......@@ -39,6 +39,8 @@ struct FetchOpHandle : public OpHandleBase {
std::string Name() const override;
bool IsMultiDeviceTransfer() override;
protected:
void RunImpl() override;
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/fused_all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle {
namespace framework {
namespace details {
class FuseAllReduceOpPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override {
ir::Graph &result = *graph;
auto &places = Get<const std::vector<platform::Place>>(kPlaces);
auto &local_scopes = Get<const std::vector<Scope *>>(kLocalScopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto *nccl_ctxs = &Get<platform::NCCLContextMap>(kNCCLCtxs);
#endif
std::unordered_set<std::string> grads;
auto &params_grads = result.Get<ParamsAndGrads>(kParamsAndGrads);
size_t num_of_all_reduce = params_grads.size();
grads.reserve(num_of_all_reduce);
for (auto p_g : params_grads) {
grads.insert(p_g.second);
}
size_t num_place = places.size();
std::unordered_map<std::string, ir::Node *> all_reduce_ops;
all_reduce_ops.reserve(grads.size());
for (auto &node : result.Nodes()) {
if (node->IsOp()) {
PADDLE_ENFORCE(node->IsWrappedBy<OpHandleBase>());
auto *all_reduce_op_handle =
dynamic_cast<AllReduceOpHandle *>(&node->Wrapper<OpHandleBase>());
if (all_reduce_op_handle) {
auto inputs = DynamicCast<VarHandle>(all_reduce_op_handle->Inputs());
PADDLE_ENFORCE_EQ(inputs.size(), num_place);
// The inputs' name should be the same.
auto &grad_name = inputs[0]->name();
for (size_t i = 1; i < inputs.size(); ++i) {
PADDLE_ENFORCE_EQ(inputs[i]->name(), grad_name,
"The input name should be the same.");
}
PADDLE_ENFORCE_NE(grads.count(grad_name), static_cast<size_t>(0));
all_reduce_ops.emplace(grad_name, node);
}
}
}
VLOG(10) << "Find all_reduce_ops: " << all_reduce_ops.size();
if (all_reduce_ops.size() == 0) {
return std::move(graph);
}
PADDLE_ENFORCE_EQ(all_reduce_ops.size(), grads.size(),
"The number of all_reduce OpHandle is not equal to the "
"number of grads. Maybe some gradients are sparse type, "
"it is not supported currently.");
VLOG(10) << "Insert fused_all_reduce";
auto &group_grads_params =
graph->Get<GroupGradsAndParams>(kGroupGradsAndParams);
for (auto &group_g_p : group_grads_params) {
size_t group_size = group_g_p.size();
PADDLE_ENFORCE_GT(group_size, static_cast<size_t>(0));
std::vector<ir::Node *> group_all_reduce_ops;
group_all_reduce_ops.reserve(group_size);
for (auto &g_p : group_g_p) {
group_all_reduce_ops.emplace_back(all_reduce_ops.at(g_p.first));
}
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
InsertFusedAllReduce(places, local_scopes, group_size,
group_all_reduce_ops, nccl_ctxs, &result);
#else
InsertFusedAllReduce(places, local_scopes, group_size,
group_all_reduce_ops, &result);
#endif
}
return std::move(graph);
}
void InsertFusedAllReduce(const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
const size_t num_of_all_reduce,
const std::vector<ir::Node *> &all_reduce_ops,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const platform::NCCLContextMap *nccl_ctxs,
#endif
ir::Graph *result) const {
std::vector<VarHandleBase *> inputs;
std::vector<VarHandleBase *> outputs;
for (auto &op : all_reduce_ops) {
auto &op_handle = op->Wrapper<OpHandleBase>();
inputs.insert(inputs.end(), op_handle.Inputs().begin(),
op_handle.Inputs().end());
// Remove output
for_each(op_handle.Inputs().begin(), op_handle.Inputs().end(),
[&op_handle](VarHandleBase *var_handle) {
var_handle->RemoveOutput(&op_handle, op_handle.Node());
});
outputs.insert(outputs.end(), op_handle.Outputs().begin(),
op_handle.Outputs().end());
// Remove Input
for_each(
op_handle.Outputs().begin(), op_handle.Outputs().end(),
[](VarHandleBase *var_handle) { var_handle->ClearGeneratedOp(); });
result->RemoveNode(op_handle.Node());
}
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
CreateFusedAllReduceOp(inputs, outputs, num_of_all_reduce, places,
local_scopes, nccl_ctxs, result);
#else
CreateFusedAllReduceOp(inputs, outputs, num_of_all_reduce, places,
local_scopes, result);
#endif
}
private:
void CreateFusedAllReduceOp(const std::vector<VarHandleBase *> &inputs,
const std::vector<VarHandleBase *> &outputs,
const size_t num_of_all_reduce,
const std::vector<platform::Place> &places,
const std::vector<Scope *> &local_scopes,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const platform::NCCLContextMap *nccl_ctxs,
#endif
ir::Graph *result) const {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto *op_handle = new FusedAllReduceOpHandle(
result->CreateEmptyNode("fused_all_reduce", ir::Node::Type::kOperation),
local_scopes, places, num_of_all_reduce, nccl_ctxs);
#else
auto *op_handle = new FusedAllReduceOpHandle(
result->CreateEmptyNode("fused_all_reduce", ir::Node::Type::kOperation),
local_scopes, places, num_of_all_reduce);
#endif
for (auto in : inputs) {
op_handle->AddInput(in);
}
for (auto out : outputs) {
op_handle->AddOutput(out);
}
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
if (!nccl_ctxs) {
SetCommunicationContext(places, op_handle);
}
#else
SetCommunicationContext(places, op_handle);
#endif
}
void SetCommunicationContext(const std::vector<platform::Place> &places,
FusedAllReduceOpHandle *op_handle) const {
for (size_t i = 0; i < places.size(); ++i) {
op_handle->SetDeviceContext(
places[i], platform::DeviceContextPool::Instance().Get(places[i]));
}
}
};
} // namespace details
} // namespace framework
} // namespace paddle
REGISTER_PASS(fuse_all_reduce_op_pass,
paddle::framework::details::FuseAllReduceOpPass);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fused_all_reduce_op_handle.h"
#include <algorithm>
#include <utility>
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_bool(skip_fused_all_reduce_check, false, "");
namespace paddle {
namespace framework {
namespace details {
typedef std::vector<std::vector<std::pair<std::string, const LoDTensor *>>>
GradientAndLoDTensor;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
FusedAllReduceOpHandle::FusedAllReduceOpHandle(
ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const size_t num_of_all_reduce,
const platform::NCCLContextMap *ctxs)
: OpHandleBase(node),
local_scopes_(local_scopes),
places_(places),
num_of_all_reduce_(num_of_all_reduce),
nccl_ctxs_(ctxs) {
if (nccl_ctxs_) {
for (auto &p : places_) {
this->SetDeviceContext(p, nccl_ctxs_->DevCtx(p));
}
}
PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
}
#else
FusedAllReduceOpHandle::FusedAllReduceOpHandle(
ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const size_t num_of_all_reduce)
: OpHandleBase(node),
local_scopes_(local_scopes),
places_(places),
num_of_all_reduce_(num_of_all_reduce) {
PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
}
#endif
void FusedAllReduceOpHandle::RunImpl() {
platform::RecordEvent record_event(Name());
VLOG(4) << this->DebugString();
WaitInputVarGenerated();
// The input: grad0(dev0), grad0(dev1), grad1(dev0), grad1(dev1)...
// The output: grad0(dev0), grad0(dev1), grad1(dev0), grad1(dev1)...
auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
size_t place_num = places_.size();
PADDLE_ENFORCE_EQ(
in_var_handles.size(), place_num * num_of_all_reduce_,
"The NoDummyInputSize should be equal to the number of places.");
PADDLE_ENFORCE_EQ(
in_var_handles.size(), out_var_handles.size(),
"The NoDummyInputSize and NoDummyOutputSize should be equal.");
GradientAndLoDTensor grads_tensor;
grads_tensor.resize(place_num);
int64_t numel = -1;
auto dtype = static_cast<framework::proto::VarType::Type>(0);
for (size_t scope_idx = 0; scope_idx < local_scopes_.size(); ++scope_idx) {
auto &g_tensor = grads_tensor.at(scope_idx);
g_tensor.reserve(num_of_all_reduce_);
GetGradLoDTensor(scope_idx, in_var_handles, out_var_handles, &g_tensor);
int64_t element_num = 0;
framework::proto::VarType::Type ele_dtype =
static_cast<framework::proto::VarType::Type>(0);
GetDTypeAndNumel(g_tensor, &ele_dtype, &element_num);
if (numel == -1) {
numel = element_num;
}
if (dtype == static_cast<framework::proto::VarType::Type>(0)) {
dtype = ele_dtype;
PADDLE_ENFORCE_NE(ele_dtype,
static_cast<framework::proto::VarType::Type>(0));
}
PADDLE_ENFORCE_EQ(ele_dtype, dtype);
// Check whether the address space is contiguous.
std::sort(
g_tensor.begin(), g_tensor.end(),
[](const std::pair<std::string, const LoDTensor *> &grad1,
const std::pair<std::string, const LoDTensor *> &grad2) -> bool {
return grad1.second->data<void>() < grad2.second->data<void>();
});
for (size_t k = 1; k < g_tensor.size(); ++k) {
const void *cur_address = g_tensor.at(k - 1).second->data<void>();
int64_t len = g_tensor.at(k - 1).second->numel();
auto offset = len * framework::SizeOfType(dtype);
void *infer_next_address = reinterpret_cast<void *>(
reinterpret_cast<uintptr_t>(cur_address) + offset);
const void *next_address = g_tensor.at(k).second->data<void>();
VLOG(10) << string::Sprintf(
"Input[%d](%s) address: 0X%02x, Input[%d](%s) address: 0X%02x, Infer "
"input[%d] address: 0X%02x. The offset: %d",
k - 1, g_tensor.at(k - 1).first, cur_address, g_tensor.at(k).first, k,
next_address, k, infer_next_address, offset);
PADDLE_ENFORCE_EQ(infer_next_address, next_address,
"The address is not consistent.");
}
}
if (!FLAGS_skip_fused_all_reduce_check) {
for (size_t scope_idx = 0; scope_idx < place_num; ++scope_idx) {
for (size_t j = 1; j < num_of_all_reduce_; ++j) {
PADDLE_ENFORCE_EQ(grads_tensor.at(0).at(j).first,
grads_tensor.at(scope_idx).at(j).first);
}
}
}
std::vector<const void *> lod_tensor_data;
for (size_t scope_idx = 0; scope_idx < place_num; ++scope_idx) {
auto data = grads_tensor.at(scope_idx).at(0).second->data<void>();
lod_tensor_data.emplace_back(data);
}
if (platform::is_gpu_place(places_[0])) {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr.");
int nccl_dtype = platform::ToNCCLDataType(dtype);
std::vector<std::function<void()>> all_reduce_calls;
for (size_t i = 0; i < local_scopes_.size(); ++i) {
auto &p = places_[i];
void *buffer = const_cast<void *>(lod_tensor_data.at(i));
int dev_id = boost::get<platform::CUDAPlace>(p).device;
auto &nccl_ctx = nccl_ctxs_->at(dev_id);
auto stream = nccl_ctx.stream();
auto comm = nccl_ctx.comm_;
all_reduce_calls.emplace_back([=] {
PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
buffer, buffer, numel, static_cast<ncclDataType_t>(nccl_dtype),
ncclSum, comm, stream));
});
}
this->RunAndRecordEvent([&] {
if (all_reduce_calls.size() == 1UL) {
// Do not use NCCLGroup when manage NCCL by per thread per device
all_reduce_calls[0]();
} else {
platform::NCCLGroupGuard guard;
for (auto &call : all_reduce_calls) {
call();
}
}
});
#else
PADDLE_THROW("Not compiled with CUDA");
#endif
} else {
// Special handle CPU only Operator's gradient. Like CRF
auto grad_name = grads_tensor.at(0).at(0).first;
auto &trg = *this->local_scopes_[0]
->FindVar(kLocalExecScopeName)
->Get<Scope *>()
->FindVar(grad_name)
->GetMutable<framework::LoDTensor>();
// Reduce All data to trg in CPU
ReduceBufferData func(lod_tensor_data, trg.data<void>(), numel);
VisitDataType(trg.type(), func);
for (size_t i = 1; i < local_scopes_.size(); ++i) {
auto &scope =
*local_scopes_[i]->FindVar(kLocalExecScopeName)->Get<Scope *>();
auto &p = places_[i];
auto *var = scope.FindVar(grad_name);
auto *dev_ctx = dev_ctxes_.at(p);
size_t size = numel * SizeOfType(trg.type());
RunAndRecordEvent(p, [&trg, var, dev_ctx, p, size] {
auto dst_ptr = var->GetMutable<framework::LoDTensor>()->data<void>();
platform::CPUPlace cpu_place;
memory::Copy(cpu_place, dst_ptr, cpu_place, trg.data<void>(), size);
});
}
}
}
void FusedAllReduceOpHandle::GetGradLoDTensor(
const size_t &scope_idx, const std::vector<VarHandle *> &in_var_handles,
const std::vector<VarHandle *> &out_var_handles,
std::vector<std::pair<std::string, const LoDTensor *>> *grad_tensor) const {
auto *local_scope =
local_scopes_.at(scope_idx)->FindVar(kLocalExecScopeName)->Get<Scope *>();
size_t place_num = places_.size();
for (size_t j = 0; j < in_var_handles.size(); j += place_num) {
auto var_name = in_var_handles[j]->name();
PADDLE_ENFORCE_EQ(var_name, out_var_handles[j]->name());
auto &lod_tensor = local_scope->FindVar(var_name)->Get<LoDTensor>();
PADDLE_ENFORCE_EQ(lod_tensor.place(), places_.at(scope_idx));
grad_tensor->emplace_back(std::make_pair(var_name, &lod_tensor));
}
}
void FusedAllReduceOpHandle::GetDTypeAndNumel(
const std::vector<std::pair<std::string, const LoDTensor *>> &grad_tensor,
proto::VarType::Type *dtype, int64_t *numel) const {
*numel = 0;
for (size_t i = 0; i < grad_tensor.size(); ++i) {
// Get element number
int64_t len = grad_tensor.at(i).second->numel();
PADDLE_ENFORCE_GT(len, 0);
*numel += len;
// Get dtype
auto ele_type = grad_tensor.at(i).second->type();
if (i == 0) {
*dtype = ele_type;
}
PADDLE_ENFORCE_EQ(ele_type, *dtype);
}
}
std::string FusedAllReduceOpHandle::Name() const { return "fused_all_reduce"; }
} // namespace details
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
......@@ -15,6 +15,7 @@
#pragma once
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
......@@ -27,31 +28,47 @@ namespace paddle {
namespace framework {
namespace details {
struct DataBalanceOpHandle : public OpHandleBase {
public:
struct FusedAllReduceOpHandle : public OpHandleBase {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
DataBalanceOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const platform::NCCLContextMap *ctxs);
FusedAllReduceOpHandle(ir::Node *node,
const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const size_t num_of_all_reduce,
const platform::NCCLContextMap *ctxs);
#else
DataBalanceOpHandle(ir::Node *node, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places);
FusedAllReduceOpHandle(ir::Node *node,
const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const size_t num_of_all_reduce);
#endif
std::string Name() const override;
bool IsMultiDeviceTransfer() override { return false; };
// Delay and buffer nccl_all_reduce together can significantly increase
// performance. Disable this feature by returning false.
bool IsMultiDeviceTransfer() override { return true; };
protected:
void RunImpl() override;
private:
// std::vector<(src_dev_id, dst_dev_id, trans_size)>
std::vector<std::array<int, 3>> GetBalancePlan(
const std::vector<int> &batch_size_per_device);
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
size_t num_of_all_reduce_;
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const platform::NCCLContextMap *nccl_ctxs_;
#endif
// Check the dtype of the input
void GetDTypeAndNumel(
const std::vector<std::pair<std::string, const LoDTensor *>> &g_tensor,
proto::VarType::Type *dtype, int64_t *total_num) const;
const std::vector<Scope *> local_scopes_;
const std::vector<platform::Place> places_;
// Get gradient's name and LoDTensor
void GetGradLoDTensor(const size_t &scope_idx,
const std::vector<VarHandle *> &in_var_handles,
const std::vector<VarHandle *> &out_var_handles,
std::vector<std::pair<std::string, const LoDTensor *>>
*grad_tensor) const;
};
} // namespace details
......
......@@ -68,11 +68,11 @@ class SplitOpMaker : public OpProtoAndCheckerMaker {
class DummyVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc& op_desc, BlockDesc* block) const override {
auto& inputs = op_desc.Input("X");
auto type = block->Var(inputs.front())->GetType();
auto out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetType(type);
void operator()(framework::InferVarTypeContext* ctx) const override {
auto& inputs = ctx->Input("X");
auto type = ctx->GetType(inputs.front());
auto out_var_name = ctx->Output("Out").front();
ctx->SetType(out_var_name, type);
}
};
......
......@@ -16,6 +16,9 @@
#include <algorithm>
#include <deque>
#include <iterator>
#include <memory>
#include <queue>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
......@@ -147,12 +150,14 @@ std::unique_ptr<ir::Graph> InplacePass::ApplyImpl(
view_.Build(graph.get());
InitSSAGraphNodes();
auto cnt = 0;
for (auto* op : view_.AllOps()) {
VLOG(4) << "Handle op " << cnt++ << ": " << op->Name();
if (FLAGS_enable_inplace_whitelist && !whitelist_.count(op->Name()))
continue;
TryInplaceOpInputOutput(op, graph.get());
}
graph->ResolveHazard(var_nodes_);
// graph->ResolveHazard(var_nodes_);
return graph;
}
......@@ -263,9 +268,10 @@ void InplacePass::WithdrawModify(const NodeSwapQueue& nodes,
void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
ir::Graph* graph) const {
VLOG(4) << "Try to inplace op " << op->Name();
PADDLE_ENFORCE(op->Op() != nullptr && op->Op()->Block() != nullptr,
"op_desc is nullptr");
// PADDLE_ENFORCE(op->Op() != nullptr && op->Op()->Block() != nullptr,
// "op_desc is nullptr");
// some pre-requirments need to meet if the op want to inplaced.
PADDLE_ENFORCE(op->Op() != nullptr, "op_desc is nullptr");
auto* op_desc = op->Op();
auto& infer_inplace =
......@@ -276,21 +282,58 @@ void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
PADDLE_ENFORCE(static_cast<bool>(infer_inplace),
"%s's infer_inplace has not been registered", op_desc->Type());
auto* block = op_desc->Block();
auto in_to_outs = infer_inplace(*op_desc, block);
auto in_to_outs = infer_inplace(*op_desc);
auto& all_ops = view_.AllOps();
auto cursor = std::find(all_ops.begin(), all_ops.end(), op);
size_t idx = std::distance(all_ops.begin(), cursor);
for (auto& pair : in_to_outs) {
auto& in_var_name = pair.first;
auto& out_var_name = pair.second;
auto& in_para_name = pair.first;
auto& out_para_name = pair.second;
auto input_vars = op->Op()->Input(in_para_name);
if (!input_vars.size()) {
VLOG(4) << "Parameter " << in_para_name << " is empty skip "
<< in_para_name << " => " << out_para_name << " pair";
continue;
}
auto output_vars = op->Op()->Output(out_para_name);
if (!output_vars.size()) {
VLOG(4) << "Parameter " << out_para_name << " is empty skip "
<< in_para_name << " => " << out_para_name << " pair";
continue;
}
auto in_var_name = input_vars.at(0);
auto out_var_name = output_vars.at(0);
auto* in_node = view_.GetNodeByName(in_var_name, op->inputs);
auto* out_node = view_.GetNodeByName(out_var_name, op->outputs);
VLOG(4) << "Try to inplace " << in_var_name << " with " << out_var_name;
bool can_replace = true;
if (in_var_name == out_var_name) {
can_replace = false;
VLOG(4) << "SKIP: Input variable " << in_var_name << " & Output variable "
<< out_var_name << " are the same";
} else if (!NodeCanReused(in_node)) {
can_replace = false;
VLOG(4) << "SKIP: Input varialbe " << in_var_name << "cannot be reused";
} else if (!NodeCanReused(out_node)) {
can_replace = false;
VLOG(4) << "SKIP: Output variable " << out_var_name
<< " cannot be reused";
} else if (details::NodeSize(*in_node->Var()) !=
details::NodeSize(*out_node->Var())) {
can_replace = false;
VLOG(4) << "SKIP: Input and Output varialbe size not match";
}
if (!can_replace) continue;
// 2. there is no external pending op on the input node
if (view_.PendingOpsOnVar(in_node).size() > 1) {
// if (view_.PendingOpsOnVar(in_node).size() > 1) {
if (in_node->outputs.size() > 1 && !view_.CheckDeps(in_node, op)) {
VLOG(4) << string::Sprintf(
"Skiped pair %s => %s. %s input has external dependency."
"inplace such pair will overwrite the memory.",
......@@ -337,6 +380,97 @@ void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
}
}
void GraphView::TopoSort(ir::Graph* graph) {
//
ops_.clear();
auto deps_num = [](ir::Node* op) {
auto cnt = 0;
for (auto& var : op->inputs)
if (var->inputs.size() > 0) ++cnt;
return cnt;
};
std::queue<std::pair<ir::Node*, uint32_t>> ready_ops;
int level = 0;
auto nodes = graph->Nodes();
std::unordered_map<ir::Node*, uint32_t> deps_map;
for (auto& node : nodes) {
if (node->IsOp() && node->Op() != nullptr) {
deps_map[node] = deps_num(node);
if (0 == deps_map[node]) {
ready_ops.push({node, level});
}
}
}
while (!ready_ops.empty()) {
auto item = ready_ops.front();
ready_ops.pop();
ops_.emplace_back(item.first);
// record level when pop from queue
op_level_[item.first] = item.second;
for (auto node : item.first->outputs) {
for (auto op : node->outputs) {
--deps_map[op];
if (deps_map[op] == 0) ready_ops.push({op, item.second + 1});
}
}
}
bool all_ops_checked = true;
for (auto& node : nodes) {
if (node->IsOp() && node->Op() != nullptr && deps_map[node] > 0) {
all_ops_checked = false;
break;
}
}
PADDLE_ENFORCE(all_ops_checked, "All ops deps should be 0 after analysis");
}
// return true if current op node depeneds on all other op that use the same
// variable node
bool GraphView::CheckDeps(ir::Node* var, ir::Node* current_op) const {
// get op list that rely on the same variable
auto op_list = var->outputs;
for (auto& op : op_list) {
if (op == current_op) continue;
VLOG(4) << " GraphView::CheckDeps : " << op->Name() << " & "
<< current_op->Name();
if (!CheckOpDeps(op, current_op)) return false;
VLOG(4) << "";
}
return true;
}
// check if op2 depends on op1's output
bool GraphView::CheckOpDeps(ir::Node* op1, ir::Node* op2) const {
auto print_op = [&](ir::Node* op, const char* name) {
std::ostringstream os;
os << " " << name << " : " << op->Name() << " ";
os << "Input args : ";
for (auto& arg : op->inputs) os << arg->Name() << " ";
os << "Output args : ";
for (auto& arg : op->outputs) os << arg->Name() << " ";
os << "Level : " << op_level_.at(op);
VLOG(4) << os.str();
};
print_op(op1, "OP1");
print_op(op2, "OP2");
if (op1 == op2) return true;
if (op_level_.at(op1) >= op_level_.at(op2)) return false;
for (auto& var : op2->inputs)
if (var->inputs.size() > 0 && CheckOpDeps(op1, var->inputs[0])) return true;
return false;
}
ir::Node* GraphView::GetNodeByName(const std::string& name,
const std::vector<ir::Node*>& nodes) const {
// nodes should be op->inputs/outputs
......@@ -382,22 +516,7 @@ void GraphView::Build(ir::Graph* g) {
// Because we insert some new created node. Which may have data race between
// nodes.
// resolve data harzards depends on the var nodes in right order.
ops_ = SortOpLikeDescOrder(*g);
// 1. track the nodes which reused previous node in Python memory optimize.
// these node can not be inplaced, otherwise may generate a circle in graph.
std::unordered_set<std::string> all_vars;
for (auto& node : g->Nodes()) {
if (node->IsVar()) continue;
for (auto& out : node->outputs) {
if (out->IsCtrlVar() || out->Var() == nullptr) continue;
if (all_vars.count(out->Name())) {
dup_nodes_.emplace(out->Name());
} else {
all_vars.emplace(out->Name());
}
}
}
TopoSort(g);
// 2. track the nodes which used by parameter server.
// these node can not be inplaced, otherwise trainer
......
......@@ -14,6 +14,7 @@
#pragma once
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
......@@ -50,10 +51,15 @@ class GraphView {
// map the parameter and gradient, must be skipped.
bool InSkipSet(const std::string& var) const;
bool CheckDeps(ir::Node* var, ir::Node* current_op) const;
bool CheckOpDeps(ir::Node* op1, ir::Node* op2) const;
void TopoSort(ir::Graph* g);
private:
std::vector<ir::Node*> ops_;
std::unordered_set<std::string> dup_nodes_; // mem opt affect nodes
std::map<ir::Node*, std::unordered_set<ir::Node*>> adj_list_;
std::unordered_map<ir::Node*, uint32_t> op_level_;
};
// swap pairs in sequence
......
......@@ -190,7 +190,7 @@ struct NodeComparator {
auto rhs_shape = rhs_desc->GetShape();
if ((lhs_shape[0] == -1 && rhs_shape[0] == -1) ||
(lhs_shape[0] != -1 && rhs_shape[0] != -1)) {
return NodeSize(lhs) <= NodeSize(rhs);
return NodeSize(lhs) == NodeSize(rhs);
} else {
return false;
}
......@@ -337,7 +337,6 @@ bool NodeCanReused(const VarDesc& node) {
auto type = node.GetType();
// only these types holds bulk of gpu memory
if (!(type == proto::VarType::LOD_TENSOR ||
type == proto::VarType::SELECTED_ROWS ||
type == proto::VarType::LOD_TENSOR_ARRAY)) {
return false;
}
......@@ -450,6 +449,7 @@ void ControlFlowGraph::LiveVariableAnalysis() {
live_in_[op].insert(var);
}
for (auto& var : defs_[op]) {
if (uses_[op].count(var)) continue;
live_in_[op].erase(var);
}
......
......@@ -142,15 +142,16 @@ TEST(OrderedSet, FindBestFitNode) {
for (auto& node : nodes) {
pool.Insert(node.get());
}
// FIXME(liuwei1031) this API has changed,
// disable these tests temporarily
// FindNextBestFitNode
auto* n = nodes[0].get();
auto* cache = pool.FindBestFitNode(n);
PADDLE_ENFORCE(cache->Name() == "a");
cache = pool.FindNextBestFitNode(n, cache);
PADDLE_ENFORCE(cache->Name() == "c");
cache = pool.FindNextBestFitNode(n, cache);
PADDLE_ENFORCE(cache->Name() == "b");
// auto* n = nodes[0].get();
// auto* cache = pool.FindBestFitNode(n);
// PADDLE_ENFORCE(cache->Name() == "a");
// cache = pool.FindNextBestFitNode(n, cache);
// PADDLE_ENFORCE(cache->Name() == "c");
// cache = pool.FindNextBestFitNode(n, cache);
// PADDLE_ENFORCE(cache->Name() == "b");
}
} // namespace details
......
......@@ -24,6 +24,7 @@
#include <sstream>
#include <string>
#include <type_traits>
#include <unordered_set>
#include <vector>
#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_type.h"
......@@ -191,6 +192,10 @@ void MemoryOptimizePass::SubGraphOptimize(OpDesc* op_desc) const {
// immediately to make the subblock variable reuse strategy take
// effect. Because it is a single op in graph. No need to
// update the ir nodes.
// FIXME(liuwei1031): Graph is not aware of the existence of
// BlockDescs and ProgramDescs.
// The operations related to BlockDesc or ProgramDesc should perform
// on Graph or Node directly!
sub_op_desc->Rename(var->Name(), cache->Name());
if (sub_op_desc->Block() != nullptr &&
sub_op_desc->Block()->HasVar(var->Name())) {
......
......@@ -11,18 +11,20 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
#include <algorithm>
#include <fstream>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
#include "paddle/fluid/framework/details/fetch_barrier_op_handle.h"
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/rpc_op_handle.h"
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
......@@ -30,6 +32,7 @@
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace framework {
......@@ -134,21 +137,26 @@ void AddOutputToLeafOps(ir::Graph *graph) {
}
} // namespace
void MultiDevSSAGraphBuilderBase::CheckGraph(const ir::Graph &graph) const {}
void MultiDevSSAGraphBuilderBase::Init() const {
all_vars_.clear();
loss_var_name_ = Get<const std::string>(kLossVarName);
VLOG(10) << "Init MultiDevSSAGraphBuilder, loss name: " << loss_var_name_;
places_ = Get<const std::vector<platform::Place>>(kPlaces);
local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
strategy_ = Get<const BuildStrategy>(kStrategy);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
nccl_ctxs_ = &Get<platform::NCCLContextMap>(kNCCLCtxs);
#endif
PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
}
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
Init();
CheckGraph(*graph);
std::vector<ir::Node *> sorted_ops = SortOperations(*graph);
auto nodes = graph->ReleaseNodes();
......@@ -166,7 +174,6 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
result.Set(kGraphOps, new GraphOps);
bool is_forwarding = true;
bool insert_collection_ops = NeedCollectiveOps();
for (ir::Node *node : sorted_ops) {
if (DealWithSpecialOp(&result, node)) {
......@@ -185,8 +192,8 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
CreateComputationalOps(&result, node, places_.size());
}
// Insert collection ops
if (!is_forwarding && insert_collection_ops) {
// Insert collective ops if nranks > 1
if (!is_forwarding && Get<size_t>(kNRanks) > 1) {
try {
bool is_bk_op =
static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
......@@ -200,13 +207,14 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
OpProtoAndCheckerMaker::OpRoleVarAttrName()));
PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
for (size_t i = 0; i < backward_vars.size(); i += 2) {
auto &p_name = backward_vars[i];
auto &g_name = backward_vars[i + 1];
VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
InsertCollectiveOp(&result, p_name, g_name);
VLOG(10) << "Bcast " << g_name << " for parameter " << p_name
<< " op_type " << node->Op()->Type();
if (NeedCollectiveForGrad(g_name, sorted_ops)) {
InsertCollectiveOp(&result, p_name, g_name);
}
}
} catch (boost::bad_get e) {
}
......@@ -226,6 +234,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilderBase::ApplyImpl(
* Only variables should be the leaves of graph.
*/
AddOutputToLeafOps(&result);
result.Erase(kGraphOps);
return graph;
}
......@@ -258,6 +267,11 @@ void MultiDevSSAGraphBuilderBase::InsertScaleLossGradOp(
}
}
bool MultiDevSSAGraphBuilderBase::DealWithSpecialOp(ir::Graph *result,
ir::Node *node) const {
return false;
}
std::vector<ir::Node *> MultiDevSSAGraphBuilderBase::SortOperations(
const ir::Graph &graph) const {
return ir::TopologySortOperations(graph);
......@@ -271,8 +285,20 @@ bool MultiDevSSAGraphBuilderBase::UseGPU() const {
return use_gpu;
}
bool MultiDevSSAGraphBuilderBase::NeedCollectiveOps() const {
return Get<size_t>(kNRanks) > 1;
bool MultiDevSSAGraphBuilderBase::NeedCollectiveForGrad(
const std::string &grad_name, std::vector<ir::Node *> ops) const {
// if we have allreduce_op for current gradient variable in the graph,
// then we don't need to add allreduce_op_handle for this gradient
// NOTE: This is for the case that all gradients should add collective ops
for (auto *node : ops) {
if (node->Op()->Type() != "allreduce") continue;
for (auto in_name : node->Op()->InputArgumentNames()) {
if (in_name == grad_name) {
return false;
}
}
}
return true;
}
void MultiDevSSAGraphBuilderBase::CreateOpHandleIOs(ir::Graph *result,
......@@ -390,8 +416,9 @@ void MultiDevSSAGraphBuilderBase::CreateComputationalOp(ir::Graph *result,
CreateOpHandleIOs(result, node, dev_id);
}
void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(
ir::Graph *result, const std::string &og) const {
void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(ir::Graph *result,
const std::string &og,
bool is_encoded) const {
OpHandleBase *op_handle = nullptr;
auto append_allreduce_op = [&](
......@@ -400,7 +427,9 @@ void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
scopes, places, nccl_ctxs_));
scopes, places, nccl_ctxs_, is_encoded,
static_cast<int>(strategy_.trainers_endpoints_.size()) *
places_.size()));
#else
result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
......@@ -422,12 +451,15 @@ void MultiDevSSAGraphBuilderBase::CreateAllReduceOp(
PADDLE_ENFORCE(!vars.empty());
auto &prev_grad = vars.back();
op_handle->AddInput(prev_grad);
VLOG(10) << "all_reduce_op_handle add input " << prev_grad->DebugString();
auto var =
new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
vars.size(), i, og, places_[i]);
vars.emplace_back(var);
op_handle->AddOutput(var);
VLOG(10) << "all_reduce_op_handle add output " << og
<< ", handle:" << var->DebugString();
}
}
......@@ -496,20 +528,17 @@ VarHandle *MultiDevSSAGraphBuilderBase::CreateReduceOp(ir::Graph *result,
}
bool MultiDevSSAGraphBuilderBase::IsScaleLossOp(ir::Node *node) const {
return boost::get<int>(
return !loss_var_name_.empty() && node->Op() &&
boost::get<int>(
node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
(static_cast<int>(OpRole::kBackward) |
static_cast<int>(OpRole::kLoss)) &&
!loss_var_name_.empty(); // If loss_var is empty. This is test mode
static_cast<int>(OpRole::kLoss));
}
bool MultiDevSSAGraphBuilderBase::IsSparseGradient(
const std::string &og) const {
PADDLE_ENFORCE(all_vars_.count(og) != 0);
if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
return true;
}
return false;
return all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS;
}
void AllReduceSSAGraphBuilder::InsertCollectiveOp(
......@@ -831,9 +860,17 @@ int DistSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ir::Node *node) const {
PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
node->Op()->Type());
result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
node->Op()->Type(), places_[op_dev_id]));
// Create fetch_barrier op handle to enable output on all devices.
// **NOTE** fetch_barrier should output variables list same as recv op does.
if (node->Op()->Type() == "fetch_barrier") {
result->Get<GraphOps>(kGraphOps).emplace_back(new FetchBarrierOpHandle(
result->CreateOpNode(node->Op()), local_scopes_, places_));
} else {
result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
node->Op()->Type(), places_[op_dev_id]));
}
if (node->Op()->Type() == "send") {
CreateOpHandleIOs(result, node, op_dev_id);
......@@ -912,6 +949,17 @@ int DistSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
return op_dev_id;
}
bool DistSSAGraphBuilder::IsEncoded(const std::string &p_name) const {
auto u_name = p_name + "__dgc_u__";
auto it = all_vars_.find(u_name);
if (it == all_vars_.end()) {
VLOG(10) << "can't find u_name, so it's not encoded:" << u_name;
return false;
}
return true;
}
void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
const std::string &p_name,
const std::string &g_name) const {
......@@ -927,7 +975,11 @@ void DistSSAGraphBuilder::InsertCollectiveOp(ir::Graph *result,
CreateReduceOp(result, g_name, 0);
CreateBroadcastOp(result, g_name, 0);
} else {
CreateAllReduceOp(result, g_name);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
CreateAllReduceOp(result, g_name, IsEncoded(p_name));
#else
PADDLE_ENFORCE(false, "Compiled withoud cuda!");
#endif
}
break;
default:
......@@ -995,7 +1047,7 @@ static int MultiDevSSAGraphBuilderRegister(const std::string &builder_mode) {
REGISTER_MULTI_DEVICES_PASS(reduce_mode_multi_devices_pass,
paddle::framework::details::ReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(
allreduce_mode_multi_devices_pass,
all_reduce_mode_multi_devices_pass,
paddle::framework::details::AllReduceSSAGraphBuilder);
REGISTER_MULTI_DEVICES_PASS(dist_multi_devices_pass,
paddle::framework::details::DistSSAGraphBuilder);
......@@ -14,7 +14,10 @@
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
......@@ -31,12 +34,6 @@ namespace framework {
class Scope;
namespace details {
constexpr char kLossVarName[] = "loss_var_name";
constexpr char kPlaces[] = "places";
constexpr char kLocalScopes[] = "local_scopes";
constexpr char kStrategy[] = "strategy";
constexpr char kNRanks[] = "nranks";
class MultiDevSSAGraphBuilderBase : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
......@@ -44,18 +41,21 @@ class MultiDevSSAGraphBuilderBase : public ir::Pass {
virtual void Init() const;
virtual void CheckGraph(const ir::Graph &graph) const;
virtual std::vector<ir::Node *> SortOperations(const ir::Graph &graph) const;
virtual void InsertCollectiveOp(ir::Graph *result, const std::string &p_name,
const std::string &g_name) const = 0;
virtual bool DealWithSpecialOp(ir::Graph *result, ir::Node *node) const = 0;
virtual bool DealWithSpecialOp(ir::Graph *result, ir::Node *node) const;
virtual void InsertPostprocessOps(ir::Graph *result) const = 0;
bool UseGPU() const;
bool NeedCollectiveOps() const;
bool NeedCollectiveForGrad(const std::string &grad_name,
std::vector<ir::Node *> ops) const;
bool IsScaleLossOp(ir::Node *node) const;
......@@ -75,7 +75,8 @@ class MultiDevSSAGraphBuilderBase : public ir::Pass {
bool IsSparseGradient(const std::string &og) const;
void CreateAllReduceOp(ir::Graph *result, const std::string &og) const;
void CreateAllReduceOp(ir::Graph *result, const std::string &og,
bool is_encoded = false) const;
void CreateBroadcastOp(ir::Graph *result, const std::string &p_name,
size_t src_dev_id) const;
......@@ -109,10 +110,6 @@ class AllReduceSSAGraphBuilder : public MultiDevSSAGraphBuilderBase {
virtual void InsertCollectiveOp(ir::Graph *result, const std::string &p_name,
const std::string &g_name) const;
virtual bool DealWithSpecialOp(ir::Graph *result, ir::Node *node) const {
return false;
}
virtual void InsertPostprocessOps(ir::Graph *result) const {}
};
......@@ -175,6 +172,8 @@ class DistSSAGraphBuilder : public BalanceVarSSAGraphBuilder {
mutable std::vector<std::unordered_set<std::string>> bcast_var_name_set_;
mutable bool need_broadcast_var_{false};
bool IsEncoded(const std::string &p_name) const;
};
std::unordered_set<std::string> &MultiDevSSAGraphBuilder();
......
......@@ -16,6 +16,9 @@
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/op_handle_base.h"
......@@ -44,6 +47,26 @@ const char kGraphVars[] = "vars";
typedef std::unordered_set<VarHandleBase *> GraphDepVars;
const char kGraphDepVars[] = "dep_vars";
constexpr char kNCCLCtxs[] = "nccl_ctxs";
constexpr char kLossVarName[] = "loss_var_name";
constexpr char kPlaces[] = "places";
constexpr char kLocalScopes[] = "local_scopes";
constexpr char kStrategy[] = "strategy";
constexpr char kNRanks[] = "nranks";
typedef std::unordered_set<std::string> FusedVars;
constexpr char kFusedVars[] = "fused_vars";
typedef std::vector<std::pair<std::string, std::string>> ParamsAndGrads;
constexpr char kParamsAndGrads[] = "params_grads";
typedef std::vector<std::vector<std::pair<std::string, std::string>>>
GroupGradsAndParams;
constexpr char kGroupGradsAndParams[] = "group_grads_params";
constexpr char kFusedVarNamePrefix[] = "@FUSEDVAR@";
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -13,6 +13,7 @@
// limitations under the License.
#include "paddle/fluid/framework/details/op_handle_base.h"
#include <map>
#include <unordered_set>
namespace paddle {
namespace framework {
......@@ -41,15 +42,42 @@ OpHandleBase::~OpHandleBase() {
void OpHandleBase::Run(bool use_cuda) {
#ifdef PADDLE_WITH_CUDA
if (events_.empty() && use_cuda) {
if (events_.empty() && use_cuda && dev_ctxes_.size() > 0) {
for (auto &p : dev_ctxes_) {
int dev_id = boost::get<platform::CUDAPlace>(p.first).device;
PADDLE_ENFORCE(cudaSetDevice(dev_id));
PADDLE_ENFORCE(
cudaEventCreateWithFlags(&events_[dev_id], cudaEventDisableTiming));
}
if (IsMultiDeviceTransfer() && dev_ctxes_.size() > 0) {
for (auto &out_var : outputs_) {
auto *out_var_handle = dynamic_cast<VarHandle *>(out_var);
if (out_var_handle) {
int dev_id =
boost::get<platform::CUDAPlace>(out_var_handle->place()).device;
out_var_handle->SetGenerateEvent(events_.at(dev_id));
}
}
} else {
PADDLE_ENFORCE_EQ(dev_ctxes_.size(), 1UL,
"%s should have only one dev_ctx.", Name());
auto &place = dev_ctxes_.begin()->first;
int dev_id = boost::get<platform::CUDAPlace>(place).device;
for (auto &out_var : outputs_) {
auto *out_var_handle = dynamic_cast<VarHandle *>(out_var);
if (out_var_handle) {
PADDLE_ENFORCE(
platform::is_same_place(place, out_var_handle->place()),
"The place of input(%s) is not consistent with the "
"place of current op(%s).",
out_var_handle->Name(), Name());
out_var_handle->SetGenerateEvent(events_.at(dev_id));
}
}
}
}
#else
PADDLE_ENFORCE(!use_cuda);
#endif
......@@ -93,17 +121,48 @@ void OpHandleBase::AddOutput(VarHandleBase *out) {
void OpHandleBase::WaitInputVarGenerated() {
for (auto in_var : inputs_) {
if (NeedWait(in_var)) {
for (auto &pair : dev_ctxes_) {
in_var->GeneratedOp()->RecordWaitEventOnCtx(pair.second);
// Dummy Variable is used to represent dependencies between operators, so
// there doesn't add event for it.
auto *in_var_handle = dynamic_cast<VarHandle *>(in_var);
if (in_var_handle) {
auto &place = in_var_handle->place();
if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
auto stream =
static_cast<platform::CUDADeviceContext *>(dev_ctxes_.at(place))
->stream();
PADDLE_ENFORCE(
cudaStreamWaitEvent(stream, in_var_handle->GetEvent(), 0));
#else
PADDLE_THROW("Doesn't compile the GPU.");
#endif
}
// There are nothing to do when the place is CPUPlace.
}
}
}
}
void OpHandleBase::WaitInputVarGenerated(const platform::Place &place) {
for (auto *in : inputs_) {
if (NeedWait(in)) {
in->GeneratedOp()->RecordWaitEventOnCtx(dev_ctxes_.at(place));
for (auto in_var : inputs_) {
if (NeedWait(in_var)) {
// Dummy Variable is used to represent dependencies between operators, so
// there doesn't add event for it.
auto *in_var_handle = dynamic_cast<VarHandle *>(in_var);
if (in_var_handle) {
if (platform::is_gpu_place(in_var_handle->place())) {
#ifdef PADDLE_WITH_CUDA
auto stream = static_cast<platform::CUDADeviceContext *>(
dev_ctxes_.at(in_var_handle->place()))
->stream();
PADDLE_ENFORCE(
cudaStreamWaitEvent(stream, in_var_handle->GetEvent(), 0));
#else
PADDLE_THROW("Doesn't compile the GPU.");
#endif
}
// There are nothing to do when the place is CPUPlace.
}
}
}
}
......
......@@ -16,9 +16,12 @@ limitations under the License. */
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/grad_op_desc_maker.h"
#include "paddle/fluid/framework/inplace_op_inference.h"
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
......@@ -34,27 +37,86 @@ enum OpInfoFillType {
kGradOpDescMaker = 2,
kVarTypeInference = 3,
kShapeInference = 4,
kInplaceOpInference = 5
kInplaceOpInference = 5,
kNoNeedBufferVarsInference = 6,
kUnknown = -1
};
namespace internal {
template <typename T, OpInfoFillType kType>
struct TypePair {
using Type = T;
static constexpr OpInfoFillType kFillType = kType;
};
using OpRegistryClasses = std::tuple< // NOLINT
TypePair<OperatorBase, kOperator>, // NOLINT
TypePair<OpProtoAndCheckerMaker, kOpProtoAndCheckerMaker>, // NOLINT
TypePair<GradOpDescMakerBase, kGradOpDescMaker>, // NOLINT
TypePair<VarTypeInference, kVarTypeInference>, // NOLINT
TypePair<InferShapeBase, kShapeInference>, // NOLINT
TypePair<InplaceOpInference, kInplaceOpInference>, // NOLINT
TypePair<NoNeedBufferVarsInference, kNoNeedBufferVarsInference> // NOLINT
>;
static constexpr int kOpRegistryClassNumber =
std::tuple_size<OpRegistryClasses>::value;
template <typename T, int kPos, bool kIsBounded /* = true*/>
struct IsMatchedBaseTypeImpl {
using PairType = typename std::tuple_element<kPos, OpRegistryClasses>::type;
static constexpr bool kValue =
std::is_base_of<typename PairType::Type, T>::value;
};
template <typename T, int kPos>
struct IsMatchedBaseTypeImpl<T, kPos, false> {
static constexpr bool kValue = false;
};
template <typename T, int kPos>
static inline constexpr bool IsMatchedBaseType() {
return IsMatchedBaseTypeImpl<
T, kPos, (kPos >= 0 && kPos < kOpRegistryClassNumber)>::kValue;
}
template <typename T, int kStart, int kEnd, bool kIsEnd, bool kIsMatched>
struct OpInfoFillTypeGetterImpl {};
// This case should not happen
template <typename T, int kStart, int kEnd>
struct OpInfoFillTypeGetterImpl<T, kStart, kEnd, true, true> {};
template <typename T, int kStart, int kEnd>
struct OpInfoFillTypeGetterImpl<T, kStart, kEnd, true, false> {
static constexpr OpInfoFillType kType = kUnknown;
};
template <typename T, int kStart, int kEnd>
struct OpInfoFillTypeGetterImpl<T, kStart, kEnd, false, false> {
static constexpr OpInfoFillType kType =
OpInfoFillTypeGetterImpl<T, kStart + 1, kEnd, kStart + 1 == kEnd,
IsMatchedBaseType<T, kStart + 1>()>::kType;
};
template <typename T, int kStart, int kEnd>
struct OpInfoFillTypeGetterImpl<T, kStart, kEnd, false, true> {
using PairType = typename std::tuple_element<kStart, OpRegistryClasses>::type;
static constexpr OpInfoFillType kType = PairType::kFillType;
};
template <typename T>
using OpInfoFillTypeGetter =
OpInfoFillTypeGetterImpl<T, 0, kOpRegistryClassNumber,
kOpRegistryClassNumber == 0,
IsMatchedBaseType<T, 0>()>;
} // namespace internal
template <typename T>
struct OpInfoFillTypeID {
static constexpr OpInfoFillType ID() {
return std::is_base_of<OperatorBase, T>::value
? kOperator
: (std::is_base_of<OpProtoAndCheckerMaker, T>::value
? kOpProtoAndCheckerMaker
: (std::is_base_of<GradOpDescMakerBase, T>::value
? kGradOpDescMaker
: (std::is_base_of<VarTypeInference, T>::value
? kVarTypeInference
: (std::is_base_of<InferShapeBase, T>::value
? kShapeInference
: (std::is_base_of<
InplaceOpInference, T>::value
? kInplaceOpInference
: static_cast<OpInfoFillType>(
-1))))));
return internal::OpInfoFillTypeGetter<T>::kType;
}
};
......@@ -127,9 +189,9 @@ struct OpInfoFiller<T, kGradOpDescMaker> {
template <typename T>
struct OpInfoFiller<T, kVarTypeInference> {
void operator()(const char* op_type, OpInfo* info) const {
info->infer_var_type_ = [](const OpDesc& fwd_op, BlockDesc* block) {
info->infer_var_type_ = [](InferVarTypeContext* context) {
T inference;
inference(fwd_op, block);
inference(context);
};
}
};
......@@ -147,9 +209,21 @@ struct OpInfoFiller<T, kShapeInference> {
template <typename T>
struct OpInfoFiller<T, kInplaceOpInference> {
void operator()(const char* op_type, OpInfo* info) const {
info->infer_inplace_ = [](const OpDesc& op_desc, BlockDesc* block) {
info->infer_inplace_ = [](const OpDesc& op_desc) {
T infer;
return infer(op_desc, block);
return infer(op_desc);
};
}
};
template <typename T>
struct OpInfoFiller<T, kNoNeedBufferVarsInference> {
void operator()(const char* op_type, OpInfo* info) const {
info->infer_no_need_buffer_vars_ = [](const VariableNameMap& inputs,
const VariableNameMap& outputs,
const AttributeMap& attrs) {
T infer(inputs, outputs, attrs);
return infer();
};
}
};
......
......@@ -53,6 +53,31 @@ struct ReduceLoDTensor {
}
};
struct ReduceBufferData {
const std::vector<const void *> &src_data_;
void *dst_data_;
int64_t numel_;
ReduceBufferData(const std::vector<const void *> &src, void *dst,
int64_t numel)
: src_data_(src), dst_data_(dst), numel_(numel) {}
template <typename T>
void apply() const {
T *dst_data = reinterpret_cast<T *>(dst_data_);
for (size_t i = 0; i < src_data_.size(); ++i) {
auto srd_data = reinterpret_cast<const T *>(src_data_[i]);
VLOG(10) << "dst: " << dst_data_ << ", " << srd_data;
if (srd_data == dst_data_) {
continue;
}
std::transform(srd_data, srd_data + numel_, dst_data, dst_data,
[](T a, T b) -> T { return a + b; });
}
}
};
inline void GatherLocalSelectedRows(
const std::vector<const SelectedRows *> &src_selecte_rows_,
const std::vector<platform::Place> &in_places,
......
......@@ -12,9 +12,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <queue>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
......@@ -189,13 +193,77 @@ ExtractComputationOpFromLastLivedVar(VarHandle *var, size_t scope_idx,
return shrink_func(computation_op);
}
static VarDesc *TryGetLatestVarDesc(const std::vector<VarHandle *> &vars) {
VarDesc *var_desc = nullptr;
std::find_if(vars.rbegin(), vars.rend(), [&](VarHandle *var_handle) -> bool {
var_desc = var_handle->Node()->Var();
return var_desc != nullptr;
});
return var_desc;
/**
* Shrink op dependencies according to no need buffer vars.
*
* If some ops do not need Tensor buffer of any input,
* just remove the dependency of this op, i.e, decrease reference count.
*
* For example, input Y of elementwise_add_grad op is only used to infer shape
* and lod of Y@GRAD, we do not need the buffer of input Y. Data buffer of
* input Y can be collected before elementwise_add_grad op runs.
*
* This method returns whether the dependency count decreases to 0, and
* shrinks op dependency if possible.
*/
static bool ShrinkNoNeedBufferVarOpDependency(
const std::string &var_name,
std::unordered_set<ComputationOpHandle *> *op_handles) {
std::vector<ComputationOpHandle *> skip_ops;
for (auto *op_handle : *op_handles) {
auto *op_base = op_handle->GetOp();
auto &inferer = op_base->Info().NoNeedBufferVarsInferer();
if (!inferer) {
continue;
}
std::unordered_set<std::string> no_need_buffer_vars =
inferer(op_base->Inputs(), op_base->Outputs(), op_base->Attrs());
// Check whether var_name occurs in other inputs or outputs of the op
// If it occurs, we cannot decrease the dependency number.
bool occurred_in_other_vars = false;
for (auto &in_pair : op_base->Inputs()) {
if (no_need_buffer_vars.count(in_pair.first) > 0) {
continue;
}
auto &args = in_pair.second;
auto iter = std::find(args.begin(), args.end(), var_name);
if (iter != args.end()) {
occurred_in_other_vars = true;
break;
}
}
if (occurred_in_other_vars) {
continue;
}
for (auto &out_pair : op_base->Outputs()) {
auto &args = out_pair.second;
auto iter = std::find(args.begin(), args.end(), var_name);
if (iter != args.end()) {
occurred_in_other_vars = true;
break;
}
}
if (!occurred_in_other_vars) {
VLOG(2) << "Shrink var " << var_name << " in op " << op_handle->Name();
skip_ops.emplace_back(op_handle);
}
}
if (skip_ops.size() == op_handles->size()) {
op_handles->clear();
return true;
} else {
for (auto *skip_op : skip_ops) {
op_handles->erase(skip_op);
}
return false;
}
}
std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
......@@ -234,17 +302,44 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
continue;
}
bool ok;
auto result = ExtractComputationOpFromLastLivedVar(
name_var_pair.second.back(), i, shrink_func, &ok);
auto &var_name = name_var_pair.first;
auto &var_handles = name_var_pair.second;
for (auto iter = var_handles.rbegin(); iter != var_handles.rend();
++iter) {
bool ok;
auto result =
ExtractComputationOpFromLastLivedVar(*iter, i, shrink_func, &ok);
// Seldomly, some vars may have no pending or preceding computation ops
// Just break;
if (!ok) break;
VLOG(10) << "Extract " << result.size() << " ops of var " << var_name;
size_t original_op_deps = result.size();
// If all ops do not need buffer of var_name, calculate reference count
// of the previous version of var_name.
if (ShrinkNoNeedBufferVarOpDependency(var_name, &result)) {
VLOG(10) << "Try to precede reference count computing at var "
<< var_name;
continue;
}
size_t final_op_deps = result.size();
if (final_op_deps < original_op_deps) {
VLOG(5) << "Shrink op deps from " << original_op_deps << " to "
<< final_op_deps;
}
if (ok) {
auto &var_name = name_var_pair.first;
PADDLE_ENFORCE(!result.empty(), "Last living ops of %s cannot be empty",
var_name);
ref_cnts[i].emplace(var_name, result.size());
last_live_ops_of_vars[i].emplace(var_name, std::move(result));
break;
}
// Seldomly, all preceding trying failed.
// Just skip this corner case
}
}
......
......@@ -13,9 +13,22 @@
// limitations under the License.
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/var_desc.h"
namespace paddle {
namespace framework {
namespace details {} // namespace details
namespace details {
VarDesc *TryGetLatestVarDesc(const std::vector<VarHandle *> &vars) {
VarDesc *var_desc = nullptr;
std::find_if(vars.rbegin(), vars.rend(), [&](VarHandle *var_handle) -> bool {
var_desc = var_handle->Node()->Var();
return var_desc != nullptr;
});
return var_desc;
}
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -16,6 +16,7 @@
#include <atomic>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
......@@ -25,6 +26,10 @@
namespace paddle {
namespace framework {
class VarDesc;
class VarHandle;
namespace details {
class ComputationOpHandle;
......@@ -43,9 +48,11 @@ const char kGarbageCollector[] = "garbage_collector";
const char kAllPlaces[] = "all_places";
using LastLiveOpsOfVars =
std::unordered_map<std::string, std::unordered_set<ComputationOpHandle*>>;
std::unordered_map<std::string, std::unordered_set<ComputationOpHandle *>>;
const char kLastLiveOpsOfVars[] = "last_live_ops_of_var";
VarDesc *TryGetLatestVarDesc(const std::vector<VarHandle *> &vars);
} // namespace details
} // namespace framework
} // namespace paddle
......@@ -14,7 +14,6 @@
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/platform/profiler.h"
......@@ -27,62 +26,49 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
: graph_(graph),
pool_(strategy.num_threads_ >= 2 ? new ::ThreadPool(strategy.num_threads_)
: nullptr),
prepare_pool_(1),
local_scopes_(local_scopes),
places_(places),
fetch_ctxs_(places),
running_ops_(0),
strategy_(strategy) {}
strategy_(strategy) {
PrepareOpDeps();
CopyOpDeps();
}
FeedFetchList ThreadedSSAGraphExecutor::Run(
const std::vector<std::string> &fetch_tensors) {
std::unique_ptr<platform::RecordEvent> event(
new platform::RecordEvent("ThreadedSSAGraphExecutorPrepare"));
std::unordered_map<OpHandleBase *, size_t> pending_ops;
std::unordered_set<VarHandleBase *> pending_vars;
auto ready_vars = std::make_shared<BlockingQueue<VarHandleBase *>>();
std::unordered_set<OpHandleBase *> ready_ops;
std::unique_ptr<OpDependentData> op_deps = op_deps_futures_.get();
CopyOpDeps();
VLOG(10) << "ThreadedSSAGraphExecutor::Run";
std::shared_ptr<BlockingQueue<VarHandleBase *>> ready_vars(
new BlockingQueue<VarHandleBase *>);
auto &pending_ops = op_deps->pending_ops_;
auto &pending_vars = op_deps->pending_vars_;
auto &ready_ops = op_deps->ready_ops_;
// For ops (e.g. nccl_all_reduce) that need to coordinate multiple
// streams from multiple GPUs, it's faster to buffer them and schedule
// together since we currently cannot overlap computation and memcpy streams.
// Should revisit it if overlapping is available.
std::unordered_set<OpHandleBase *> delayed_ops;
// Transform SSAGraph to pending_ops & pending_vars
for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) {
for (auto &name_pair : var_map) {
for (auto &version_pair : name_pair.second) {
InsertPendingVar(&pending_vars, ready_vars.get(), version_pair);
}
}
}
for (auto &var : graph_->Get<details::GraphDepVars>(details::kGraphDepVars)) {
InsertPendingVar(&pending_vars, ready_vars.get(), var);
}
for (auto &op : ir::FilterByNodeWrapper<OpHandleBase>(*graph_)) {
if (op->Inputs().empty()) { // Special case, Op has no input.
ready_ops.insert(op);
} else {
InsertPendingOp(&pending_ops, op);
}
}
// Step 2. Insert FetchOps
std::vector<FetchOpHandle *> fetch_ops;
std::unordered_set<VarHandleBase *> fetch_dependencies;
FeedFetchList fetch_data(fetch_tensors.size());
InsertFetchOps(fetch_tensors, &fetch_ops, &fetch_dependencies, &pending_ops,
&pending_vars, ready_vars.get(), &fetch_data);
InsertFetchOps(fetch_tensors, &fetch_ops, &fetch_dependencies, &ready_ops,
&pending_ops, &pending_vars, &fetch_data);
auto run_all_ops = [&](std::unordered_set<OpHandleBase *> &set) {
for (auto *op : set) {
running_ops_++;
RunOp(ready_vars, op);
}
set.clear();
};
auto run_all_op = [&](OpHandleBase *op) { RunOp(ready_vars, op); };
// Clean run context
run_op_futures_.clear();
exception_holder_.Clear();
......@@ -91,19 +77,11 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
while (!pending_vars.empty()) {
// 1. Run All Ready ops
// Keep loop until all vars are ready.
//
// NOTE: DelayedOps have a lower priority. It will be scheduled after all
// ready_ops have been performed.
if (ready_ops.empty() && strategy_.allow_op_delay_ && running_ops_ == 0) {
run_all_ops(delayed_ops);
} else {
run_all_ops(ready_ops);
}
run_all_ops(ready_ops);
// 2. Find ready variable
bool timeout;
auto cur_ready_vars = ready_vars->PopAll(1, &timeout);
if (timeout) {
if (exception_holder_.IsCaught()) {
for (auto &run_op_future : run_op_futures_) {
......@@ -115,6 +93,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
continue;
}
}
// 3. Remove the dependency of ready_var.
// Find the ready_ops after the ready_var.
for (auto ready_var : cur_ready_vars) {
......@@ -123,11 +102,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto &deps = pending_ops[op];
--deps;
if (deps == 0) {
if (op->IsMultiDeviceTransfer() && strategy_.allow_op_delay_) {
delayed_ops.insert(op);
} else {
ready_ops.insert(op);
}
run_all_op(op);
}
}
}
......@@ -143,16 +118,17 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
const std::vector<std::string> &fetch_tensors,
std::vector<FetchOpHandle *> *fetch_ops,
std::unordered_set<VarHandleBase *> *fetch_dependencies,
std::unordered_set<OpHandleBase *> *ready_ops,
std::unordered_map<OpHandleBase *, size_t> *pending_ops,
std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars, FeedFetchList *fetch_data) {
FeedFetchList *fetch_data) {
std::unordered_map<std::string, std::vector<VarHandleBase *>> fetched_vars;
std::unordered_set<VarHandleBase *> local_ready_vars;
for (auto &fetch_var_name : fetch_tensors) {
for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) {
auto it = var_map.find(fetch_var_name);
if (it != var_map.end()) {
fetched_vars[fetch_var_name].push_back(*it->second.rbegin());
fetched_vars[fetch_var_name].emplace_back(*it->second.rbegin());
}
}
}
......@@ -161,8 +137,9 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
auto &var_name = fetch_tensors[i];
auto fetched_var_it = fetched_vars.find(var_name);
PADDLE_ENFORCE(fetched_var_it != fetched_vars.end(),
"Cannot find fetched variable.(Perhaps the main_program "
"is not set to ParallelExecutor)");
"Cannot find fetched variable(%s).(Perhaps the main_program "
"is not set to ParallelExecutor)",
var_name);
auto &vars = fetched_var_it->second;
......@@ -184,9 +161,23 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
auto *fetch_dummy = new DummyVarHandle(fetch_var);
op->AddOutput(fetch_dummy);
fetch_dependencies->emplace(fetch_dummy);
this->InsertPendingVar(pending_vars, ready_vars, fetch_dummy);
this->InsertPendingOp(pending_ops, op);
this->InsertPendingVar(pending_vars, &local_ready_vars, fetch_dummy);
size_t wait_input_num = 0;
std::unordered_set<VarHandleBase *> input_set(vars.begin(), vars.end());
for (auto *var : input_set) {
if (pending_vars->count(var)) {
++wait_input_num;
}
}
if (wait_input_num) {
pending_ops->insert({op, wait_input_num});
} else {
ready_ops->insert(static_cast<OpHandleBase *>(op));
}
}
PADDLE_ENFORCE_EQ(local_ready_vars.size(), 0);
}
void ThreadedSSAGraphExecutor::InsertPendingOp(
......@@ -197,11 +188,63 @@ void ThreadedSSAGraphExecutor::InsertPendingOp(
void ThreadedSSAGraphExecutor::InsertPendingVar(
std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars, VarHandleBase *var) const {
std::unordered_set<VarHandleBase *> *ready_vars, VarHandleBase *var) const {
pending_vars->insert(var);
if (var->GeneratedOp() == nullptr) {
ready_vars->Push(var);
ready_vars->insert(var);
}
}
void ThreadedSSAGraphExecutor::PrepareOpDeps() {
op_deps_.reset(new OpDependentData());
std::unordered_map<OpHandleBase *, size_t> &pending_ops =
op_deps_->pending_ops_;
std::unordered_set<VarHandleBase *> &pending_vars = op_deps_->pending_vars_;
std::unordered_set<OpHandleBase *> &ready_ops = op_deps_->ready_ops_;
std::unordered_set<VarHandleBase *> ready_vars;
// Transform SSAGraph to pending_ops & pending_vars
for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) {
for (auto &name_pair : var_map) {
for (auto &version_pair : name_pair.second) {
InsertPendingVar(&pending_vars, &ready_vars, version_pair);
}
}
}
for (auto &var : graph_->Get<details::GraphDepVars>(details::kGraphDepVars)) {
InsertPendingVar(&pending_vars, &ready_vars, var);
}
for (auto &op : ir::FilterByNodeWrapper<OpHandleBase>(*graph_)) {
if (op->Inputs().empty()) { // Special case, Op has no input.
ready_ops.insert(op);
} else {
InsertPendingOp(&pending_ops, op);
}
}
for (auto ready_var : ready_vars) {
pending_vars.erase(ready_var);
for (auto *op : ready_var->PendingOps()) {
auto &deps = pending_ops[op];
--deps;
if (deps == 0) {
ready_ops.insert(op);
}
}
}
}
void ThreadedSSAGraphExecutor::CopyOpDeps() {
op_deps_futures_ = prepare_pool_.enqueue([&] {
auto *op_deps = new OpDependentData();
op_deps->pending_ops_.insert(op_deps_->pending_ops_.begin(),
op_deps_->pending_ops_.end());
op_deps->pending_vars_.insert(op_deps_->pending_vars_.begin(),
op_deps_->pending_vars_.end());
op_deps->ready_ops_.insert(op_deps_->ready_ops_.begin(),
op_deps_->ready_ops_.end());
return std::unique_ptr<OpDependentData>(op_deps);
});
}
void ThreadedSSAGraphExecutor::RunOp(
......@@ -216,7 +259,6 @@ void ThreadedSSAGraphExecutor::RunOp(
op->Run(strategy_.use_cuda_);
}
VLOG(10) << op << " " << op->Name() << " Done ";
running_ops_--;
ready_var_q->Extend(op->Outputs());
VLOG(10) << op << " " << op->Name() << " Signal posted";
} catch (...) {
......
......@@ -15,18 +15,20 @@
#pragma once
#include <deque>
#include <functional>
#include <list>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/exception_holder.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h"
#include "paddle/fluid/framework/ir/graph.h"
......@@ -36,6 +38,12 @@ class Scope;
namespace details {
struct OpDependentData {
std::unordered_map<OpHandleBase *, size_t> pending_ops_;
std::unordered_set<VarHandleBase *> pending_vars_;
std::unordered_set<OpHandleBase *> ready_ops_;
};
class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
public:
ThreadedSSAGraphExecutor(const ExecutionStrategy &strategy,
......@@ -57,29 +65,35 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
private:
ir::Graph *graph_;
std::unique_ptr<::ThreadPool> pool_;
::ThreadPool prepare_pool_;
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
platform::DeviceContextPool fetch_ctxs_;
ExceptionHolder exception_holder_;
std::atomic<int> running_ops_;
void InsertPendingOp(std::unordered_map<OpHandleBase *, size_t> *pending_ops,
OpHandleBase *op_instance) const;
void InsertPendingVar(std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars,
std::unordered_set<VarHandleBase *> *ready_vars,
VarHandleBase *var) const;
void InsertFetchOps(const std::vector<std::string> &fetch_tensors,
std::vector<FetchOpHandle *> *fetch_ops,
std::unordered_set<VarHandleBase *> *fetch_dependencies,
std::unordered_set<OpHandleBase *> *ready_ops,
std::unordered_map<OpHandleBase *, size_t> *pending_ops,
std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars,
FeedFetchList *fetch_data);
void PrepareOpDeps();
void CopyOpDeps();
private:
std::future<std::unique_ptr<OpDependentData>> op_deps_futures_;
ExecutionStrategy strategy_;
std::unique_ptr<OpDependentData> op_deps_;
// use std::list because clear(), push_back, and for_each are O(1)
std::list<std::future<void>> run_op_futures_;
};
......
......@@ -24,7 +24,8 @@ VarHandle::~VarHandle() { VLOG(4) << "deleting var handle " << DebugString(); }
std::string VarHandle::DebugString() const {
std::stringstream ss;
ss << name_ << ":" << place_;
ss << "name:" << name_ << ", place:" << place_ << ", version:" << version_
<< ", scope_idx:" << scope_idx_;
return ss.str();
}
......
......@@ -43,6 +43,7 @@ struct VarHandleBase {
virtual ~VarHandleBase();
virtual std::string DebugString() const = 0;
virtual const std::string& Name() const = 0;
void AddInput(OpHandleBase* in, ir::Node* node) {
node_->inputs.clear();
......@@ -95,8 +96,6 @@ struct VarHandleBase {
//
// NOTE: runtime variables have place.
struct VarHandle : public VarHandleBase {
explicit VarHandle(ir::Node* node) : VarHandleBase(node) {}
virtual ~VarHandle();
std::string DebugString() const override;
......@@ -109,6 +108,20 @@ struct VarHandle : public VarHandleBase {
name_(std::move(name)),
place_(std::move(place)) {}
#ifdef PADDLE_WITH_CUDA
bool HasEvent() { return has_event_; }
const cudaEvent_t& GetEvent() {
PADDLE_ENFORCE(HasEvent(), "The event is not set.");
return event_;
}
void SetGenerateEvent(const cudaEvent_t& event) {
has_event_ = true;
event_ = event;
}
#endif
// version field currently is not used, however, just store the version to
// debug easily.
private:
......@@ -116,6 +129,11 @@ struct VarHandle : public VarHandleBase {
size_t scope_idx_;
std::string name_;
platform::Place place_;
#ifdef PADDLE_WITH_CUDA
// Only when this event is triggered, var is generated.
cudaEvent_t event_;
bool has_event_{false};
#endif
public:
bool IsTheSameVar(const VarHandle& o) const {
......@@ -125,6 +143,7 @@ struct VarHandle : public VarHandleBase {
size_t version() const { return version_; }
size_t scope_idx() const { return scope_idx_; }
const std::string& Name() const override { return name_; }
const std::string& name() const { return name_; }
const platform::Place& place() const { return place_; }
};
......@@ -136,6 +155,10 @@ struct DummyVarHandle : public VarHandleBase {
virtual ~DummyVarHandle();
std::string DebugString() const override;
public:
const std::string& Name() const override { return name_; }
std::string name_{"DummyVar"};
};
} // namespace details
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
namespace paddle {
namespace framework {
namespace details {
class WhileOpEagerDeletionPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override {
auto all_ops = ir::FilterByNodeWrapper<OpHandleBase>(*graph);
// Find all while_op and while_grad_op
std::unordered_map<size_t, std::pair<std::vector<OperatorBase *>,
std::vector<OperatorBase *>>>
target_ops;
for (auto *op : all_ops) {
auto compute_op = dynamic_cast<ComputationOpHandle *>(op);
if (compute_op == nullptr) continue;
if (compute_op->Name() == "while") {
target_ops[compute_op->GetScopeIdx()].first.emplace_back(
compute_op->GetOp());
} else if (compute_op->Name() == "while_grad") {
target_ops[compute_op->GetScopeIdx()].second.emplace_back(
compute_op->GetOp());
}
}
for (auto &ops_pair : target_ops) {
auto &while_ops = ops_pair.second.first;
auto &while_grad_ops = ops_pair.second.second;
operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(
while_ops, while_grad_ops);
}
return graph;
}
};
} // namespace details
} // namespace framework
} // namespace paddle
REGISTER_PASS(while_op_eager_deletion_pass,
paddle::framework::details::WhileOpEagerDeletionPass);
......@@ -14,7 +14,12 @@ limitations under the License. */
#include "paddle/fluid/framework/executor.h"
#include <deque>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
......@@ -23,17 +28,18 @@ limitations under the License. */
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/framework/transfer_scope_cache.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#ifdef PADDLE_WITH_NGRAPH
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
#endif
DECLARE_bool(benchmark);
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
namespace paddle {
namespace framework {
......@@ -43,97 +49,23 @@ namespace {
int kProgramId = -1;
} // namespace
static std::unordered_map<std::string, size_t> GetNonPersistableReferenceCounts(
const BlockDesc& block, const std::vector<std::string>& skip_var_list) {
std::unordered_map<std::string, size_t> ref_cnts;
std::unordered_set<std::string> skip_vars(skip_var_list.begin(),
skip_var_list.end());
auto update_ref_cnts = [&](OpDesc* op_desc, const VariableNameMap& name_map) {
for (auto& name_pair : name_map) {
for (auto& name : name_pair.second) {
if (skip_vars.count(name)) continue;
auto* var_desc = block.FindVar(name);
if (var_desc == nullptr || var_desc->Persistable()) continue;
auto type = var_desc->Proto()->type().type();
if (type != proto::VarType::LOD_TENSOR &&
type != proto::VarType::SELECTED_ROWS &&
type != proto::VarType::LOD_TENSOR_ARRAY) {
continue;
}
++ref_cnts[name];
}
}
};
for (auto op_desc : block.AllOps()) {
update_ref_cnts(op_desc, op_desc->Inputs());
update_ref_cnts(op_desc, op_desc->Outputs());
}
return ref_cnts;
}
ExecutorPrepareContext::ExecutorPrepareContext(
const framework::ProgramDesc& prog, size_t block_id,
const std::vector<std::string>& skip_ref_cnt_vars)
: prog_(prog), block_id_(block_id) {
if (GetEagerDeletionThreshold() >= 0) {
global_ref_cnts_ = GetNonPersistableReferenceCounts(prog.Block(block_id),
skip_ref_cnt_vars);
const framework::ProgramDesc& prog, size_t block_id)
: prog_(prog), block_id_(block_id) {}
void ExecutorPrepareContext::PrepareUnusedVars(
const std::vector<std::string>& keep_vars, bool force_disable_gc) {
force_disable_gc_ = force_disable_gc;
if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
return;
}
unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
}
ExecutorPrepareContext::~ExecutorPrepareContext() {
VLOG(5) << "destroy ExecutorPrepareContext";
}
static void DeleteUnusedTensors(
const Scope& scope, const OperatorBase* op, GarbageCollector* gc,
std::unordered_map<std::string, size_t>* ref_cnts) {
std::deque<std::shared_ptr<memory::Allocation>> garbages;
auto handler = [&](const VariableNameMap& name_map) {
for (auto& name_pair : name_map) {
for (auto& name : name_pair.second) {
auto it = ref_cnts->find(name);
if (it == ref_cnts->end()) continue;
if (--(it->second) != 0) {
continue;
}
auto* var = scope.FindVar(name);
if (var == nullptr) {
continue;
}
VLOG(2) << "Erase variable " << name;
if (var->IsType<LoDTensor>()) {
garbages.emplace_back(
var->GetMutable<LoDTensor>()->MoveMemoryHolder());
} else if (var->IsType<SelectedRows>()) {
garbages.emplace_back(var->GetMutable<SelectedRows>()
->mutable_value()
->MoveMemoryHolder());
} else if (var->IsType<LoDTensorArray>()) {
auto* lod_tensor_arr = var->GetMutable<LoDTensorArray>();
for (auto& t : *lod_tensor_arr) {
garbages.emplace_back(t.MoveMemoryHolder());
}
} else {
PADDLE_THROW("Type %s of %s is not supported eager deletion",
framework::ToTypeName(var->Type()), name);
}
}
}
};
handler(op->Inputs());
handler(op->Outputs());
if (!garbages.empty()) {
gc->Add(std::move(garbages));
}
}
Executor::Executor(const platform::Place& place) : place_(place) {}
void Executor::Close() {
......@@ -184,13 +116,12 @@ void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
}
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
bool create_local_scope, bool create_vars) {
bool create_local_scope, bool create_vars,
const std::vector<std::string>& skip_ref_cnt_vars,
bool force_disable_gc) {
platform::RecordBlock b(block_id);
if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
#ifdef PADDLE_WITH_NGRAPH
if (FLAGS_use_ngraph) operators::NgraphEngine::EnableNgraph(pdesc);
#endif
auto ctx = Prepare(pdesc, block_id);
auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
}
......@@ -357,20 +288,28 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
const ProgramDesc& program, int block_id,
const std::vector<std::string>& skip_ref_cnt_vars) {
const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
std::unique_ptr<ExecutorPrepareContext> ctx(
new ExecutorPrepareContext(program, block_id, skip_ref_cnt_vars));
new ExecutorPrepareContext(program, block_id));
PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
auto& block = program.Block(block_id);
for (auto& op_desc : block.AllOps()) {
ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
}
#ifdef PADDLE_WITH_NGRAPH
if (FLAGS_use_ngraph) {
paddle::operators::NgraphEngine::FuseNgraphOps(
ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
}
#endif
ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
return ctx;
}
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
const ProgramDesc& program, const std::vector<int>& block_ids,
const std::vector<std::vector<std::string>>& skip_ref_cnt_vars) {
const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
bool force_disable_gc) {
PADDLE_ENFORCE(
skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
"skip_ref_cnt_vars should be either empty or equals to block number %d",
......@@ -378,17 +317,17 @@ std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
size_t idx = 0;
for (auto& bid : block_ids) {
ExecutorPrepareContext* ctx;
if (skip_ref_cnt_vars.empty()) {
ctx = new ExecutorPrepareContext(program, bid);
} else {
ctx = new ExecutorPrepareContext(program, bid, skip_ref_cnt_vars[idx]);
}
PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
auto* ctx = new ExecutorPrepareContext(program, bid);
auto& block = program.Block(bid);
for (auto& op_desc : block.AllOps()) {
ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
}
if (skip_ref_cnt_vars.empty()) {
ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
} else {
ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
}
result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
++idx;
}
......@@ -409,9 +348,9 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
int64_t max_memory_size = GetEagerDeletionThreshold();
std::unique_ptr<GarbageCollector> gc;
// skip while_op and while_grad_op temporarily
if (max_memory_size >= 0 && !keep_kids) {
ctx->ResetReferenceCount();
// FIXME(zjl): recurrent_op is rather complex, we would
// disable gc forcely in recurrent_op
if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(place_)) {
if (IsFastEagerDeletionModeEnabled()) {
......@@ -428,14 +367,18 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
#ifdef PADDLE_WITH_CUDA
}
#endif
// If gc is enabled and block size > 1
if (gc && ctx->prog_.Size() > 1) {
operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
ctx->ops_);
}
}
for (auto& op : ctx->ops_) {
op->Run(*local_scope, place_);
if (gc) {
DeleteUnusedTensors(*local_scope, op.get(), gc.get(),
&(ctx->runtime_ref_cnts_));
DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
}
}
......
......@@ -15,7 +15,9 @@ limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
......@@ -28,20 +30,20 @@ namespace paddle {
namespace framework {
struct ExecutorPrepareContext {
ExecutorPrepareContext(const framework::ProgramDesc& prog, size_t block_id,
const std::vector<std::string>& skip_ref_cnt_vars =
std::vector<std::string>());
ExecutorPrepareContext(const framework::ProgramDesc& prog, size_t block_id);
~ExecutorPrepareContext();
void ResetReferenceCount() { runtime_ref_cnts_ = global_ref_cnts_; }
void PrepareUnusedVars(const std::vector<std::string>& keep_vars,
bool force_disable_gc = false);
const framework::ProgramDesc& prog_;
size_t block_id_;
const size_t block_id_;
std::vector<std::unique_ptr<OperatorBase>> ops_;
std::unordered_map<std::string, size_t> global_ref_cnts_;
std::unordered_map<std::string, size_t> runtime_ref_cnts_;
std::unordered_map<OperatorBase*, std::vector<std::string>> unused_vars_;
bool force_disable_gc_{false};
};
class Executor {
......@@ -66,7 +68,10 @@ class Executor {
* Scope
*/
void Run(const ProgramDesc& prog, Scope* scope, int block_id,
bool create_local_scope = true, bool create_vars = true);
bool create_local_scope = true, bool create_vars = true,
const std::vector<std::string>& skip_ref_cnt_vars =
std::vector<std::string>(),
bool force_disable_gc = false);
// This API is very slow.
void Run(const ProgramDesc& program, Scope* scope,
......@@ -79,12 +84,14 @@ class Executor {
static std::unique_ptr<ExecutorPrepareContext> Prepare(
const ProgramDesc& program, int block_id,
const std::vector<std::string>& skip_ref_cnt_vars =
std::vector<std::string>());
std::vector<std::string>(),
bool force_disable_gc = false);
static std::vector<std::shared_ptr<ExecutorPrepareContext>> Prepare(
const ProgramDesc& program, const std::vector<int>& block_ids,
const std::vector<std::vector<std::string>>& skip_ref_cnt_vars =
std::vector<std::vector<std::string>>());
std::vector<std::vector<std::string>>(),
bool force_disable_gc = false);
void CreateVariables(const ProgramDesc& pdesc, Scope* scope, int block_id);
......
此差异已折叠。
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
namespace paddle {
namespace framework {
// Result map: op -> variable names that can be deleted after op runs
std::unordered_map<OperatorBase *, std::vector<std::string>> GetUnusedVars(
const BlockDesc &block,
const std::vector<std::unique_ptr<OperatorBase>> &ops,
const std::vector<std::string> &skip_vars);
// Collect unused tensors after op runs
void DeleteUnusedTensors(
const Scope &scope, OperatorBase *op,
const std::unordered_map<OperatorBase *, std::vector<std::string>>
&delete_vars_map,
GarbageCollector *gc);
} // namespace framework
} // namespace paddle
......@@ -13,14 +13,36 @@
// limitations under the License.
#include <algorithm>
#include <deque>
#include <functional>
#include <memory>
#include <mutex> // NOLINT
#include <utility>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/framework/garbage_collector.h"
namespace paddle {
namespace framework {
DEFINE_double(
eager_delete_tensor_gb, -1.0,
"Memory size threshold (GB) when the garbage collector clear tensors."
"Disabled when this value is less than 0");
DEFINE_bool(fast_eager_deletion_mode, true,
"Fast eager deletion mode. If enabled, memory would release "
"immediately without waiting GPU kernel ends.");
DEFINE_double(memory_fraction_of_eager_deletion, 1.0,
"Fraction of eager deletion. If less than 1.0, all variables in "
"the program would be sorted according to its memory size, and "
"only the FLAGS_memory_fraction_of_eager_deletion of the largest "
"variables would be deleted.");
GarbageCollector::GarbageCollector(const platform::Place &place,
size_t max_memory_size)
: max_memory_size_((std::max)(max_memory_size, static_cast<size_t>(1))) {
......@@ -85,5 +107,25 @@ void StreamGarbageCollector::ClearCallback(
callback_manager_->AddCallback(callback);
}
#endif
int64_t GetEagerDeletionThreshold() {
return FLAGS_eager_delete_tensor_gb < 0
? -1
: static_cast<int64_t>(FLAGS_eager_delete_tensor_gb *
(static_cast<int64_t>(1) << 30));
}
bool IsFastEagerDeletionModeEnabled() { return FLAGS_fast_eager_deletion_mode; }
void SetEagerDeletionMode(double threshold, double fraction, bool fast_mode) {
FLAGS_eager_delete_tensor_gb = threshold;
FLAGS_memory_fraction_of_eager_deletion = fraction;
FLAGS_fast_eager_deletion_mode = fast_mode;
}
double GetEagerDeletionMemoryFraction() {
return FLAGS_memory_fraction_of_eager_deletion;
}
} // namespace framework
} // namespace paddle
......@@ -18,6 +18,8 @@
#include <functional>
#include <memory>
#include <mutex> // NOLINT
#include <utility>
#include "gflags/gflags.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
......@@ -126,5 +128,12 @@ void GarbageCollector::Add(Container &&objs, Callback &&callback) {
}
}
int64_t GetEagerDeletionThreshold();
bool IsFastEagerDeletionModeEnabled();
void SetEagerDeletionMode(double threshold, double fraction, bool fast_mode);
double GetEagerDeletionMemoryFraction();
} // namespace framework
} // namespace paddle
......@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/op_desc.h"
......@@ -55,11 +57,11 @@ class GradOpDescMakerBase {
std::back_inserter(ret_val),
[this](const std::string& fwd_var_name) -> std::string {
auto g_name = GradVarName(fwd_var_name);
if (no_grad_set_.count(g_name)) {
return kEmptyVarName;
} else {
if (no_grad_set_.empty() || !no_grad_set_.count(g_name)) {
(*this->grad_to_var_)[g_name] = fwd_var_name;
return g_name;
} else {
return kEmptyVarName;
}
});
if (!drop_empty_grad) {
......
......@@ -14,6 +14,7 @@
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/scope.h"
......@@ -24,6 +25,10 @@ namespace ir {
static const char kParamScopeAttr[] = "__param_scope__";
static const char kFuseStatisAttr[] = "__fuse_statis__";
// When we use trt or other third_party lib, the parameters are managed by
// the lib, but not the fluid. So we need to record them to avoid duplicate
// allocation.
static const char kRepetitiveParamAttr[] = "__repetitive_param__";
enum FuseOptions {
DO_NOT_FUSE, // fusing will not be done
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册