提交 192cc5dd 编写于 作者: T Tomasz Patejko

Implementation of MKLDNN LRN

上级 a431f984
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/lrn_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace paddle {
namespace operators {
using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
namespace {
mkldnn::algorithm LRNAlgorithm(const paddle::framework::ExecutionContext& ctx) {
mkldnn::algorithm algorithm = mkldnn::lrn_across_channels;
std::string algorithm_str = ctx.Attr<std::string>("algorithm");
if (algorithm_str == "WITHIN_CHANNEL") {
algorithm = mkldnn::lrn_within_channel;
}
return algorithm;
}
} // namespace
template <typename T>
class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(std::is_same<T, float>::value,
"MKLDNN LRN must use float data.");
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"MKLDNN LRN must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
auto x = ctx.Input<Tensor>("X");
auto out = ctx.Output<Tensor>("Out");
auto mid = ctx.Output<Tensor>("MidOut");
auto input_data = x->data<T>();
auto output_data = out->mutable_data<T>(ctx.GetPlace());
mid->mutable_data<T>(ctx.GetPlace());
const std::string key = ctx.op().Output("Out");
const std::string key_src_memory = key + "@lrn_src_memory";
const std::string key_pd = key + "@lrn_pd";
const std::string key_workspace_memory = key + "@lrn_workspace_memory";
const int n = ctx.Attr<int>("n");
const float alpha = ctx.Attr<float>("alpha");
const float beta = ctx.Attr<float>("beta");
const float k = ctx.Attr<float>("k");
auto algorithm = LRNAlgorithm(ctx);
auto e_mid = framework::EigenTensor<T, 4>::From(*mid);
e_mid = e_mid.constant(k);
auto dims = paddle::framework::vectorize2int(x->dims());
auto src_md = paddle::platform::MKLDNNMemDesc(
dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
auto dst_md = paddle::platform::MKLDNNMemDesc(
dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
auto forward_desc = mkldnn::lrn_forward::desc{
mkldnn::prop_kind::forward, algorithm, src_md, n, alpha, beta, k};
auto forward_pd = std::make_shared<mkldnn::lrn_forward::primitive_desc>(
forward_desc, mkldnn_engine);
dev_ctx.SetBlob(key_pd, forward_pd);
auto src_memory_pd = mkldnn::memory::primitive_desc{src_md, mkldnn_engine};
auto src_memory = std::make_shared<mkldnn::memory>(
src_memory_pd, static_cast<void*>(const_cast<float*>(input_data)));
dev_ctx.SetBlob(key_src_memory, src_memory);
auto dst_memory = mkldnn::memory{{dst_md, mkldnn_engine},
static_cast<void*>(output_data)};
auto workspace_md = forward_pd->workspace_primitive_desc();
auto workspace_memory = std::make_shared<mkldnn::memory>(workspace_md);
dev_ctx.SetBlob(key_workspace_memory, workspace_memory);
auto forward_op = mkldnn::lrn_forward{*forward_pd, *src_memory,
*workspace_memory, dst_memory};
std::vector<mkldnn::primitive> pipeline = {forward_op};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
};
template <typename T>
class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(std::is_same<T, float>::value,
"MKLDNN LRN must use float data.");
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"MKLDNN LRN must use CPUPlace.");
auto x = ctx.Input<Tensor>("X");
auto out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
const std::string key = ctx.op().Input("Out");
const std::string key_src_memory = key + "@lrn_src_memory";
const std::string key_pd = key + "@lrn_pd";
const std::string key_workspace_memory = key + "@lrn_workspace_memory";
const int n = ctx.Attr<int>("n");
const float alpha = ctx.Attr<float>("alpha");
const float beta = ctx.Attr<float>("beta");
const float k = ctx.Attr<float>("k");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
auto x_grad_data = x_grad->mutable_data<T>(ctx.GetPlace());
auto out_grad_data = out_grad->data<T>();
auto dims = paddle::framework::vectorize2int(x->dims());
auto src_md = paddle::platform::MKLDNNMemDesc(
dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
auto diff_src_md = paddle::platform::MKLDNNMemDesc(
dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
auto diff_dst_md = paddle::platform::MKLDNNMemDesc(
dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw);
auto diff_dst_memory =
mkldnn::memory{{diff_dst_md, mkldnn_engine},
static_cast<void*>(const_cast<float*>(out_grad_data))};
auto diff_src_memory = mkldnn::memory{{diff_src_md, mkldnn_engine},
static_cast<void*>(x_grad_data)};
auto algorithm = LRNAlgorithm(ctx);
auto backward_desc = mkldnn::lrn_backward::desc{
algorithm, src_md, diff_src_md, n, alpha, beta, k};
auto forward_pd = dev_ctx.GetBlob(key_pd);
auto backward_pd = mkldnn::lrn_backward::primitive_desc{
backward_desc, mkldnn_engine,
*static_cast<mkldnn::lrn_forward::primitive_desc*>(forward_pd.get())};
std::shared_ptr<void> workspace_memory =
dev_ctx.GetBlob(key_workspace_memory);
auto src_memory = dev_ctx.GetBlob(key_src_memory);
auto backward_op = mkldnn::lrn_backward{
backward_pd, *static_cast<mkldnn::memory*>(src_memory.get()),
diff_dst_memory, *static_cast<mkldnn::memory*>(workspace_memory.get()),
diff_src_memory};
std::vector<mkldnn::primitive> pipeline = {backward_op};
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(lrn, MKLDNN, paddle::platform::CPUPlace,
ops::LRNMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(lrn_grad, MKLDNN, paddle::platform::CPUPlace,
ops::LRNMKLDNNGradOpKernel<float>);
......@@ -13,6 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/lrn_op.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
......@@ -135,6 +138,24 @@ class LRNOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("MidOut", x_dim);
ctx->ShareLoD("X", /*->*/ "Out");
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
}
#endif
std::string data_format = ctx.Attr<std::string>("data_format");
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
layout_, library_);
}
};
template <typename T>
......@@ -176,6 +197,21 @@ class LRNOpMaker : public framework::OpProtoAndCheckerMaker {
"beta is the power number.")
.SetDefault(0.75)
.GreaterThan(0.0);
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
"An optional string from: \"NHWC\", \"NCHW\". "
"Defaults to \"NHWC\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("AnyLayout");
AddAttr<std::string>("algorithm",
"(string default ACROSS_CHANNELS"
"An optional string: \"ACROSS_CHANNELS\", "
"\"WITHIN_CHANNEL\". Used by MKLDNN library")
.SetDefault("ACROSS_CHANNELS");
AddComment(R"DOC(
Local Response Normalization Operator.
......@@ -223,8 +259,25 @@ class LRNOpGrad : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("X");
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
}
};
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
}
#endif
std::string data_format = ctx.Attr<std::string>("data_format");
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
layout_, library_);
}
};
} // namespace operators
} // namespace paddle
......
......@@ -87,5 +87,15 @@ class TestLRNOp(OpTest):
self.check_grad(['X'], 'Out', max_relative_error=0.01)
class TestLRNMKLDNNOp(TestLRNOp):
def get_attrs(self):
attrs = TestLRNOp.get_attrs(self)
attrs['use_mkldnn'] = True
return attrs
def test_check_output(self):
self.check_output(atol=0.002)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册