未验证 提交 19228bd1 编写于 作者: L Leo Chen 提交者: GitHub

Temporally disable zero_copy (#27248)

* temporally disable zero_copy

* add test

* follow comments
上级 f402d8d8
...@@ -25,6 +25,7 @@ from .tracer import Tracer ...@@ -25,6 +25,7 @@ from .tracer import Tracer
import logging import logging
import objgraph import objgraph
from ..data_feeder import convert_dtype from ..data_feeder import convert_dtype
import warnings
__all__ = [ __all__ = [
'no_grad', 'no_grad_', 'grad', 'guard', 'enable_dygraph', 'disable_dygraph', 'no_grad', 'no_grad_', 'grad', 'guard', 'enable_dygraph', 'disable_dygraph',
...@@ -609,10 +610,10 @@ def to_variable(value, name=None, zero_copy=None, dtype=None): ...@@ -609,10 +610,10 @@ def to_variable(value, name=None, zero_copy=None, dtype=None):
uint8, uint16, complex64, complex128}. uint8, uint16, complex64, complex128}.
name(str, optional): The default value is None. Normally there is no name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please need for user to set this property. For more information, please
refer to :ref:`api_guide_Name` . refer to :ref:`api_guide_Name` .
zero_copy(bool, optional): Whether to share memory with the input numpy zero_copy(bool, optional): Whether to share memory with the input numpy
array. This parameter only works with CPUPlace and will be set to array. This parameter only works with CPUPlace and will be set to
True when it is None. Default: None. True when it is None. Default: None. (Note: zero_copy is discarded temporally for some reason.)
dtype(str, optional): The desired data type of returned ``Variable`` . dtype(str, optional): The desired data type of returned ``Variable`` .
Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' , Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' ,
'int32' , 'int64' , 'uint8' . Default: None. 'int32' , 'int64' , 'uint8' . Default: None.
...@@ -665,8 +666,17 @@ def to_variable(value, name=None, zero_copy=None, dtype=None): ...@@ -665,8 +666,17 @@ def to_variable(value, name=None, zero_copy=None, dtype=None):
else: else:
if isinstance(framework._current_expected_place(), if isinstance(framework._current_expected_place(),
framework.core.CPUPlace): framework.core.CPUPlace):
if zero_copy is None: #TODO(zhiqiu): we found two problems when enable zero_copy on CPUPlace.
zero_copy = True # (1): eigen requires 16-bytes alignments, but the data of numpy array may not statisfy.
# Details: https://eigen.tuxfamily.org/dox/group__TopicUnalignedArrayAssert.html
# (2): when used in flask framework, it may result in hang.
# Details: https://github.com/PaddlePaddle/Paddle/issues/26635
# So, we temporally diable the zero_copy strategy.
if zero_copy == True:
warnings.warn(
"Currently, zero_copy is not supported, and it will be discarded."
)
zero_copy = False
else: else:
assert not zero_copy, "zero_copy mode can only be used with CPUPlace" assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
......
...@@ -15,18 +15,26 @@ ...@@ -15,18 +15,26 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
import warnings
class TestImperativeNumpyBridge(unittest.TestCase): class TestImperativeNumpyBridge(unittest.TestCase):
def test_tensor_from_numpy(self): def test_tensor_from_numpy(self):
data_np = np.array([[2, 3, 1]]).astype('float32') data_np = np.array([[2, 3, 1]]).astype('float32')
with fluid.dygraph.guard(fluid.CPUPlace()): with fluid.dygraph.guard(fluid.CPUPlace()):
var = fluid.dygraph.to_variable(data_np, zero_copy=True) with warnings.catch_warnings(record=True) as w:
self.assertTrue(np.array_equal(var.numpy(), data_np)) warnings.simplefilter("always")
data_np[0][0] = 4 var = fluid.dygraph.to_variable(data_np, zero_copy=True)
self.assertEqual(data_np[0][0], 4) assert "Currently, zero_copy is not supported, and it will be discarded." in str(
self.assertEqual(var[0][0].numpy()[0], 4) w[-1].message)
self.assertTrue(np.array_equal(var.numpy(), data_np)) # Temporally diable zero_copy
# var = fluid.dygraph.to_variable(data_np, zero_copy=True)
# self.assertTrue(np.array_equal(var.numpy(), data_np))
# data_np[0][0] = 4
# self.assertEqual(data_np[0][0], 4)
# self.assertEqual(var[0][0].numpy()[0], 4)
# self.assertTrue(np.array_equal(var.numpy(), data_np))
var2 = fluid.dygraph.to_variable(data_np, zero_copy=False) var2 = fluid.dygraph.to_variable(data_np, zero_copy=False)
self.assertTrue(np.array_equal(var2.numpy(), data_np)) self.assertTrue(np.array_equal(var2.numpy(), data_np))
data_np[0][0] = -1 data_np[0][0] = -1
......
...@@ -63,8 +63,7 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True): ...@@ -63,8 +63,7 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True):
If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy
will be performed and return origin tensor, otherwise a new tensor will be constructed will be performed and return origin tensor, otherwise a new tensor will be constructed
and returned. Similarly, if the data is an numpy\.ndarray of with the same ``dtype`` and returned.
and the current place is cpu, no copy will be performed.
The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then
``x.real`` is the real part, and ``x.imag`` is the imaginary part. ``x.real`` is the real part, and ``x.imag`` is the imaginary part.
...@@ -209,20 +208,20 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True): ...@@ -209,20 +208,20 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True):
value=data, value=data,
place=place, place=place,
persistable=False, persistable=False,
zero_copy=True, zero_copy=False,
stop_gradient=stop_gradient) stop_gradient=stop_gradient)
else: else:
name = unique_name.generate('generated_tensor') name = unique_name.generate('generated_tensor')
real_tensor = paddle.Tensor( real_tensor = paddle.Tensor(
value=data.real, value=data.real,
place=place, place=place,
zero_copy=True, zero_copy=False,
name=name + ".real", name=name + ".real",
stop_gradient=stop_gradient) stop_gradient=stop_gradient)
imag_tensor = paddle.Tensor( imag_tensor = paddle.Tensor(
value=data.imag, value=data.imag,
place=place, place=place,
zero_copy=True, zero_copy=False,
name=name + ".imag", name=name + ".imag",
stop_gradient=stop_gradient) stop_gradient=stop_gradient)
return paddle.ComplexTensor(real_tensor, imag_tensor) return paddle.ComplexTensor(real_tensor, imag_tensor)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册