提交 17f7125b 编写于 作者: H hedaoyuan 提交者: GitHub

Merge pull request #643 from hedaoyuan/auto_compare

Auto compare cpu and gpu function.
......@@ -1584,11 +1584,6 @@ void BaseMatrixT<real>::minRows(BaseMatrixT& b) {
applyRow(aggregate::min(), b);
}
template<>
void BaseMatrixT<real>::sumCols(BaseMatrixT& b) {
applyCol(aggregate::sum(), b);
}
template<>
void BaseMatrixT<real>::maxCols(BaseMatrixT& b) {
applyCol(aggregate::max(), b);
......
......@@ -1018,8 +1018,6 @@ public:
/// calculate the minimum value of each row of the matrix b.
void minRows(BaseMatrixT& b);
/// calculate the sum of each column of the matrix b.
void sumCols(BaseMatrixT& b);
/// calculate the maximum value of each column of the matrix b.
void maxCols(BaseMatrixT& b);
/// calculate the minimum value of each column of the matrix b.
......
......@@ -2,7 +2,7 @@
add_simple_unittest(test_ExecViaCpu)
add_simple_unittest(test_SIMDFunctions)
add_simple_unittest(test_matrix)
add_simple_unittest(test_SparseMatrix)
# TODO(yuyang18): Refactor TestUtil.cpp. Remove this cross module reference.
add_unittest(test_matrixCompare
......@@ -14,4 +14,6 @@ add_simple_unittest(test_perturbation)
add_simple_unittest(test_CpuGpuVector)
add_simple_unittest(test_Allocator)
add_simple_unittest(test_FPException)
add_simple_unittest(test_GpuProfiler)
\ No newline at end of file
add_simple_unittest(test_GpuProfiler)
add_simple_unittest(test_BaseMatrix)
add_simple_unittest(test_Matrix)
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
/**
* This file provides a TensorCheck template function, which can be used to
* compare CpuMatrix and GpuMatrix, CpuVector and GpuVector, and so on.
*/
#include <cmath>
#include "paddle/math/Matrix.h"
namespace autotest {
using paddle::Matrix;
using paddle::CpuMatrix;
using paddle::GpuMatrix;
using paddle::VectorT;
using paddle::CpuVectorT;
using paddle::GpuVectorT;
class AssertEqual {
public:
AssertEqual(real err = 0) : err_(err) {}
inline bool operator()(real a, real b) {
if (err_ == 0) {
if (a != b) {
return false;
}
} else {
if (std::fabs(a - b) > err_) {
if ((std::fabs(a - b) / std::fabs(a)) > (err_ / 10.0f)) {
return false;
}
}
}
return true;
}
private:
real err_;
};
template <typename Tensor>
class CopyToCpu;
template <>
class CopyToCpu<CpuMatrix> {
public:
explicit CopyToCpu(const CpuMatrix& arg) : arg_(arg) {}
const CpuMatrix& copiedArg() const { return arg_; }
private:
const CpuMatrix& arg_;
};
template <>
class CopyToCpu<GpuMatrix> {
public:
explicit CopyToCpu(const GpuMatrix& arg)
: arg_(arg.getHeight(), arg.getWidth()) {
arg_.copyFrom(arg);
}
CpuMatrix& copiedArg() { return arg_; }
private:
CpuMatrix arg_;
};
template <>
class CopyToCpu<Matrix> {
public:
explicit CopyToCpu(const Matrix& arg)
: arg_(arg.getHeight(), arg.getWidth()) {
arg_.copyFrom(arg);
}
CpuMatrix& copiedArg() { return arg_; }
private:
CpuMatrix arg_;
};
template <typename T>
class CopyToCpu<CpuVectorT<T>> {
public:
explicit CopyToCpu(const CpuVectorT<T>& arg) : arg_(arg) {}
const CpuVectorT<T>& copiedArg() const { return arg_; }
private:
const CpuVectorT<T>& arg_;
};
template <typename T>
class CopyToCpu<GpuVectorT<T>> {
public:
explicit CopyToCpu(const GpuVectorT<T>& arg) : arg_(arg.getSize()) {
arg_.copyFrom(arg);
}
CpuVectorT<T>& copiedArg() { return arg_; }
private:
CpuVectorT<T> arg_;
};
template <typename T>
class CopyToCpu<VectorT<T>> {
public:
explicit CopyToCpu(const VectorT<T>& arg) : arg_(arg.getSize()) {
arg_.copyFrom(arg);
}
CpuVectorT<T>& copiedArg() { return arg_; }
private:
CpuVectorT<T> arg_;
};
template <typename AssertEq>
void TensorCheck(AssertEq compare,
const CpuMatrix& matrix1,
const CpuMatrix& matrix2) {
CHECK(matrix1.getHeight() == matrix2.getHeight());
CHECK(matrix1.getWidth() == matrix2.getWidth());
int height = matrix1.getHeight();
int width = matrix1.getWidth();
const real* data1 = matrix1.getData();
const real* data2 = matrix2.getData();
int count = 0;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
real a = data1[i * width + j];
real b = data2[i * width + j];
if (!compare(a, b)) {
count++;
}
}
}
EXPECT_EQ(count, 0) << "There are " << count << " different element.";
}
template <typename AssertEq, class T>
void TensorCheck(AssertEq compare,
const CpuVectorT<T>& vector1,
const CpuVectorT<T>& vector2) {
CHECK(vector1.getSize() == vector2.getSize());
const T* data1 = vector1.getData();
const T* data2 = vector2.getData();
size_t size = vector1.getSize();
int count = 0;
for (size_t i = 0; i < size; i++) {
real a = data1[i];
real b = data2[i];
if (!compare(a, b)) {
count++;
}
}
EXPECT_EQ(count, 0) << "There are " << count << " different element.";
}
template <typename AssertEq, typename Tensor1, typename Tensor2>
void TensorCheck(AssertEq compare,
const Tensor1& tensor1,
const Tensor2& tensor2) {
TensorCheck(compare,
CopyToCpu<Tensor1>(tensor1).copiedArg(),
CopyToCpu<Tensor2>(tensor2).copiedArg());
}
template <typename AssertEq>
void TensorCheck(AssertEq compare, real args1, real args2) {
EXPECT_EQ(compare(args1, args2), true) << "[Test error] args1 = " << args1
<< ", args2 = " << args2;
}
template <typename AssertEq>
void TensorCheck(AssertEq compare, size_t args1, size_t args2) {
EXPECT_EQ(args1, args2) << "[Test error] args1 = " << args1
<< ", args2 = " << args2;
}
template <typename Tensor1, typename Tensor2>
void TensorCheckEqual(const Tensor1& tensor1, const Tensor2& tensor2) {
AssertEqual compare(0);
TensorCheck(compare,
CopyToCpu<Tensor1>(tensor1).copiedArg(),
CopyToCpu<Tensor2>(tensor2).copiedArg());
}
template <typename Tensor1, typename Tensor2>
void TensorCheckErr(const Tensor1& tensor1, const Tensor2& tensor2) {
#ifndef PADDLE_TYPE_DOUBLE
AssertEqual compare(1e-3);
#else
AssertEqual compare(1e-10);
#endif
TensorCheck(compare,
CopyToCpu<Tensor1>(tensor1).copiedArg(),
CopyToCpu<Tensor2>(tensor2).copiedArg());
}
} // namespace autotest
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
/**
* This file provides a AutoCompare calss to simplify the comparison
* of CPU and GPU member functions.
*
* This takes two steps
* 1. Construct an AutoCompare object.
* When constructing an AutoCompare object, you can set the err argument
* to specify the maximum error for CPU and GPU functions.
*
* 2. Use the template functions cmpWithArg or cmpWithoutArg.
* A. [cmpWithArg] Requires the caller construct the cpu arguments.
*
* AutoCompare test;
* Init Argument arg1,arg2...
* test.cmpWithArg(function, arg1, arg2....)
*
* B. [cmpWithoutArg] The caller do not need construct arguments.
* If matrix used in these functions arguments is the same size.
* Such as the element wise function and the aggregate function
* defined in the BaseMatrix.cpp.
*
* AutoCompare test;
* test.cmpWithoutArg<I...>(function, height, width)
*/
#include <gtest/gtest.h>
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
#include "TensorCheck.h"
namespace autotest {
using paddle::BaseMatrix;
using paddle::CpuMatrix;
using paddle::GpuMatrix;
using paddle::CpuIVector;
using paddle::GpuIVector;
using paddle::CpuSparseMatrix;
using paddle::GpuSparseMatrix;
template <typename T1, typename T2>
class ReplaceType {
public:
typedef T1 type;
};
template <>
class ReplaceType<BaseMatrix, CpuMatrix> {
public:
typedef CpuMatrix type;
};
template <>
class ReplaceType<BaseMatrix, GpuMatrix> {
public:
typedef GpuMatrix type;
};
template <>
class ReplaceType<Matrix, CpuMatrix> {
public:
typedef CpuMatrix type;
};
template <>
class ReplaceType<Matrix, GpuMatrix> {
public:
typedef GpuMatrix type;
};
// construct a argument
template <typename T>
T construct(int height, int width);
template <>
float construct(int height, int width) {
return 0.5;
}
template <>
double construct(int height, int width) {
return 0.5;
}
template <>
size_t construct(int height, int width) {
size_t offset = std::rand() % (height < width ? height : width);
return offset;
}
template <>
CpuMatrix construct(int height, int width) {
CpuMatrix a(height, width);
return a;
}
template <>
GpuMatrix construct(int height, int width) {
GpuMatrix a(height, width);
return a;
}
// init a argument
template <typename T>
void init(T& v) {
return;
}
template <>
void init(CpuMatrix& v) {
v.randomizeUniform();
}
template <>
void init(GpuMatrix& v) {
v.randomizeUniform();
}
// init a tuple which contains a set of arguments.
template <std::size_t I = 0, typename... Args>
inline typename std::enable_if<I == sizeof...(Args), void>::type initTuple(
std::tuple<Args...>& t) {}
template <std::size_t I = 0, typename... Args>
inline typename std::enable_if <
I<sizeof...(Args), void>::type initTuple(std::tuple<Args...>& t) {
init(std::get<I>(t));
initTuple<I + 1>(t);
}
// copy a argument, copy src to dest
template <typename T1, typename T2>
void copy(T1& dest, T2& src) {
dest = src;
}
template <>
void copy(GpuMatrix& dest, CpuMatrix& src) {
dest.copyFrom(src);
}
// copy a tuple, copy src to dest
template <std::size_t I = 0, typename... Args1, typename... Args2>
inline typename std::enable_if<I == sizeof...(Args1), void>::type copyTuple(
std::tuple<Args1...>& dest, std::tuple<Args2...>& src) {}
template <std::size_t I = 0, typename... Args1, typename... Args2>
inline typename std::enable_if <
I<sizeof...(Args1), void>::type copyTuple(std::tuple<Args1...>& dest,
std::tuple<Args2...>& src) {
copy(std::get<I>(dest), std::get<I>(src));
copyTuple<I + 1>(dest, src);
}
// call member function
template <typename C,
typename FC,
typename R,
typename... FArgs,
typename... Args>
R call(C& obj, R (FC::*f)(FArgs...), Args&&... args) {
return (obj.*f)(args...);
}
template <typename T>
class ReturnType {
public:
typedef T type;
};
template <>
class ReturnType<CpuMatrix> {
public:
typedef GpuMatrix type;
};
template <>
class ReturnType<CpuIVector> {
public:
typedef GpuIVector type;
};
template <>
class ReturnType<CpuSparseMatrix> {
public:
typedef GpuSparseMatrix type;
};
template <typename T>
typename ReturnType<T>::type autoArgs(T& v) {
return v;
}
template <>
GpuMatrix autoArgs(CpuMatrix& v) {
GpuMatrix a(v.getHeight(), v.getWidth());
a.copyFrom(v);
return a;
}
template <>
GpuIVector autoArgs(CpuIVector& v) {
GpuIVector a(v.getSize());
a.copyFrom(v);
return a;
}
template <>
GpuSparseMatrix autoArgs(CpuSparseMatrix& v) {
GpuSparseMatrix a(v.getHeight(),
v.getWidth(),
v.getElementCnt(),
v.getValueType(),
v.getFormat());
a.copyFrom(v, HPPL_STREAM_DEFAULT);
hl_stream_synchronize(HPPL_STREAM_DEFAULT);
return a;
}
class AutoCompare {
public:
/**
* err is the allowed calculation error.
* The smaller the value of err,
* the stricter the comparison is between CPU and GPU calculations.
*/
AutoCompare(size_t height, size_t width, real err = 1e-3)
: cpu(height, width), gpu(height, width), compare(err) {
init(cpu);
copy(gpu, cpu);
}
template <typename C, typename R, typename... FArgs, typename... Args>
void cmpWithArg(R (C::*f)(FArgs...), Args&&... args) {
static_assert(sizeof...(FArgs) == sizeof...(Args),
"size of parameter packs are not equal");
call(cpu, f, args...);
call(gpu, f, autoArgs(args)...);
TensorCheck(compare, cpu, gpu);
}
template <std::size_t... I, typename C, typename R, typename... Args>
void cmpWithoutArg(R (C::*f)(Args...), size_t height, size_t width) {
static_assert(sizeof...(I) == sizeof...(Args),
"size of parameter packs are not equal");
(void)height;
(void)width;
auto tuple1 = std::make_tuple(
construct<typename ReplaceType<
typename std::decay<
typename std::tuple_element<I,
std::tuple<Args...>>::type>::type,
CpuMatrix>::type>(height, width)...);
auto tuple2 = std::make_tuple(
construct<typename ReplaceType<
typename std::decay<
typename std::tuple_element<I,
std::tuple<Args...>>::type>::type,
GpuMatrix>::type>(height, width)...);
initTuple(tuple1);
copyTuple(tuple2, tuple1);
call(cpu, f, std::get<I>(tuple1)...);
call(gpu, f, std::get<I>(tuple2)...);
TensorCheck(compare, cpu, gpu);
}
protected:
CpuMatrix cpu;
GpuMatrix gpu;
AssertEqual compare;
};
} // namespace autotest
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_ONLY_CPU
/**
* This test file use autotest::AutoCompare and cmpWithoutArg to compares the
* implementation of CPU and GPU member function in
* BaseMatrix.cpp and Matrix.cpp.
*/
#include <gtest/gtest.h>
#include "paddle/math/BaseMatrix.h"
#include "TestUtils.h"
using paddle::BaseMatrix;
using paddle::Matrix;
using autotest::AutoCompare;
// Test all void (BaseMatrix::*)() function
TEST(BaseMatrix, void) {
for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
auto compare = [height, width](void (BaseMatrix::*f)()) {
AutoCompare test(height, width, 1e-5);
test.cmpWithoutArg(f, height, width);
};
compare(&BaseMatrix::neg);
compare(&BaseMatrix::exp);
compare(&BaseMatrix::log);
compare(&BaseMatrix::sqrt);
compare(&BaseMatrix::square);
compare(&BaseMatrix::reciprocal);
compare(&BaseMatrix::abs);
compare(&BaseMatrix::sign);
compare(&BaseMatrix::zero);
compare(&BaseMatrix::one);
}
}
}
// Test all void (BaseMatrix::*)(real) function
TEST(BaseMatrix, real) {
for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
auto compare = [height, width](void (BaseMatrix::*f)(real)) {
AutoCompare test(height, width, 1e-5);
test.cmpWithoutArg<0>(f, height, width);
};
compare(&BaseMatrix::pow);
compare(&BaseMatrix::subScalar);
compare(&BaseMatrix::mulScalar);
compare(&BaseMatrix::divScalar);
compare(&BaseMatrix::assign);
compare(&BaseMatrix::add);
compare(&BaseMatrix::biggerThanScalar);
compare(&BaseMatrix::downClip);
}
}
}
// Test all void (BaseMatrix::*)(BaseMatrix&) function
TEST(BaseMatrix, BaseMatrix) {
for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
auto compare = [height, width](void (BaseMatrix::*f)(BaseMatrix&)) {
AutoCompare test(height, width, 1e-5);
test.cmpWithoutArg<0>(f, height, width);
};
compare(&BaseMatrix::assign);
compare(&BaseMatrix::add);
compare(&BaseMatrix::relu);
compare(&BaseMatrix::reluDerivative);
compare(&BaseMatrix::softrelu);
compare(&BaseMatrix::softreluDerivative);
compare(&BaseMatrix::brelu);
compare(&BaseMatrix::breluDerivative);
compare(&BaseMatrix::square);
compare(&BaseMatrix::squareDerivative);
compare(&BaseMatrix::tanh);
compare(&BaseMatrix::tanhDerivative);
compare(&BaseMatrix::reciprocal);
compare(&BaseMatrix::reciprocalDerivative);
compare(&BaseMatrix::abs);
compare(&BaseMatrix::absDerivative);
compare(&BaseMatrix::sigmoid);
compare(&BaseMatrix::sigmoidDerivative);
compare(&BaseMatrix::expDerivative);
compare(&BaseMatrix::sign);
compare(&BaseMatrix::exp);
compare(&BaseMatrix::log);
compare(&BaseMatrix::sqrt);
compare(&BaseMatrix::dotMul);
compare(&BaseMatrix::dotMulSquare);
compare(&BaseMatrix::dotSquareMul);
compare(&BaseMatrix::addColVector);
compare(&BaseMatrix::addRowVector);
compare(&BaseMatrix::mulRowVector);
compare(&BaseMatrix::divRowVector);
compare(&BaseMatrix::addP2P);
compare(&BaseMatrix::invSqrt);
}
}
}
// Test all void (BaseMatrix::*)(real, real) function
TEST(BaseMatrix, real_real) {
for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
auto compare = [height, width](void (BaseMatrix::*f)(real, real)) {
AutoCompare test(height, width, 1e-5);
test.cmpWithoutArg<0, 1>(f, height, width);
};
compare(&BaseMatrix::add);
compare(&BaseMatrix::clip);
}
}
}
// Test all void (BaseMatrix::*)(BaseMatrix&, real) function
TEST(BaseMatrix, BaseMatrix_real) {
for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
auto compare = [height, width](void (BaseMatrix::*f)(BaseMatrix&, real)) {
AutoCompare test(height, width, 1e-5);
test.cmpWithoutArg<0, 1>(f, height, width);
};
compare(&BaseMatrix::addBias);
compare(&BaseMatrix::add);
compare(&BaseMatrix::sub);
compare(&BaseMatrix::pow);
compare(&BaseMatrix::addScalar);
compare(&BaseMatrix::subScalar);
compare(&BaseMatrix::mulScalar);
compare(&BaseMatrix::divScalar);
compare(&BaseMatrix::scalarDiv);
compare(&BaseMatrix::addSquare);
compare(&BaseMatrix::isEqualTo);
}
}
}
// Test all void (BaseMatrix::*)(BaseMatrix&, BaseMatrix&) function
TEST(BaseMatrix, BaseMatrix_BaseMatrix) {
for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
auto compare = [height,
width](void (BaseMatrix::*f)(BaseMatrix&, BaseMatrix&)) {
AutoCompare test(height, width, 1e-5);
test.cmpWithoutArg<0, 1>(f, height, width);
};
compare(&BaseMatrix::softCrossEntropy);
compare(&BaseMatrix::softCrossEntropyBp);
compare(&BaseMatrix::binaryLabelCrossEntropy);
compare(&BaseMatrix::binaryLabelCrossEntropyBp);
compare(&BaseMatrix::sub);
compare(&BaseMatrix::add2);
compare(&BaseMatrix::dotMul);
compare(&BaseMatrix::dotDiv);
compare(&BaseMatrix::logisticRegressionLoss);
compare(&BaseMatrix::logisticRegressionLossBp);
compare(&BaseMatrix::biggerThan);
compare(&BaseMatrix::max);
compare(&BaseMatrix::dotMulSquare);
compare(&BaseMatrix::dotSquareSquare);
}
}
}
void TestEelementWise(size_t height, size_t width) {
AutoCompare rowScale(height, width);
rowScale.cmpWithoutArg<0, 1, 2>(&BaseMatrix::rowScale, height, width);
AutoCompare rowDotMul(height, width);
rowDotMul.cmpWithoutArg<0, 1, 2>(&BaseMatrix::rowDotMul, height, width);
AutoCompare binaryClassificationError(height, width);
binaryClassificationError.cmpWithoutArg<0, 1, 2, 3>(
&BaseMatrix::binaryClassificationError, height, width);
AutoCompare sumOfSquaresBp(height, width);
sumOfSquaresBp.cmpWithoutArg<0, 1>(&Matrix::sumOfSquaresBp, height, width);
}
void TestAggregateToRow(size_t height, size_t width) {
AutoCompare maxCols(1, width);
maxCols.cmpWithoutArg<0>(&BaseMatrix::maxCols, height, width);
AutoCompare minCols(1, width);
minCols.cmpWithoutArg<0>(&BaseMatrix::minCols, height, width);
AutoCompare addDotMulVMM(1, width);
addDotMulVMM.cmpWithoutArg<0, 1>(&BaseMatrix::addDotMulVMM, height, width);
AutoCompare sumCols(1, width);
sumCols.cmpWithoutArg<0, 1, 2>(&BaseMatrix::sumCols, height, width);
AutoCompare collectBias(1, width);
collectBias.cmpWithoutArg<0, 1>(
static_cast<void (Matrix::*)(Matrix&, real)>(&Matrix::collectBias),
height,
width);
}
void TestAggregateToCol(size_t height, size_t width) {
AutoCompare maxRows(height, 1);
maxRows.cmpWithoutArg<0>(&BaseMatrix::maxRows, height, width);
AutoCompare minRows(height, 1);
minRows.cmpWithoutArg<0>(&BaseMatrix::minRows, height, width);
AutoCompare sumRows(height, 1);
sumRows.cmpWithoutArg<0, 1, 2>(&BaseMatrix::sumRows, height, width);
AutoCompare sumOfSquares(height, 1);
sumOfSquares.cmpWithoutArg<0, 1>(&Matrix::sumOfSquares, height, width);
}
TEST(BaseMatrix, Other) {
for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
TestEelementWise(height, width);
TestAggregateToRow(height, width);
TestAggregateToCol(height, width);
}
}
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
paddle::initMain(argc, argv);
return RUN_ALL_TESTS();
}
#endif
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_ONLY_CPU
/**
* This test file use autotest::AutoCompare and cmpWithArg to compares the
* implementation of CPU and GPU member function in Matrix.cpp.
*/
#include <gtest/gtest.h>
#include "TestUtils.h"
using paddle::BaseMatrix;
using paddle::Matrix;
using paddle::CpuMatrix;
using paddle::CpuIVector;
using paddle::CpuSparseMatrix;
using autotest::AutoCompare;
void testBilinearFwdBwd(int numSamples,
int imgSizeH,
int imgSizeW,
int channels) {
int inWidth = imgSizeH * imgSizeW * channels;
int outWidth = 2 * imgSizeH * 2 * imgSizeW * channels;
real ratioH = 0.5;
real ratioW = 0.5;
AutoCompare forward(numSamples, outWidth);
CpuMatrix arg1(numSamples, inWidth);
arg1.randomizeUniform();
forward.cmpWithArg(&Matrix::bilinearForward,
arg1,
imgSizeH,
imgSizeW,
2 * imgSizeH,
2 * imgSizeW,
channels,
ratioH,
ratioW);
AutoCompare backward(numSamples, inWidth);
CpuMatrix arg2(numSamples, outWidth);
arg2.randomizeUniform();
backward.cmpWithArg(&Matrix::bilinearBackward,
arg2,
2 * imgSizeH,
2 * imgSizeW,
imgSizeH,
imgSizeW,
channels,
ratioH,
ratioW);
}
TEST(Matrix, BilinearFwdBwd) {
for (auto numSamples : {5, 10}) {
for (auto channels : {8, 16}) {
for (auto imgSizeH : {14, 28}) {
for (auto imgSizeW : {16, 30}) {
VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
<< " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW;
testBilinearFwdBwd(numSamples, imgSizeH, imgSizeW, channels);
}
}
}
}
}
void testMatrixAddBias(int height, int width, real scale) {
AutoCompare test(height, width);
CpuMatrix arg1(1, width);
arg1.randomizeUniform();
test.cmpWithArg(
static_cast<void (Matrix::*)(Matrix&, real)>(&Matrix::addBias),
arg1,
scale);
}
void testMatrixAddDotMulMMV(int height, int width) {
AutoCompare test(height, width);
CpuMatrix arg1(height, width);
CpuMatrix arg2(1, width);
arg1.randomizeUniform();
arg2.randomizeUniform();
test.cmpWithArg(&BaseMatrix::addDotMulMMV, arg1, arg2);
}
TEST(Matrix, unary) {
for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
VLOG(3) << " height=" << height << " width=" << width;
testMatrixAddBias(height, width, 1.0);
testMatrixAddBias(height, width, 3.5);
testMatrixAddDotMulMMV(height, width);
}
}
}
void testMatrixAddAtOffset(int height, int width1, int width2, int offset) {
AutoCompare test(height, width2);
CpuMatrix arg1(height, width1);
arg1.randomizeUniform();
test.cmpWithArg(&Matrix::addAtOffset, arg1, offset);
}
void testMatrixAssignAtOffset(int height, int width1, int width2, int offset) {
AutoCompare test(height, width2);
CpuMatrix arg1(height, width1);
arg1.randomizeUniform();
test.cmpWithArg(&Matrix::assignAtOffset, arg1, offset);
}
TEST(Matrix, AtOffset) {
for (auto height : {1, 11, 73, 128, 200}) {
for (auto width1 : {1, 32, 100, 512, 1000}) {
for (auto width2 : {1, 32, 100, 512, 1000}) {
int columnOffset = 0;
int offset = std::abs(width1 - width2);
if (offset) {
columnOffset = std::rand() % offset;
}
VLOG(3) << " height=" << height << " width1=" << width1
<< " width2=" << width2 << " columnOffset = " << columnOffset;
testMatrixAddAtOffset(height, width1, width2, columnOffset);
testMatrixAssignAtOffset(height, width1, width2, columnOffset);
}
}
}
}
void testMatrixSelectRows(int numSamples, int tableSize, int inputDim) {
AutoCompare test(numSamples, inputDim);
CpuMatrix arg1(tableSize, inputDim);
CpuIVector arg2(numSamples);
arg1.randomizeUniform();
arg2.rand(tableSize);
test.cmpWithArg(&Matrix::selectRows, arg1, arg2);
}
TEST(Matrix, tableProjection) {
for (auto numSamples : {10, 100, 1000, 10000, 80000}) {
for (auto tableSize : {10, 100}) {
for (auto inputDim : {20, 50}) {
VLOG(3) << " numSamples=" << numSamples << " tableSize=" << tableSize
<< " inputDim=" << inputDim;
testMatrixSelectRows(numSamples, tableSize, inputDim);
}
}
}
}
void testMatrixCopyByRowIndex(int outHeight, int inHeight, int width) {
AutoCompare test(outHeight, width);
CpuMatrix arg1(inHeight, width);
CpuIVector arg2(outHeight);
arg1.randomizeUniform();
arg2.rand(inHeight);
test.cmpWithArg(&Matrix::copyByRowIndex, arg1, arg2);
}
TEST(Matrix, copyByRowIndex) {
for (auto outHeight : {31, 500, 1000}) {
for (auto inHeight : {17, 257, 500, 1200}) {
for (auto width : {512, 1024}) {
VLOG(3) << outHeight << " " << inHeight << " " << width;
testMatrixCopyByRowIndex(outHeight, inHeight, width);
}
}
}
}
void testCosSim(int heightX, int heightY, int width, real scale) {
AutoCompare test(heightX, 1);
CpuMatrix arg1(heightX, width);
CpuMatrix arg2(heightY, width);
arg1.randomizeUniform();
arg2.randomizeUniform();
arg2.add(-0.5);
test.cmpWithArg(&Matrix::cosSim, arg1, arg2, scale);
}
TEST(Matrix, cosSim) {
for (auto heightX : {10, 100, 1000}) {
for (auto heightY : {1, heightX}) {
for (auto width : {10, 100, 1000}) {
for (auto scale : {1.0, 2.0}) {
testCosSim(heightX, heightY, width, scale);
}
}
}
}
}
void testParamReluForward(int height, int width, int w_height, int w_width) {
AutoCompare test(height, width);
CpuMatrix arg1(height, width);
CpuMatrix arg2(w_height, w_width);
arg1.randomizeUniform();
arg2.randomizeUniform();
arg1.add(-0.5);
test.cmpWithArg(&Matrix::paramReluForward, arg1, arg2);
}
void testParamReluBackwardW(int height, int width, int w_height, int w_width) {
AutoCompare test(w_height, w_width);
CpuMatrix arg1(height, width);
CpuMatrix arg2(height, width);
arg1.randomizeUniform();
arg2.randomizeUniform();
arg2.add(-0.5);
test.cmpWithArg(&Matrix::paramReluBackwardW, arg1, arg2);
}
TEST(Matrix, paramRelu) {
for (auto height : {10, 100}) {
for (auto width : {10, 100}) {
for (auto w_height : {1, 2}) {
for (auto w_width : {1, 2}) {
testParamReluForward(height, width, w_height, w_width);
testParamReluBackwardW(height, width, w_height, w_width);
}
}
}
}
}
void testAddSharedBias(int numSamples, int dim, int channel) {
AutoCompare test(numSamples, dim);
CpuMatrix arg1(1, channel);
arg1.randomizeUniform();
test.cmpWithArg(&Matrix::addSharedBias, arg1, 1.0);
}
void testCollectSharedBias(int numSamples, int dim, int channel) {
AutoCompare test(1, channel);
CpuMatrix arg1(numSamples, dim);
arg1.randomizeUniform();
test.cmpWithArg(&Matrix::collectSharedBias, arg1, 1.0);
}
TEST(Matrix, sharedBias) {
for (auto numSamples : {1, 100, 520}) {
for (auto dim : {100 * 16, 100 * 32}) {
for (auto channel : {8, 16}) {
VLOG(3) << " numSamples=" << numSamples << " dim=" << dim
<< " channel=" << channel;
testAddSharedBias(numSamples, dim, channel);
testCollectSharedBias(numSamples, dim, channel);
}
}
}
}
void testMultiBinaryLabelCrossEntropy(int numSamples, int dim) {
AutoCompare forward(numSamples, 1);
CpuMatrix arg1(numSamples, dim);
CpuSparseMatrix arg2(
numSamples, dim, numSamples, paddle::NO_VALUE, paddle::SPARSE_CSR);
CpuMatrix output1(numSamples, dim);
output1.randomizeUniform();
output1.softmax(arg1);
for (int i = 0; i < numSamples; i++) {
const unsigned int id = std::rand() % dim;
arg2.setRow(i, 1, &id, nullptr);
}
forward.cmpWithArg(&Matrix::multiBinaryLabelCrossEntropy, arg1, arg2);
AutoCompare backward(numSamples, dim);
backward.cmpWithArg(&Matrix::multiBinaryLabelCrossEntropyBp, arg1, arg2);
}
TEST(Matrix, multiBinaryCrossEntropy) {
for (auto numSamples : {100, 1000, 10000}) {
for (auto dim : {100, 1000, 10000}) {
VLOG(3) << " numSamples=" << numSamples << " dim=" << dim;
testMultiBinaryLabelCrossEntropy(numSamples, dim);
}
}
}
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
paddle::initMain(argc, argv);
return RUN_ALL_TESTS();
}
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册