Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
17c8014f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
17c8014f
编写于
11月 06, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Complete implementation
test=develop
上级
7939f835
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
63 addition
and
125 deletion
+63
-125
paddle/fluid/operators/fused_embedding_seq_pool_op.cc
paddle/fluid/operators/fused_embedding_seq_pool_op.cc
+6
-0
paddle/fluid/operators/fused_embedding_seq_pool_op.h
paddle/fluid/operators/fused_embedding_seq_pool_op.h
+57
-125
未找到文件。
paddle/fluid/operators/fused_embedding_seq_pool_op.cc
浏览文件 @
17c8014f
...
...
@@ -93,6 +93,12 @@ class FusedEmbeddingSeqPoolOpMaker : public framework::OpProtoAndCheckerMaker {
"are supported, sum computes the weighted sum of the "
"embedding results for each row."
)
.
SetDefault
(
"sum"
);
// NOTE(minqiyang): grad_inplace is an temporal attribute,
// please do NOT set this attribute in python layer.
AddAttr
<
bool
>
(
"grad_inplace"
,
"(boolean, default false) "
"If the grad op reuse the input's variable."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) "
"Sparse update."
)
...
...
paddle/fluid/operators/fused_embedding_seq_pool_op.h
浏览文件 @
17c8014f
...
...
@@ -31,62 +31,54 @@ using LoDTensor = framework::LoDTensor;
using
SelectedRows
=
framework
::
SelectedRows
;
using
DDim
=
framework
::
DDim
;
template
<
typename
DeviceContext
,
typename
T
>
struct
EmbeddingVSumFunctor
{
void
operator
()(
const
DeviceContext
&
context
,
LoDTensor
*
table_t
,
LoDTensor
*
ids_t
,
LoDTensor
*
output_t
)
{
auto
*
table
=
table_t
->
data
<
T
>
();
int64_t
row_number
=
table
->
dims
()[
0
];
int64_t
row_width
=
table
->
dims
()[
1
];
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
auto
ids_lod
=
ids_t
->
LoD
()[
0
];
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
!=
ids_lod
.
size
()
-
1
;
++
i
)
{
size_t
begin
=
ids_lod
[
i
];
PADDLE_ENFORCE_LT
(
ids
[
begin
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
begin
],
0
,
"ids %d"
,
i
);
blas
.
VCOPY
(
row_width
,
table
+
ids
[
begin
]
*
row_width
,
output
+
i
*
row_width
);
for
(
int64_t
r
=
ids_lod
[
i
]
+
1
;
r
<
ids_lod
[
i
+
1
];
++
r
)
{
PADDLE_ENFORCE_LT
(
ids
[
r
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
r
],
0
,
"ids %d"
,
i
);
blas
.
AXPY
(
row_width
,
1.
,
table
+
ids
[
r
]
*
row_width
,
output
+
i
*
row_width
);
}
}
}
};
template
<
typename
T
>
class
LookupTable
Kernel
:
public
framework
::
OpKernel
<
T
>
{
class
FusedEmbeddingSeqPool
Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
auto
*
table_var
=
context
.
InputVar
(
"W"
);
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
int64_t
ids_numel
=
ids_t
->
numel
();
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_LT
(
ids
[
i
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
"ids %d"
,
i
);
memcpy
(
output
+
i
*
row_width
,
table
+
ids
[
i
]
*
row_width
,
row_width
*
sizeof
(
T
));
}
}
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
const
auto
&
table_t
=
table_var
->
Get
<
SelectedRows
>
();
int64_t
row_width
=
table_t
.
value
().
dims
()[
1
];
const
auto
*
table
=
table_t
.
value
().
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
);
auto
id_index
=
table_t
.
Index
(
ids
[
i
]);
PADDLE_ENFORCE_GE
(
id_index
,
0
,
"the input key should be exists."
);
// memcpy(output + i * row_width, table + id_index * row_width,
// row_width * sizeof(T));
blas
.
VCOPY
(
row_width
,
table
+
id_index
*
row_width
,
output
+
i
*
row_width
);
}
}
LoDTensor
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
LoDTensor
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
LoDTensor
*
table_var
=
context
.
Input
<
LoDTensor
>
(
"W"
);
const
std
::
string
&
combiner_type
=
context
.
Attr
<
std
::
string
>
(
"combiner"
);
if
(
combiner_type
==
"sum"
)
{
EmbeddingVSumFunctor
<
T
>
functor
;
functor
(
context
.
template
device_context
(),
ids_t
,
output_t
,
table_var
);
}
}
};
template
<
typename
T
>
class
LookupTable
GradKernel
:
public
framework
::
OpKernel
<
T
>
{
class
FusedEmbeddingSeqPool
GradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
table_var
=
context
.
InputVar
(
"W"
);
...
...
@@ -106,97 +98,37 @@ class LookupTableGradKernel : public framework::OpKernel<T> {
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
if
(
is_sparse
)
{
// auto start = std::chrono::system_clock::now();
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_table
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
int64_t
ids_num
=
ids
->
numel
();
// auto end = std::chrono::system_clock::now()
;
// std::chrono::duration<double> diff = end - start
;
auto
lod
=
ids
->
lod
()[
0
]
;
int64_t
row_width
=
table_dim
[
1
]
;
// auto copy_start = std::chrono::system_clock::now();
std
::
vector
<
int64_t
>
new_rows
;
framework
::
Vector
<
int64_t
>
new_rows
;
new_rows
.
resize
(
ids_num
);
std
::
memcpy
(
&
new_rows
[
0
],
ids_data
,
ids_num
*
sizeof
(
int64_t
));
// for (int64_t i = 0; i < ids_num; i++) {
// new_rows.push_back(ids_data[i]);
// }
// auto copy_end = std::chrono::system_clock::now();
// std::chrono::duration<double> copy_diff = copy_end - copy_start;
// diff += copy_diff;
// LOG(ERROR) << "run emb_grad copy end, cost: " << copy_diff.count() << "
// " << ids_num;
// copy_start = std::chrono::system_clock::now();
d_table
->
set_rows
(
new_rows
);
auto
*
d_table_value
=
d_table
->
mutable_value
();
d_table_value
->
Resize
({
ids_num
,
table_dim
[
1
]});
d_table_value
->
ShareDataWith
(
*
d_output
);
// d_table_value->mutable_data<T>(context.GetPlace());
// // copy_end = std::chrono::system_clock::now();
// // copy_diff = copy_end - copy_start;
// // diff += copy_diff;
// // LOG(ERROR) << "run emb_grad resize table end, cost: " <<
// // copy_diff.count() << " " << ids_num;
// // copy_start = std::chrono::system_clock::now();
// d_table->set_height(table_dim[0]);
// auto *d_output_data = d_output->data<T>();
// auto *d_table_data = d_table_value->data<T>();
// // copy_end = std::chrono::system_clock::now();
// // copy_diff = copy_end - copy_start;
// // diff += copy_diff;
// // LOG(ERROR) << "run emb_grad set height end, cost: " <<
// // copy_diff.count() << " " << ids_num;
// auto d_output_dims = d_output->dims();
// PADDLE_ENFORCE_EQ(
// d_table_value->dims(),
// framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
// // copy_start = std::chrono::system_clock::now();
// auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
// blas.VCOPY(d_output->numel(), d_output_data, d_table_data);
// cblas_scopy(d_output->numel(), d_output_data, 1, d_table_data, 1);
// // for (int i = 0; i != d_output->numel(), ++i) {
// // *(d_table_data++) = *(d_output_data++);
// // }
// // memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
// // copy_end = std::chrono::system_clock::now();
// // copy_diff = copy_end - copy_start;
// // diff += copy_diff;
// // LOG(ERROR) << "run emb_grad core end, cost: " << copy_diff.count()
// << "
// // " << ids_num << " " << d_output->numel();
// // LOG(ERROR) << "run emb_grad end, cost: " << diff.count();
}
else
{
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_table
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
int
N
=
table_dim
[
0
];
int
D
=
table_dim
[
1
];
auto
*
d_output_data
=
d_output
->
data
<
T
>
();
auto
*
d_table_data
=
d_table
->
mutable_data
<
T
>
(
context
.
GetPlace
());
memset
(
d_table_data
,
0
,
d_table
->
numel
()
*
sizeof
(
T
));
for
(
int64_t
i
=
0
;
i
<
ids
->
numel
();
++
i
)
{
PADDLE_ENFORCE_LT
(
ids_data
[
i
],
N
);
PADDLE_ENFORCE_GE
(
ids_data
[
i
],
0
);
for
(
int
j
=
0
;
j
<
D
;
++
j
)
{
d_table_data
[
ids_data
[
i
]
*
D
+
j
]
+=
d_output_data
[
i
*
D
+
j
];
d_table_value
->
Resize
({
ids_num
,
row_width
});
T
*
d_table_data
=
d_table_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
d_output_data
=
d_output
->
data
<
T
>
();
auto
blas
=
math
::
GetBlas
<
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
int64_t
in_offset
=
lod
[
i
]
*
row_width
;
const
T
*
out_pos
=
d_output_data
+
i
*
row_width
;
T
*
in_pos
=
d_table_data
+
in_offset
;
for
(
int
r
=
0
;
r
!=
h
;
++
r
)
{
blas
.
VCOPY
(
row_width
,
out_pos
,
in_pos
+
r
*
row_width
);
}
}
}
else
{
LOG
(
ERROR
)
<<
"Dense is not supported in fused_embedding_seq_pool_op now"
;
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录