Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
16b1beb2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
16b1beb2
编写于
10月 10, 2018
作者:
T
Tao Luo
提交者:
GitHub
10月 10, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13486 from sfraczek/sfraczek/conv-bn-fuse-pass
Sfraczek/conv bn fuse pass
上级
5d5587ff
3fcca409
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
532 addition
and
9 deletion
+532
-9
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
+327
-0
paddle/fluid/framework/ir/conv_bn_fuse_pass.h
paddle/fluid/framework/ir/conv_bn_fuse_pass.h
+49
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+106
-0
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+38
-0
paddle/fluid/inference/analysis/analyzer.h
paddle/fluid/inference/analysis/analyzer.h
+11
-9
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
16b1beb2
...
...
@@ -38,6 +38,7 @@ pass_library(fc_lstm_fuse_pass inference)
pass_library
(
embedding_fc_lstm_fuse_pass inference
)
pass_library
(
fc_gru_fuse_pass inference
)
pass_library
(
seq_concat_fc_fuse_pass inference
)
pass_library
(
conv_bn_fuse_pass inference
)
cc_library
(
fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector
)
...
...
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
0 → 100644
浏览文件 @
16b1beb2
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
#include <functional>
#include <string>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
#define GET_CONV_BN_NODES(pattern_name) \
/* OPERATORS */
\
GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name); \
/* CONV inputs */
\
GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name); \
/* CONV outputs */
\
GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name); \
/* BN inputs */
\
GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name); \
/* BN outputs */
\
GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name);
/* Out */
\
GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
template
<
typename
UnaryOperation
>
LoDTensor
tensor_apply
(
const
LoDTensor
&
vec
,
UnaryOperation
f
)
{
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec
.
dims
());
const
float
*
x
=
vec
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec
.
numel
();
i
++
)
{
y
[
i
]
=
f
(
x
[
i
]);
}
return
vec_y
;
}
void
tensor_apply_inplace
(
LoDTensor
*
vec
,
float
(
*
f
)(
float
))
{
float
*
data
=
vec
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec
->
numel
();
i
++
)
{
data
[
i
]
=
f
(
data
[
i
]);
}
}
template
<
typename
BinaryOperation
>
LoDTensor
tensor_apply_eltwise
(
const
LoDTensor
&
vec_a
,
const
LoDTensor
&
vec_b
,
BinaryOperation
f
)
{
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
(),
vec_b
.
dims
());
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec_a
.
dims
());
const
float
*
a
=
vec_a
.
data
<
float
>
();
const
float
*
b
=
vec_b
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
vec_a
.
numel
();
i
++
)
{
y
[
i
]
=
f
(
a
[
i
],
b
[
i
]);
}
return
vec_y
;
}
template
<
typename
BinaryOperation
>
LoDTensor
tensor_apply_eltwise_broadcast
(
const
LoDTensor
&
vec_a
,
const
LoDTensor
&
vec_b
,
BinaryOperation
f
)
{
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
().
size
(),
2
);
PADDLE_ENFORCE_EQ
(
vec_b
.
dims
().
size
(),
2
);
PADDLE_ENFORCE_EQ
(
vec_a
.
dims
()[
0
],
vec_b
.
dims
()[
0
]);
PADDLE_ENFORCE_EQ
(
vec_b
.
dims
()[
1
],
1
);
LoDTensor
vec_y
;
vec_y
.
Resize
(
vec_a
.
dims
());
const
float
*
a
=
vec_a
.
data
<
float
>
();
const
float
*
b
=
vec_b
.
data
<
float
>
();
float
*
y
=
vec_y
.
mutable_data
<
float
>
(
platform
::
CPUPlace
());
size_t
a_height
=
vec_a
.
dims
()[
0
];
size_t
a_width
=
vec_a
.
dims
()[
1
];
for
(
size_t
h
=
0
;
h
<
a_height
;
h
++
)
{
for
(
size_t
w
=
0
;
w
<
a_width
;
++
w
)
{
*
(
y
++
)
=
f
(
*
(
a
++
),
b
[
h
]);
}
}
return
vec_y
;
}
// reshape to two dimensions {A, B * C * ...}
void
make_tensor_2d
(
LoDTensor
*
tensor_to_reshape
)
{
auto
dims_count
=
tensor_to_reshape
->
dims
().
size
();
PADDLE_ENFORCE_GT
(
dims_count
,
0
);
int
size2
=
1
;
for
(
int
i
=
1
;
i
<
dims_count
;
i
++
)
{
size2
*=
tensor_to_reshape
->
dims
()[
i
];
}
tensor_to_reshape
->
Resize
(
make_ddim
({
tensor_to_reshape
->
dims
()[
0
],
size2
}));
}
void
recompute_conv_weights
(
LoDTensor
*
weights
,
LoDTensor
*
tmp
)
{
// remember the weights tensor shape {A, B, C, ...}
auto
weights_shape
=
weights
->
dims
();
// reduce the weights to 2d {A, B * C * ...}
make_tensor_2d
(
weights
);
// make tmp tensor 2d by adding 1 as second dim {A, 1}
make_tensor_2d
(
tmp
);
*
weights
=
tensor_apply_eltwise_broadcast
(
*
weights
,
*
tmp
,
std
::
multiplies
<
float
>
());
// reshape weights to the original dims {A, B, C, ...}
weights
->
Resize
(
weights_shape
);
}
void
recompute_bias_and_weights
(
const
Scope
*
scope
,
ir
::
Node
*
conv_weight
,
//
const
ir
::
Node
&
bn_scale
,
//
const
LoDTensor
&
bn_bias_tensor
,
//
const
ir
::
Node
&
bn_mean
,
//
const
ir
::
Node
&
bn_variance
,
//
LoDTensor
*
eltwise_y_in_tensor
,
//
float
epsilon
)
{
// Re-compute bias of conv2d from BN
PADDLE_ENFORCE_EQ
(
eltwise_y_in_tensor
->
dims
(),
bn_bias_tensor
.
dims
());
auto
*
scale_tensor
=
scope
->
FindVar
(
bn_scale
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
*
variance_tensor
=
scope
->
FindVar
(
bn_variance
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
*
mean_tensor
=
scope
->
FindVar
(
bn_mean
.
Name
())
->
GetMutable
<
LoDTensor
>
();
auto
std_tensor
=
LoDTensor
();
std_tensor
.
Resize
(
bn_bias_tensor
.
dims
());
std_tensor
=
tensor_apply
(
*
variance_tensor
,
[
&
](
float
x
)
{
return
x
+
epsilon
;
});
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
float
,
Eigen
::
Dynamic
,
1
>>
;
EigenVectorArrayMap
std_vec
(
std_tensor
.
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
std_tensor
.
numel
(),
1
);
std_vec
=
std_vec
.
sqrt
();
auto
tmp_tensor
=
tensor_apply_eltwise
(
*
scale_tensor
,
std_tensor
,
std
::
divides
<
float
>
());
auto
tensor_minus
=
tensor_apply_eltwise
(
*
eltwise_y_in_tensor
,
*
mean_tensor
,
std
::
minus
<
float
>
());
auto
tensor_mul
=
tensor_apply_eltwise
(
tensor_minus
,
tmp_tensor
,
std
::
multiplies
<
float
>
());
*
eltwise_y_in_tensor
=
tensor_apply_eltwise
(
tensor_mul
,
bn_bias_tensor
,
std
::
plus
<
float
>
());
// Re-compute weight of conv2d from BN
auto
*
current_param
=
scope
->
FindVar
(
conv_weight
->
Name
())
->
GetMutable
<
LoDTensor
>
();
recompute_conv_weights
(
current_param
,
&
tmp_tensor
);
}
std
::
unique_ptr
<
ir
::
Graph
>
ConvBNFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
PADDLE_ENFORCE
(
graph
.
get
());
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE
(
scope
);
GraphPatternDetector
gpd
;
auto
*
conv_input
=
gpd
.
mutable_pattern
()
->
NewNode
(
patterns
::
PDNodeName
(
name_scope_
,
"conv_input"
))
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
patterns
::
ConvBN
conv_bn_pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
conv_bn_pattern
(
conv_input
,
false
/*with_eltwise_add*/
);
int
found_conv_bn_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"handle ConvBN fuse"
;
// conv, batch_norm,
// conv_weight, conv_out,
// bn_scale, bn_bias, bn_mean, bn_variance,
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance
GET_CONV_BN_NODES
(
conv_bn_pattern
);
// Create eltwise_y (conv bias) variable
VarDesc
eltwise_y_in_desc
(
patterns
::
PDNodeName
(
name_scope_
,
"eltwise_y_in"
));
auto
*
eltwise_y_in_node
=
g
->
CreateVarNode
(
&
eltwise_y_in_desc
);
auto
*
eltwise_y_in_tensor
=
scope
->
Var
(
eltwise_y_in_node
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// Get batch norm bias
auto
*
bn_bias_tensor
=
scope
->
FindVar
(
bn_bias
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// Initialize eltwise_y
eltwise_y_in_tensor
->
Resize
(
bn_bias_tensor
->
dims
());
std
::
fill_n
(
eltwise_y_in_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
eltwise_y_in_tensor
->
numel
(),
0.0
f
);
// update weights and biases
float
epsilon
=
boost
::
get
<
float
>
(
batch_norm
->
Op
()
->
GetAttr
(
"epsilon"
));
recompute_bias_and_weights
(
scope
,
conv_weight
,
*
bn_scale
,
*
bn_bias_tensor
,
*
bn_mean
,
*
bn_variance
,
eltwise_y_in_tensor
,
epsilon
);
// Create an elementwise add node
OpDesc
desc
;
desc
.
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
conv_out
->
Name
()}));
desc
.
SetInput
(
"Y"
,
std
::
vector
<
std
::
string
>
({
eltwise_y_in_node
->
Name
()}));
desc
.
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
bn_out
->
Name
()}));
desc
.
SetType
(
"elementwise_add"
);
desc
.
SetAttr
(
"axis"
,
1
);
bool
a
=
boost
::
get
<
bool
>
(
conv
->
Op
()
->
GetAttr
(
"use_mkldnn"
));
desc
.
SetAttr
(
"use_mkldnn"
,
a
);
auto
eltwise_op
=
g
->
CreateOpNode
(
&
desc
);
// OpDesc will be copied.
GraphSafeRemoveNodes
(
graph
.
get
(),
{
bn_scale
,
bn_bias
,
bn_mean
,
bn_variance
,
batch_norm
,
bn_mean_out
,
bn_variance_out
,
bn_saved_mean
,
bn_saved_variance
});
PADDLE_ENFORCE
(
subgraph
.
count
(
conv_input
));
IR_NODE_LINK_TO
(
conv_out
,
eltwise_op
);
IR_NODE_LINK_TO
(
eltwise_y_in_node
,
eltwise_op
);
IR_NODE_LINK_TO
(
eltwise_op
,
bn_out
);
found_conv_bn_count
++
;
};
gpd
(
graph
.
get
(),
handler
);
AddStatis
(
found_conv_bn_count
);
return
graph
;
}
std
::
unique_ptr
<
ir
::
Graph
>
ConvEltwiseAddBNFusePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
PADDLE_ENFORCE
(
graph
.
get
());
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
auto
*
scope
=
param_scope
();
PADDLE_ENFORCE
(
scope
);
GraphPatternDetector
gpd
;
auto
*
conv_input
=
gpd
.
mutable_pattern
()
->
NewNode
(
patterns
::
PDNodeName
(
name_scope_
,
"conv_input"
))
->
AsInput
()
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
patterns
::
ConvBN
conv_bn_pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
conv_bn_pattern
(
conv_input
,
true
/*with_eltwise_add*/
);
int
found_conv_bn_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"handle ConvBN fuse"
;
// conv, batch_norm,
// conv_weight, conv_out,
// bn_scale, bn_bias, bn_mean, bn_variance,
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
GET_CONV_BN_NODES
(
conv_bn_pattern
);
// OPERATORS
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise
,
eltwise
,
conv_bn_pattern
);
// BIAS inputs
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_y_in
,
eltwise_y_in
,
conv_bn_pattern
);
// BIAS outputs
GET_IR_NODE_FROM_SUBGRAPH
(
eltwise_out
,
eltwise_out
,
conv_bn_pattern
);
// Get eltwise_y (conv bias) variable
auto
*
eltwise_y_in_tensor
=
scope
->
FindVar
(
eltwise_y_in
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// Get batch norm bias
auto
*
bn_bias_tensor
=
scope
->
FindVar
(
bn_bias
->
Name
())
->
GetMutable
<
LoDTensor
>
();
// update weights and biases
float
epsilon
=
boost
::
get
<
float
>
(
batch_norm
->
Op
()
->
GetAttr
(
"epsilon"
));
recompute_bias_and_weights
(
scope
,
conv_weight
,
*
bn_scale
,
*
bn_bias_tensor
,
*
bn_mean
,
*
bn_variance
,
eltwise_y_in_tensor
,
epsilon
);
// Update the elementwise_add node
eltwise
->
Op
()
->
SetAttr
(
"axis"
,
1
);
eltwise
->
Op
()
->
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
bn_out
->
Name
()}));
GraphSafeRemoveNodes
(
graph
.
get
(),
{
bn_scale
,
bn_bias
,
bn_mean
,
bn_variance
,
batch_norm
,
bn_mean_out
,
bn_variance_out
,
bn_saved_mean
,
bn_saved_variance
,
eltwise_out
});
PADDLE_ENFORCE
(
subgraph
.
count
(
conv_input
));
IR_NODE_LINK_TO
(
eltwise
,
bn_out
);
found_conv_bn_count
++
;
};
gpd
(
graph
.
get
(),
handler
);
AddStatis
(
found_conv_bn_count
);
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
conv_bn_fuse_pass
,
paddle
::
framework
::
ir
::
ConvBNFusePass
);
REGISTER_PASS
(
conv_eltwiseadd_bn_fuse_pass
,
paddle
::
framework
::
ir
::
ConvEltwiseAddBNFusePass
);
paddle/fluid/framework/ir/conv_bn_fuse_pass.h
0 → 100644
浏览文件 @
16b1beb2
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* Fuse the Conv and BatchNorm to a ConvBNMKLDNNOp.
*/
class
ConvBNFusePass
:
public
FusePassBase
{
public:
virtual
~
ConvBNFusePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
const
std
::
string
name_scope_
{
"conv_bn_fuse"
};
};
class
ConvEltwiseAddBNFusePass
:
public
FusePassBase
{
public:
virtual
~
ConvEltwiseAddBNFusePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
const
std
::
string
name_scope_
{
"conv_eltwiseadd_bn_fuse"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
16b1beb2
...
...
@@ -626,6 +626,112 @@ bool VarLinksFromOp(Node *node, const std::string &op_type) {
return
false
;
}
PDNode
*
patterns
::
ConvBN
::
operator
()(
paddle
::
framework
::
ir
::
PDNode
*
conv_input
,
bool
with_eltwise_add
)
{
// Create Operators
conv_input
->
assert_is_op_input
(
"conv2d"
,
"Input"
);
auto
*
conv_op
=
pattern
->
NewNode
(
conv_repr
())
->
assert_is_op
(
"conv2d"
);
PDNode
*
eltwise_op
=
nullptr
;
if
(
with_eltwise_add
)
{
eltwise_op
=
pattern
->
NewNode
(
eltwise_repr
())
->
assert_is_op
(
"elementwise_add"
);
}
auto
*
batch_norm_op
=
pattern
->
NewNode
(
batch_norm_repr
())
->
assert_is_op
(
"batch_norm"
);
// Create variables
// Conv Filter
auto
*
conv_weight_var
=
pattern
->
NewNode
(
conv_weight_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"conv2d"
,
"Filter"
);
auto
*
conv_out_var
=
pattern
->
NewNode
(
conv_out_repr
())
->
AsIntermediate
()
->
assert_is_only_output_of_op
(
"conv2d"
);
PDNode
*
eltwise_y_in_var
=
nullptr
;
PDNode
*
eltwise_out_var
=
nullptr
;
if
(
with_eltwise_add
)
{
// Conv output as Bias input
conv_out_var
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
// Bias
eltwise_y_in_var
=
pattern
->
NewNode
(
eltwise_y_in_repr
())
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
)
->
AsInput
();
eltwise_out_var
=
pattern
->
NewNode
(
eltwise_out_repr
())
->
AsIntermediate
()
->
assert_is_only_output_of_op
(
"elementwise_add"
);
}
else
{
// Conv output as BN input
conv_out_var
->
assert_is_op_input
(
"batch_norm"
,
"X"
);
}
// BN Scale
auto
*
bn_scale_var
=
pattern
->
NewNode
(
bn_scale_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Scale"
);
// BN Bias
auto
*
bn_bias_var
=
pattern
->
NewNode
(
bn_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Bias"
);
// BN Mean
auto
*
bn_mean_var
=
pattern
->
NewNode
(
bn_mean_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Mean"
);
// BN Variance
auto
*
bn_variance_var
=
pattern
->
NewNode
(
bn_variance_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"batch_norm"
,
"Variance"
);
// BN output
auto
*
bn_out_var
=
pattern
->
NewNode
(
bn_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"batch_norm"
);
auto
*
bn_mean_out_var
=
pattern
->
NewNode
(
bn_mean_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"batch_norm"
,
"MeanOut"
);
auto
*
bn_variance_out_var
=
pattern
->
NewNode
(
bn_variance_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"batch_norm"
,
"VarianceOut"
);
auto
*
bn_saved_mean_var
=
pattern
->
NewNode
(
bn_saved_mean_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"batch_norm"
,
"SavedMean"
);
auto
*
bn_saved_variance_var
=
pattern
->
NewNode
(
bn_saved_variance_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"batch_norm"
,
"SavedVariance"
);
conv_op
->
LinksFrom
({
conv_input
,
conv_weight_var
}).
LinksTo
({
conv_out_var
});
if
(
with_eltwise_add
)
{
eltwise_op
->
LinksFrom
({
conv_out_var
,
eltwise_y_in_var
})
.
LinksTo
({
eltwise_out_var
});
batch_norm_op
->
LinksFrom
({
eltwise_out_var
,
bn_scale_var
,
bn_bias_var
,
bn_mean_var
,
bn_variance_var
})
.
LinksTo
({
bn_out_var
,
bn_mean_out_var
,
bn_variance_out_var
,
bn_saved_mean_var
,
bn_saved_variance_var
});
}
else
{
batch_norm_op
->
LinksFrom
({
conv_out_var
,
bn_scale_var
,
bn_bias_var
,
bn_mean_var
,
bn_variance_var
})
.
LinksTo
({
bn_out_var
,
bn_mean_out_var
,
bn_variance_out_var
,
bn_saved_mean_var
,
bn_saved_variance_var
});
}
return
bn_out_var
;
}
PDNode
*
patterns
::
ConvReLU
::
operator
()(
paddle
::
framework
::
ir
::
PDNode
*
conv_input
)
{
// Create Operators
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
16b1beb2
...
...
@@ -375,6 +375,44 @@ struct PatternBase {
size_t
id_
;
};
// Conv with batch norm
// op: conv + (elementwise_add +) batch_norm
// named nodes:
// conv_weight, conv_out, conv,
// bn_x, bn_scale, bn_bias, bn_mean, bn_variance,
// bn_batch_norm, bn_y, bn_mean_out, bn_variance_out,
// bn_saved_mean, bn_saved_variance
struct
ConvBN
:
public
PatternBase
{
ConvBN
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"conv_bn"
)
{}
PDNode
*
operator
()(
PDNode
*
conv_input
,
bool
with_eltwise_add
);
// declare operator node's name
PATTERN_DECL_NODE
(
conv
);
PATTERN_DECL_NODE
(
batch_norm
);
PATTERN_DECL_NODE
(
eltwise
);
// ELEMENTWISE_ADD
// CONV inputs
PATTERN_DECL_NODE
(
conv_weight
);
// Filter
// CONV outputs
PATTERN_DECL_NODE
(
conv_out
);
// tmp
// ELTWISE inputs
PATTERN_DECL_NODE
(
eltwise_y_in
);
// ELTWISE outputs
PATTERN_DECL_NODE
(
eltwise_out
);
// tmp
// BN inputs
PATTERN_DECL_NODE
(
bn_scale
);
PATTERN_DECL_NODE
(
bn_bias
);
PATTERN_DECL_NODE
(
bn_mean
);
PATTERN_DECL_NODE
(
bn_variance
);
// BN outputs
PATTERN_DECL_NODE
(
bn_out
);
// Out
PATTERN_DECL_NODE
(
bn_mean_out
);
PATTERN_DECL_NODE
(
bn_variance_out
);
PATTERN_DECL_NODE
(
bn_saved_mean
);
PATTERN_DECL_NODE
(
bn_saved_variance
);
};
// CONV with ReLU
// op: conv + relu
// named nodes:
...
...
paddle/fluid/inference/analysis/analyzer.h
浏览文件 @
16b1beb2
...
...
@@ -64,15 +64,17 @@ class Analyzer : public OrderedRegistry<PassManager> {
// larger fusion.
const
std
::
vector
<
std
::
string
>
all_ir_passes_
{{
// Manual update the passes here.
"infer_clean_graph_pass"
,
//
"attention_lstm_fuse_pass"
,
//
"embedding_fc_lstm_fuse_pass"
,
//
"fc_lstm_fuse_pass"
,
//
"mul_lstm_fuse_pass"
,
//
"fc_gru_fuse_pass"
,
//
"mul_gru_fuse_pass"
,
//
"seq_concat_fc_fuse_pass"
,
//
"fc_fuse_pass"
,
//
"infer_clean_graph_pass"
,
//
"attention_lstm_fuse_pass"
,
//
"embedding_fc_lstm_fuse_pass"
,
//
"fc_lstm_fuse_pass"
,
//
"mul_lstm_fuse_pass"
,
//
"fc_gru_fuse_pass"
,
//
"mul_gru_fuse_pass"
,
//
"seq_concat_fc_fuse_pass"
,
//
"fc_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
"conv_eltwiseadd_bn_fuse_pass"
,
//
#ifdef PADDLE_WITH_MKLDNN
"conv_relu_mkldnn_fuse_pass"
,
//
#endif
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录