未验证 提交 16931039 编写于 作者: Z zhangyikun02 提交者: GitHub

add unbind op for xpu (#49356)

上级 746a4ddb
......@@ -587,6 +587,7 @@ XPUOpMap& get_kl2_ops() {
{"top_k_v2", XPUKernelSet({phi::DataType::FLOAT32})},
{"update_loss_scaling",
XPUKernelSet({phi::DataType::FLOAT32, phi::DataType::FLOAT16})},
{"unbind", XPUKernelSet({phi::DataType::FLOAT32})},
{"uniform_random", XPUKernelSet({phi::DataType::FLOAT32})},
{"unsqueeze2_grad",
XPUKernelSet({phi::DataType::FLOAT64,
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/unbind_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void UnbindKernel(const Context& dev_ctx,
const DenseTensor& x,
int axis,
std::vector<DenseTensor*> outs) {
auto x_dims = x.dims();
axis = axis < 0 ? x_dims.size() + axis : axis;
std::vector<T*> y_ptrs;
for (size_t j = 0; j < outs.size(); ++j) {
dev_ctx.template Alloc<T>(outs[j]);
y_ptrs.emplace_back(outs[j]->data<T>());
}
auto x_shape = vectorize<int>(x.dims());
int r = xpu::unbind(dev_ctx.x_context(), x.data<T>(), y_ptrs, x_shape, axis);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "unbind");
}
} // namespace phi
PD_REGISTER_KERNEL(unbind, XPU, ALL_LAYOUT, phi::UnbindKernel, float) {}
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
sys.path.append("..")
import numpy as np
from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import (
XPUOpTestWrapper,
create_test_class,
get_xpu_op_support_types,
)
import paddle
import paddle.fluid as fluid
import paddle.tensor as tensor
from paddle.fluid import Program, program_guard
from paddle.fluid.framework import _test_eager_guard
paddle.enable_static()
class XPUTestUnbindOP(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'unbind'
self.use_dynamic_create_class = False
class TestUnbind(unittest.TestCase):
def test_unbind(self):
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
x_1 = fluid.data(shape=[2, 3], dtype=self.dtype, name='x_1')
[out_0, out_1] = tensor.unbind(input=x_1, axis=0)
input_1 = np.random.random([2, 3]).astype(self.dtype)
axis = fluid.data(shape=[1], dtype='int32', name='axis')
exe = fluid.Executor(place=self.place)
[res_1, res_2] = exe.run(
fluid.default_main_program(),
feed={"x_1": input_1, "axis": 0},
fetch_list=[out_0, out_1],
)
assert np.array_equal(res_1, input_1[0, 0:100])
assert np.array_equal(res_2, input_1[1, 0:100])
def test_unbind_dygraph(self):
with fluid.dygraph.guard():
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
np_x = np.random.random([2, 3]).astype(self.dtype)
x = paddle.to_tensor(np_x)
x.stop_gradient = False
[res_1, res_2] = paddle.unbind(x, 0)
np.testing.assert_array_equal(res_1, np_x[0, 0:100])
np.testing.assert_array_equal(res_2, np_x[1, 0:100])
out = paddle.add_n([res_1, res_2])
np_grad = np.ones(x.shape, np.float32)
out.backward()
np.testing.assert_array_equal(x.grad.numpy(), np_grad)
def test_unbind_dygraph_final_state(self):
with _test_eager_guard():
self.test_unbind_dygraph()
class TestLayersUnbind(unittest.TestCase):
def test_layers_unbind(self):
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
x_1 = fluid.data(shape=[2, 3], dtype=self.dtype, name='x_1')
[out_0, out_1] = paddle.unbind(input=x_1, axis=0)
input_1 = np.random.random([2, 3]).astype(self.dtype)
axis = fluid.data(shape=[1], dtype='int32', name='axis')
exe = fluid.Executor(place=self.place)
[res_1, res_2] = exe.run(
fluid.default_main_program(),
feed={"x_1": input_1, "axis": 0},
fetch_list=[out_0, out_1],
)
assert np.array_equal(res_1, input_1[0, 0:100])
assert np.array_equal(res_2, input_1[1, 0:100])
class TestUnbindOp(XPUOpTest):
def initParameters(self):
pass
def outReshape(self):
pass
def setAxis(self):
pass
def setUp(self):
self._set_op_type()
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
self.axis = 0
self.num = 3
self.initParameters()
x = np.arange(12).reshape(3, 2, 2).astype(self.dtype)
self.out = np.split(x, self.num, self.axis)
self.outReshape()
self.inputs = {'X': x}
self.attrs = {'axis': self.axis}
self.setAxis()
self.outputs = {
'Out': [
('out%d' % i, self.out[i]) for i in range(len(self.out))
]
}
def _set_op_type(self):
self.op_type = "unbind"
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])
class TestUnbindOp1(TestUnbindOp):
def initParameters(self):
self.axis = 1
self.num = 2
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1'])
def outReshape(self):
self.out[0] = self.out[0].reshape((3, 2))
self.out[1] = self.out[1].reshape((3, 2))
class TestUnbindOp2(TestUnbindOp):
def initParameters(self):
self.axis = 2
self.num = 2
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1'])
def outReshape(self):
self.out[0] = self.out[0].reshape((3, 2))
self.out[1] = self.out[1].reshape((3, 2))
class TestUnbindOp3(TestUnbindOp):
def initParameters(self):
self.axis = 2
self.num = 2
def setAxis(self):
self.attrs = {'axis': -1}
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1'])
def outReshape(self):
self.out[0] = self.out[0].reshape((3, 2))
self.out[1] = self.out[1].reshape((3, 2))
class TestUnbindOp4(TestUnbindOp):
def initParameters(self):
self.axis = 1
self.num = 2
def setAxis(self):
self.attrs = {'axis': -2}
def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1'])
def outReshape(self):
self.out[0] = self.out[0].reshape((3, 2))
self.out[1] = self.out[1].reshape((3, 2))
class TestUnbindAxisError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
self.dtype = self.in_type
self.place = paddle.XPUPlace(0)
x = fluid.data(shape=[2, 3], dtype=self.dtype, name='x')
def test_table_Variable():
tensor.unbind(input=x, axis=2.0)
self.assertRaises(TypeError, test_table_Variable)
support_types = get_xpu_op_support_types('unbind')
for stype in support_types:
create_test_class(globals(), XPUTestUnbindOP, stype)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册