Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
165450ff
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
165450ff
编写于
2月 06, 2018
作者:
Y
Yiqun Liu
提交者:
kexinzhao
2月 05, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the inference unittest recognize_digits. (#8147)
上级
b0ecb365
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
49 addition
and
18 deletion
+49
-18
paddle/inference/tests/book/test_inference_recognize_digits.cc
...e/inference/tests/book/test_inference_recognize_digits.cc
+46
-17
python/paddle/v2/fluid/tests/book/test_recognize_digits.py
python/paddle/v2/fluid/tests/book/test_recognize_digits.py
+3
-1
未找到文件。
paddle/inference/tests/book/test_inference_recognize_digits.cc
浏览文件 @
165450ff
...
...
@@ -58,6 +58,47 @@ void TestInference(const std::string& dirname,
delete
scope
;
}
template
<
typename
T
>
void
SetupTensor
(
paddle
::
framework
::
LoDTensor
&
input
,
paddle
::
framework
::
DDim
dims
,
T
lower
,
T
upper
)
{
srand
(
time
(
0
));
float
*
input_ptr
=
input
.
mutable_data
<
T
>
(
dims
,
paddle
::
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
input
.
numel
();
++
i
)
{
input_ptr
[
i
]
=
(
static_cast
<
T
>
(
rand
())
/
static_cast
<
T
>
(
RAND_MAX
))
*
(
upper
-
lower
)
+
lower
;
}
}
template
<
typename
T
>
void
CheckError
(
paddle
::
framework
::
LoDTensor
&
output1
,
paddle
::
framework
::
LoDTensor
&
output2
)
{
// Check lod information
EXPECT_EQ
(
output1
.
lod
(),
output2
.
lod
());
EXPECT_EQ
(
output1
.
dims
(),
output2
.
dims
());
EXPECT_EQ
(
output1
.
numel
(),
output2
.
numel
());
T
err
=
static_cast
<
T
>
(
0
);
if
(
typeid
(
T
)
==
typeid
(
float
))
{
err
=
1E-3
;
}
else
if
(
typeid
(
T
)
==
typeid
(
double
))
{
err
=
1E-6
;
}
else
{
err
=
0
;
}
size_t
count
=
0
;
for
(
int64_t
i
=
0
;
i
<
output1
.
numel
();
++
i
)
{
if
(
fabs
(
output1
.
data
<
T
>
()[
i
]
-
output2
.
data
<
T
>
()[
i
])
>
err
)
{
count
++
;
}
}
EXPECT_EQ
(
count
,
0
)
<<
"There are "
<<
count
<<
" different elements."
;
}
TEST
(
inference
,
recognize_digits
)
{
if
(
FLAGS_dirname
.
empty
())
{
LOG
(
FATAL
)
<<
"Usage: ./example --dirname=path/to/your/model"
;
...
...
@@ -70,12 +111,10 @@ TEST(inference, recognize_digits) {
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
paddle
::
framework
::
LoDTensor
input
;
srand
(
time
(
0
));
float
*
input_ptr
=
input
.
mutable_data
<
float
>
({
1
,
28
,
28
},
paddle
::
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
784
;
++
i
)
{
input_ptr
[
i
]
=
rand
()
/
(
static_cast
<
float
>
(
RAND_MAX
));
}
// Use normilized image pixels as input data,
// which should be in the range [-1.0, 1.0].
SetupTensor
<
float
>
(
input
,
{
1
,
28
,
28
},
static_cast
<
float
>
(
-
1
),
static_cast
<
float
>
(
1
));
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_feeds
;
cpu_feeds
.
push_back
(
&
input
);
...
...
@@ -98,16 +137,6 @@ TEST(inference, recognize_digits) {
dirname
,
cpu_feeds
,
cpu_fetchs2
);
LOG
(
INFO
)
<<
output2
.
dims
();
EXPECT_EQ
(
output1
.
dims
(),
output2
.
dims
());
EXPECT_EQ
(
output1
.
numel
(),
output2
.
numel
());
float
err
=
1E-3
;
int
count
=
0
;
for
(
int64_t
i
=
0
;
i
<
output1
.
numel
();
++
i
)
{
if
(
fabs
(
output1
.
data
<
float
>
()[
i
]
-
output2
.
data
<
float
>
()[
i
])
>
err
)
{
count
++
;
}
}
EXPECT_EQ
(
count
,
0
)
<<
"There are "
<<
count
<<
" different elements."
;
CheckError
<
float
>
(
output1
,
output2
);
#endif
}
python/paddle/v2/fluid/tests/book/test_recognize_digits.py
浏览文件 @
165450ff
...
...
@@ -166,7 +166,9 @@ def infer(use_cuda, save_dirname=None):
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
# The input's dimension of conv should be 4-D or 5-D.
tensor_img
=
numpy
.
random
.
rand
(
1
,
1
,
28
,
28
).
astype
(
"float32"
)
# Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
[
1
,
1
,
28
,
28
]).
astype
(
"float32"
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录