Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1642e84b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1642e84b
编写于
9月 08, 2023
作者:
Y
Yichen Zhang
提交者:
GitHub
9月 08, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cross_entropy backward rule (#56507)
上级
4faac179
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
231 addition
and
5 deletion
+231
-5
paddle/fluid/distributed/auto_parallel/spmd_rules/cross_entropy_with_softmax_spmd_rule.cc
...rallel/spmd_rules/cross_entropy_with_softmax_spmd_rule.cc
+110
-4
paddle/fluid/distributed/auto_parallel/spmd_rules/cross_entropy_with_softmax_spmd_rule.h
...arallel/spmd_rules/cross_entropy_with_softmax_spmd_rule.h
+2
-1
test/auto_parallel/spmd_rules/test_cross_entropy_with_softmax_rule.py
...rallel/spmd_rules/test_cross_entropy_with_softmax_rule.py
+119
-0
未找到文件。
paddle/fluid/distributed/auto_parallel/spmd_rules/cross_entropy_with_softmax_spmd_rule.cc
浏览文件 @
1642e84b
...
...
@@ -34,7 +34,7 @@ CrossEntropyWithSoftmaxSPMDRule::InferForward(
input_specs_size
));
auto
x_shape
=
input_specs
[
0
].
shape
();
int
x_ndim
=
static_cast
<
int
>
(
x_shape
.
size
()
);
int
x_ndim
=
x_shape
.
size
(
);
auto
x_dist_attr_src
=
input_specs
[
0
].
dist_attr
();
std
::
vector
<
int64_t
>
x_dims_mapping_src
=
x_dist_attr_src
.
dims_mapping
();
...
...
@@ -173,10 +173,116 @@ CrossEntropyWithSoftmaxSPMDRule::InferForward(
std
::
pair
<
std
::
vector
<
TensorDistAttr
>
,
std
::
vector
<
TensorDistAttr
>>
CrossEntropyWithSoftmaxSPMDRule
::
InferBackward
(
const
std
::
vector
<
DistTensorSpec
>&
input_specs
,
const
std
::
vector
<
DistTensorSpec
>&
output_specs
,
const
paddle
::
framework
::
AttributeMap
&
attrs
)
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"InferBackward of CrossEntropyWithSoftmaxSPMDRule is NOT implemented "
"yet."
));
// step0: verify input args based on cross_entropy_with_softmax logic
int64_t
ninputs
=
input_specs
.
size
();
int64_t
noutputs
=
output_specs
.
size
();
PADDLE_ENFORCE_EQ
(
ninputs
,
2
,
phi
::
errors
::
InvalidArgument
(
"The size of InputSpec of cross entropy "
"with softmax should be 2, but got [%d]."
,
ninputs
));
PADDLE_ENFORCE_EQ
(
noutputs
,
2
,
phi
::
errors
::
InvalidArgument
(
"The size of OutputSpec of cross entropy "
"with softmax should be 2, but got [%d]."
,
noutputs
));
VerifySpecs
(
output_specs
,
"cross_entropy_with_softmax_backward"
);
// step1: build Einsum Notation
std
::
vector
<
int64_t
>
x_shape
=
input_specs
[
0
].
shape
();
int64_t
x_ndim
=
x_shape
.
size
();
std
::
vector
<
int64_t
>
label_shape
=
input_specs
[
1
].
shape
();
int
axis
=
ExtractAttr
<
int
>
(
"axis"
,
attrs
);
int
ignore_index
=
ExtractAttr
<
int
>
(
"ignore_index"
,
attrs
);
bool
numeric_stable_mode
=
ExtractAttr
<
bool
>
(
"numeric_stable_mode"
,
attrs
);
bool
use_softmax
=
ExtractAttr
<
bool
>
(
"use_softmax"
,
attrs
);
bool
soft_label
=
ExtractAttr
<
bool
>
(
"soft_label"
,
attrs
);
// normalize axis
if
(
axis
<
0
)
{
axis
=
x_ndim
+
axis
;
}
std
::
string
alphabet
=
"abcdefghijlmnopqrstuvwxyz"
;
// k for softmax_normalize axis
std
::
string
x_axes
=
GetBroadcastAxes
(
x_ndim
,
x_ndim
,
alphabet
);
x_axes
[
axis
]
=
'k'
;
std
::
string
label_axes
=
x_axes
;
if
(
!
soft_label
)
{
label_axes
[
axis
]
=
'1'
;
}
std
::
string
loss_axes
=
x_axes
;
loss_axes
[
axis
]
=
'1'
;
// optional output
std
::
string
softmax_out_axes
;
if
(
use_softmax
)
{
softmax_out_axes
=
x_axes
;
}
else
{
softmax_out_axes
=
""
;
}
// step2: Sharding Propogation
// step2.1 merge output dims mappings
std
::
vector
<
std
::
pair
<
std
::
string
,
std
::
vector
<
int64_t
>>>
axes_sharding_info
;
axes_sharding_info
=
GetAxesDimsMappingPair
({
softmax_out_axes
,
loss_axes
},
output_specs
);
std
::
unordered_map
<
std
::
string
,
int64_t
>
axis_to_dim_map
=
ShardingMergeForTensors
(
axes_sharding_info
);
// step2.2 infer inputs' dims mappings from merged dims mapping
std
::
vector
<
TensorDistAttr
>
input_dist_attrs
;
input_dist_attrs
.
emplace_back
(
input_specs
[
0
].
dist_attr
());
input_dist_attrs
.
emplace_back
(
input_specs
[
1
].
dist_attr
());
// infer and set input X's dims mapping
input_dist_attrs
[
0
].
set_dims_mapping
(
GetDimsMappingForAxes
(
x_axes
,
axis_to_dim_map
));
// infer and set input label's dims mapping
input_dist_attrs
[
1
].
set_dims_mapping
(
GetDimsMappingForAxes
(
label_axes
,
axis_to_dim_map
));
// step2.3 update outputs' dims mappings with merged dims mapping
std
::
vector
<
TensorDistAttr
>
output_dist_attrs
;
output_dist_attrs
.
emplace_back
(
output_specs
[
0
].
dist_attr
());
// softmax_out
output_dist_attrs
.
emplace_back
(
output_specs
[
1
].
dist_attr
());
// loss
output_dist_attrs
[
0
].
set_dims_mapping
(
GetDimsMappingForAxes
(
softmax_out_axes
,
axis_to_dim_map
));
output_dist_attrs
[
1
].
set_dims_mapping
(
GetDimsMappingForAxes
(
loss_axes
,
axis_to_dim_map
));
// step3: Handle partial state (TODO)
VLOG
(
4
)
<<
"CrossEntropyWithSoftmaxSPMDRule InferBackward: "
<<
"axis: "
<<
axis
<<
", ignore_index: "
<<
ignore_index
<<
", numeric_stable_mode: "
<<
(
numeric_stable_mode
?
"true"
:
"false"
)
<<
", use_softmax: "
<<
use_softmax
<<
", soft_label: "
<<
(
soft_label
?
"true"
:
"false"
);
VLOG
(
4
)
<<
"Einsum notation: ["
<<
x_axes
<<
","
<<
label_axes
<<
" --> "
<<
softmax_out_axes
<<
","
<<
loss_axes
<<
"]. (inputs --> outputs)"
;
for
(
int64_t
i
=
0
;
i
<
noutputs
;
i
++
)
{
VLOG
(
4
)
<<
"Output"
<<
std
::
to_string
(
i
)
<<
": "
<<
"shape: ["
<<
str_join
(
output_specs
[
i
].
shape
())
<<
"], src_dims_mapping: ["
<<
str_join
(
output_specs
[
i
].
dims_mapping
())
<<
"], dst_dims_mapping: ["
<<
str_join
(
output_dist_attrs
[
i
].
dims_mapping
())
<<
"]"
;
}
for
(
int64_t
i
=
0
;
i
<
ninputs
;
i
++
)
{
VLOG
(
4
)
<<
"Input"
<<
std
::
to_string
(
i
)
<<
": "
<<
"shape: ["
<<
str_join
(
input_specs
[
i
].
shape
())
<<
"], infered_dims_mapping: ["
<<
str_join
(
input_dist_attrs
[
i
].
dims_mapping
())
<<
"]"
;
}
VLOG
(
4
)
<<
std
::
endl
;
// according to the phi api implemetation, the softmax_out tensor will alway
// be genereated not matter the value of use_softmax.
return
{
input_dist_attrs
,
output_dist_attrs
};
}
}
// namespace auto_parallel
...
...
paddle/fluid/distributed/auto_parallel/spmd_rules/cross_entropy_with_softmax_spmd_rule.h
浏览文件 @
1642e84b
...
...
@@ -27,7 +27,8 @@ class CrossEntropyWithSoftmaxSPMDRule : public SPMDRuleBase {
const
paddle
::
framework
::
AttributeMap
&
attrs
)
override
;
std
::
pair
<
std
::
vector
<
TensorDistAttr
>
,
std
::
vector
<
TensorDistAttr
>>
InferBackward
(
const
std
::
vector
<
DistTensorSpec
>&
output_specs
,
InferBackward
(
const
std
::
vector
<
DistTensorSpec
>&
input_specs
,
const
std
::
vector
<
DistTensorSpec
>&
output_specs
,
const
paddle
::
framework
::
AttributeMap
&
attrs
)
override
;
};
}
// namespace auto_parallel
...
...
test/auto_parallel/spmd_rules/test_cross_entropy_with_softmax_rule.py
浏览文件 @
1642e84b
...
...
@@ -39,6 +39,9 @@ class TestCrossEntropyWithSoftmaxSPMDRule(unittest.TestCase):
label_shape
,
label_tensor_dist_attr
)
self
.
loss_spec
=
DistTensorSpec
(
self
.
lable_dist_tensor_spec
)
self
.
softmax_out_spec
=
DistTensorSpec
(
self
.
x_dist_tensor_spec
)
self
.
attrs
=
{
'ignore_index'
:
-
1
,
'axis'
:
-
1
,
...
...
@@ -147,6 +150,122 @@ class TestCrossEntropyWithSoftmaxSPMDRule(unittest.TestCase):
)
self
.
attrs
[
'axis'
]
=
-
1
def
test_cross_entropy_with_softmax_infer_backward
(
self
):
# GPT DP case
# [1, 0, -1], [1, 0, -1] (outputs) -->
# [1, 0, -1], [1, 0, -1], (inputs)
# [1, 0, -1], [1, 0, -1] (outputs)
self
.
attrs
[
'axis'
]
=
-
1
self
.
attrs
[
'use_softmax'
]
=
True
self
.
attrs
[
'soft_label'
]
=
False
self
.
softmax_out_spec
.
set_dims_mapping
([
1
,
0
,
-
1
])
self
.
loss_spec
.
set_dims_mapping
([
1
,
0
,
-
1
])
result_dist_attrs
=
self
.
rule1
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
lable_dist_tensor_spec
],
[
self
.
softmax_out_spec
,
self
.
loss_spec
],
self
.
attrs
,
)
self
.
assertEqual
(
len
(
result_dist_attrs
),
2
)
infered_input_dist_attrs
=
result_dist_attrs
[
0
]
infered_output_dist_attrs
=
result_dist_attrs
[
1
]
self
.
assertEqual
(
len
(
infered_input_dist_attrs
),
2
)
self
.
assertEqual
(
len
(
infered_output_dist_attrs
),
2
)
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
1
,
0
,
-
1
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
1
,
0
,
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
1
,
0
,
-
1
]
)
# softmax output
self
.
assertEqual
(
infered_output_dist_attrs
[
1
].
dims_mapping
,
[
1
,
0
,
-
1
]
)
# loss
# GPT MP case, shard normalized axis
# [-1, -1, 0], [-1, -1, -1] (outputs) -->
# [-1, -1, 0], [-1, -1, -1], (inputs)
# [-1, -1, 0], [-1, -1, -1] (outputs)
self
.
attrs
[
'axis'
]
=
-
1
self
.
attrs
[
'use_softmax'
]
=
True
self
.
attrs
[
'soft_label'
]
=
False
self
.
softmax_out_spec
.
set_dims_mapping
([
-
1
,
-
1
,
0
])
self
.
loss_spec
.
set_dims_mapping
([
-
1
,
-
1
,
-
1
])
result_dist_attrs
=
self
.
rule1
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
lable_dist_tensor_spec
],
[
self
.
softmax_out_spec
,
self
.
loss_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
result_dist_attrs
[
0
]
infered_output_dist_attrs
=
result_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
-
1
,
0
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
-
1
,
-
1
,
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
-
1
,
-
1
,
0
]
)
# softmax output
self
.
assertEqual
(
infered_output_dist_attrs
[
1
].
dims_mapping
,
[
-
1
,
-
1
,
-
1
]
)
# loss
# GPT MP-DP case
# [-1, -1, 0], [1, -1, -1] (outputs) -->
# [1, -1, 0], [1, -1, -1], (inputs)
# [1, -1, 0], [1, -1, -1] (outputs)
self
.
attrs
[
'axis'
]
=
-
1
self
.
attrs
[
'use_softmax'
]
=
True
self
.
attrs
[
'soft_label'
]
=
False
self
.
softmax_out_spec
.
set_dims_mapping
([
-
1
,
-
1
,
0
])
self
.
loss_spec
.
set_dims_mapping
([
1
,
-
1
,
-
1
])
result_dist_attrs
=
self
.
rule1
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
lable_dist_tensor_spec
],
[
self
.
softmax_out_spec
,
self
.
loss_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
result_dist_attrs
[
0
]
infered_output_dist_attrs
=
result_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
1
,
-
1
,
0
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
1
,
-
1
,
-
1
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
1
,
-
1
,
0
]
)
# softmax output
self
.
assertEqual
(
infered_output_dist_attrs
[
1
].
dims_mapping
,
[
1
,
-
1
,
-
1
]
)
# loss
# Soft Label, normalized axis = 1
# [1, -1, 0], [1, -1, -1] (outputs) -->
# [1, -1, 0], [1, -1, 0], (inputs)
# [1, -1, 0], [1, -1, 0] (outputs)
self
.
attrs
[
'axis'
]
=
1
self
.
attrs
[
'use_softmax'
]
=
True
self
.
attrs
[
'soft_label'
]
=
True
self
.
softmax_out_spec
.
set_dims_mapping
([
1
,
-
1
,
0
])
self
.
loss_spec
.
set_dims_mapping
([
1
,
-
1
,
-
1
])
result_dist_attrs
=
self
.
rule1
.
infer_backward
(
[
self
.
x_dist_tensor_spec
,
self
.
lable_dist_tensor_spec
],
[
self
.
softmax_out_spec
,
self
.
loss_spec
],
self
.
attrs
,
)
infered_input_dist_attrs
=
result_dist_attrs
[
0
]
infered_output_dist_attrs
=
result_dist_attrs
[
1
]
self
.
assertEqual
(
infered_input_dist_attrs
[
0
].
dims_mapping
,
[
1
,
-
1
,
0
])
self
.
assertEqual
(
infered_input_dist_attrs
[
1
].
dims_mapping
,
[
1
,
-
1
,
0
])
self
.
assertEqual
(
infered_output_dist_attrs
[
0
].
dims_mapping
,
[
1
,
-
1
,
0
]
)
# softmax output
self
.
assertEqual
(
infered_output_dist_attrs
[
1
].
dims_mapping
,
[
1
,
-
1
,
0
]
)
# loss
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录