Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
160b3477
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
160b3477
编写于
12月 29, 2020
作者:
C
cc
提交者:
GitHub
12月 29, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] map matmul/squeeze2+matmul/reshape2+matmul to mul #29911 (#29980)
上级
5a8d43bb
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
474 addition
and
8 deletion
+474
-8
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+59
-0
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+44
-2
paddle/fluid/framework/ir/map_matmul_to_mul_pass.cc
paddle/fluid/framework/ir/map_matmul_to_mul_pass.cc
+249
-0
paddle/fluid/framework/ir/map_matmul_to_mul_pass.h
paddle/fluid/framework/ir/map_matmul_to_mul_pass.h
+106
-0
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
+1
-1
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+14
-5
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
160b3477
...
...
@@ -60,6 +60,7 @@ pass_library(graph_to_program_pass base)
pass_library
(
graph_viz_pass base
)
pass_library
(
lock_free_optimize_pass base
)
pass_library
(
fc_fuse_pass inference
)
pass_library
(
map_matmul_to_mul_pass inference
)
pass_library
(
attention_lstm_fuse_pass inference
)
pass_library
(
fc_lstm_fuse_pass inference
)
pass_library
(
embedding_fc_lstm_fuse_pass inference
)
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
160b3477
...
...
@@ -1555,6 +1555,65 @@ PDNode *patterns::Reshape::operator()() {
}
PDNode
*
patterns
::
Matmul
::
operator
()()
{
auto
matmul_op
=
pattern
->
NewNode
(
matmul_op_repr
())
->
assert_is_op
(
"matmul"
);
auto
matmul_in_x
=
pattern
->
NewNode
(
matmul_in_x_repr
())
->
AsInput
()
->
assert_is_op_input
(
"matmul"
,
"X"
);
auto
matmul_in_y
=
pattern
->
NewNode
(
matmul_in_y_repr
())
->
AsInput
()
->
assert_is_op_input
(
"matmul"
,
"Y"
);
auto
matmul_out
=
pattern
->
NewNode
(
matmul_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"matmul"
,
"Out"
);
matmul_op
->
LinksFrom
({
matmul_in_x
,
matmul_in_y
}).
LinksTo
({
matmul_out
});
return
matmul_out
;
}
PDNode
*
patterns
::
Squeeze2Matmul
::
operator
()()
{
auto
squeeze2_in_x
=
pattern
->
NewNode
(
squeeze2_in_x_repr
())
->
assert_is_op_input
(
"squeeze2"
,
"X"
)
->
AsInput
();
auto
squeeze2_op
=
pattern
->
NewNode
(
squeeze2_op_repr
())
->
assert_is_op
(
"squeeze2"
);
auto
matmul_in_x
=
pattern
->
NewNode
(
matmul_in_x_repr
())
->
assert_is_op_output
(
"squeeze2"
,
"Out"
)
->
assert_is_op_input
(
"matmul"
,
"X"
);
auto
matmul_in_y
=
pattern
->
NewNode
(
matmul_in_y_repr
())
->
assert_is_op_input
(
"matmul"
,
"Y"
);
auto
matmul_op
=
pattern
->
NewNode
(
matmul_op_repr
())
->
assert_is_op
(
"matmul"
);
auto
matmul_out
=
pattern
->
NewNode
(
matmul_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"matmul"
,
"Out"
);
squeeze2_op
->
LinksFrom
({
squeeze2_in_x
}).
LinksTo
({
matmul_in_x
});
matmul_op
->
LinksFrom
({
matmul_in_x
,
matmul_in_y
}).
LinksTo
({
matmul_out
});
return
matmul_out
;
}
PDNode
*
patterns
::
Reshape2Matmul
::
operator
()()
{
auto
reshape2_in_x
=
pattern
->
NewNode
(
reshape2_in_x_repr
())
->
assert_is_op_input
(
"reshape2"
,
"X"
)
->
AsInput
();
auto
reshape2_op
=
pattern
->
NewNode
(
reshape2_op_repr
())
->
assert_is_op
(
"reshape2"
);
auto
matmul_in_x
=
pattern
->
NewNode
(
matmul_in_x_repr
())
->
assert_is_op_output
(
"reshape2"
,
"Out"
)
->
assert_is_op_input
(
"matmul"
,
"X"
);
auto
matmul_in_y
=
pattern
->
NewNode
(
matmul_in_y_repr
())
->
assert_is_op_input
(
"matmul"
,
"Y"
);
auto
matmul_op
=
pattern
->
NewNode
(
matmul_op_repr
())
->
assert_is_op
(
"matmul"
);
auto
matmul_out
=
pattern
->
NewNode
(
matmul_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"matmul"
,
"Out"
);
reshape2_op
->
LinksFrom
({
reshape2_in_x
}).
LinksTo
({
matmul_in_x
});
matmul_op
->
LinksFrom
({
matmul_in_x
,
matmul_in_y
}).
LinksTo
({
matmul_out
});
return
matmul_out
;
}
PDNode
*
patterns
::
MatmulWithInputOps
::
operator
()()
{
auto
prev_op_x
=
pattern
->
NewNode
(
prev_op_x_repr
())
->
assert_is_op
();
auto
prev_op_y
=
pattern
->
NewNode
(
prev_op_y_repr
())
->
assert_is_op
();
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
160b3477
...
...
@@ -940,10 +940,52 @@ struct Reshape : public PatternBase {
// Matmul op
// Forward pass for matmul.
// matmul_out is a result of the operator.
struct
Matmul
:
public
PatternBase
{
Matmul
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"reshape2"
)
{}
:
PatternBase
(
pattern
,
name_scope
,
"matmul"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
matmul_in_x
);
PATTERN_DECL_NODE
(
matmul_in_y
);
PATTERN_DECL_NODE
(
matmul_op
);
PATTERN_DECL_NODE
(
matmul_out
);
};
// Squeeze2 + Matmul
// Forward pass.
struct
Squeeze2Matmul
:
public
PatternBase
{
Squeeze2Matmul
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"squeeze2_matmul"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
squeeze2_in_x
);
PATTERN_DECL_NODE
(
squeeze2_op
);
PATTERN_DECL_NODE
(
matmul_in_x
);
PATTERN_DECL_NODE
(
matmul_in_y
);
PATTERN_DECL_NODE
(
matmul_op
);
PATTERN_DECL_NODE
(
matmul_out
);
};
// Reshape2 + Matmul
// Forward pass.
struct
Reshape2Matmul
:
public
PatternBase
{
Reshape2Matmul
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"reshape2_matmul"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
reshape2_in_x
);
PATTERN_DECL_NODE
(
reshape2_op
);
PATTERN_DECL_NODE
(
matmul_in_x
);
PATTERN_DECL_NODE
(
matmul_in_y
);
PATTERN_DECL_NODE
(
matmul_op
);
PATTERN_DECL_NODE
(
matmul_out
);
};
// Forward pass for two input ops and matmul op.
// matmul_out is a result of the operator.
struct
MatmulWithInputOps
:
public
PatternBase
{
MatmulWithInputOps
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"matmul_with_input_ops"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
prev_op_x
);
...
...
paddle/fluid/framework/ir/map_matmul_to_mul_pass.cc
0 → 100644
浏览文件 @
160b3477
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/map_matmul_to_mul_pass.h"
#include <cmath>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
MapMatmul2MulPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Graph cannot be nullptr."
));
std
::
string
name_scope
=
"map_matmul_to_mul_pass"
;
FusePassBase
::
Init
(
name_scope
,
graph
);
GraphPatternDetector
gpd
;
patterns
::
Matmul
matmul_pattern
(
gpd
.
mutable_pattern
(),
name_scope
);
matmul_pattern
();
int
found_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"map matmul to mul"
;
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_in_x
,
matmul_in_x
,
matmul_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_in_y
,
matmul_in_y
,
matmul_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_op
,
matmul_op
,
matmul_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_out
,
matmul_out
,
matmul_pattern
);
bool
flag
=
true
;
bool
transpose_X
=
BOOST_GET_CONST
(
bool
,
matmul_op
->
Op
()
->
GetAttr
(
"transpose_X"
));
bool
transpose_Y
=
BOOST_GET_CONST
(
bool
,
matmul_op
->
Op
()
->
GetAttr
(
"transpose_Y"
));
float
alpha
=
BOOST_GET_CONST
(
float
,
matmul_op
->
Op
()
->
GetAttr
(
"alpha"
));
flag
=
flag
&&
!
transpose_X
&&
!
transpose_Y
&&
std
::
abs
(
alpha
-
1.0
)
<
1e-5
;
std
::
vector
<
int64_t
>
x_shape
=
matmul_in_x
->
Var
()
->
GetShape
();
std
::
vector
<
int64_t
>
y_shape
=
matmul_in_y
->
Var
()
->
GetShape
();
size_t
x_rank
=
x_shape
.
size
();
size_t
y_rank
=
y_shape
.
size
();
flag
=
flag
&&
x_rank
==
2
&&
y_rank
==
2
;
std
::
vector
<
Node
*>&
next_ops
=
matmul_out
->
outputs
;
flag
=
flag
&&
next_ops
.
size
()
==
1
&&
next_ops
[
0
]
->
Name
()
==
"elementwise_add"
;
if
(
flag
)
{
OpDesc
desc
;
desc
.
SetType
(
"mul"
);
desc
.
SetInput
(
"X"
,
{
matmul_in_x
->
Name
()});
desc
.
SetInput
(
"Y"
,
{
matmul_in_y
->
Name
()});
desc
.
SetOutput
(
"Out"
,
{
matmul_out
->
Name
()});
desc
.
SetAttr
(
"x_num_col_dims"
,
1
);
desc
.
SetAttr
(
"y_num_col_dims"
,
1
);
auto
mul_node
=
g
->
CreateOpNode
(
&
desc
);
IR_NODE_LINK_TO
(
matmul_in_x
,
mul_node
);
IR_NODE_LINK_TO
(
matmul_in_y
,
mul_node
);
IR_NODE_LINK_TO
(
mul_node
,
matmul_out
);
GraphSafeRemoveNodes
(
graph
,
{
matmul_op
});
++
found_count
;
}
};
gpd
(
graph
,
handler
);
AddStatis
(
found_count
);
}
void
Squeeze2MatmulFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Graph cannot be nullptr."
));
std
::
string
name_scope
=
"squeeze2_matmul_fuse_pass"
;
FusePassBase
::
Init
(
name_scope
,
graph
);
GraphPatternDetector
gpd
;
patterns
::
Squeeze2Matmul
fuse_pattern
(
gpd
.
mutable_pattern
(),
name_scope
);
fuse_pattern
();
int
found_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"fuse squeeze2+matmul to mul"
;
GET_IR_NODE_FROM_SUBGRAPH
(
squeeze2_in_x
,
squeeze2_in_x
,
fuse_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
squeeze2_op
,
squeeze2_op
,
fuse_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_in_x
,
matmul_in_x
,
fuse_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_in_y
,
matmul_in_y
,
fuse_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_op
,
matmul_op
,
fuse_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_out
,
matmul_out
,
fuse_pattern
);
bool
flag
=
true
;
size_t
squeeze2_in_x_rank
=
(
squeeze2_in_x
->
Var
()
->
GetShape
()).
size
();
std
::
vector
<
int
>
squeeze2_op_axes
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
squeeze2_op
->
Op
()
->
GetAttr
(
"axes"
));
flag
=
flag
&&
squeeze2_in_x_rank
==
4
&&
squeeze2_op_axes
==
std
::
vector
<
int
>
{
2
,
3
}
&&
(
matmul_in_x
->
outputs
).
size
()
==
1
;
bool
transpose_X
=
BOOST_GET_CONST
(
bool
,
matmul_op
->
Op
()
->
GetAttr
(
"transpose_X"
));
bool
transpose_Y
=
BOOST_GET_CONST
(
bool
,
matmul_op
->
Op
()
->
GetAttr
(
"transpose_Y"
));
float
alpha
=
BOOST_GET_CONST
(
float
,
matmul_op
->
Op
()
->
GetAttr
(
"alpha"
));
size_t
matmul_in_x_rank
=
(
matmul_in_x
->
Var
()
->
GetShape
()).
size
();
size_t
matmul_in_y_rank
=
(
matmul_in_y
->
Var
()
->
GetShape
()).
size
();
flag
=
flag
&&
!
transpose_X
&&
!
transpose_Y
&&
std
::
abs
(
alpha
-
1.0
)
<
1e-5
&&
matmul_in_x_rank
==
2
&&
matmul_in_y_rank
==
2
;
std
::
vector
<
Node
*>&
next_ops
=
matmul_out
->
outputs
;
flag
=
flag
&&
next_ops
.
size
()
==
1
&&
next_ops
[
0
]
->
Name
()
==
"elementwise_add"
;
if
(
flag
)
{
OpDesc
desc
;
desc
.
SetType
(
"mul"
);
desc
.
SetInput
(
"X"
,
{
squeeze2_in_x
->
Name
()});
desc
.
SetInput
(
"Y"
,
{
matmul_in_y
->
Name
()});
desc
.
SetOutput
(
"Out"
,
{
matmul_out
->
Name
()});
desc
.
SetAttr
(
"x_num_col_dims"
,
1
);
desc
.
SetAttr
(
"y_num_col_dims"
,
1
);
auto
mul_node
=
g
->
CreateOpNode
(
&
desc
);
IR_NODE_LINK_TO
(
squeeze2_in_x
,
mul_node
);
IR_NODE_LINK_TO
(
matmul_in_y
,
mul_node
);
IR_NODE_LINK_TO
(
mul_node
,
matmul_out
);
GraphSafeRemoveNodes
(
graph
,
{
squeeze2_op
,
matmul_in_x
,
matmul_op
});
++
found_count
;
}
};
gpd
(
graph
,
handler
);
AddStatis
(
found_count
);
}
void
Reshape2MatmulFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Graph cannot be nullptr."
));
std
::
string
name_scope
=
"reshape2_matmul_fuse_pass"
;
FusePassBase
::
Init
(
name_scope
,
graph
);
GraphPatternDetector
gpd
;
patterns
::
Reshape2Matmul
fuse_pattern
(
gpd
.
mutable_pattern
(),
name_scope
);
fuse_pattern
();
int
found_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"fuse reshape2+matmul to mul"
;
GET_IR_NODE_FROM_SUBGRAPH
(
reshape2_in_x
,
reshape2_in_x
,
fuse_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
reshape2_op
,
reshape2_op
,
fuse_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_in_x
,
matmul_in_x
,
fuse_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_in_y
,
matmul_in_y
,
fuse_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_op
,
matmul_op
,
fuse_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_out
,
matmul_out
,
fuse_pattern
);
bool
flag
=
true
;
size_t
reshape2_in_nums
=
reshape2_op
->
inputs
.
size
();
auto
reshape2_in_x_shape
=
reshape2_in_x
->
Var
()
->
GetShape
();
size_t
reshape2_in_x_rank
=
reshape2_in_x_shape
.
size
();
std
::
vector
<
int
>
reshape2_op_shape
=
BOOST_GET_CONST
(
std
::
vector
<
int
>
,
reshape2_op
->
Op
()
->
GetAttr
(
"shape"
));
flag
=
flag
&&
reshape2_in_nums
==
1
&&
reshape2_in_x_rank
==
4
&&
reshape2_in_x_shape
[
2
]
==
1
&&
reshape2_in_x_shape
[
3
]
==
1
&&
reshape2_op_shape
.
size
()
==
2
&&
(
matmul_in_x
->
outputs
).
size
()
==
1
;
bool
transpose_X
=
BOOST_GET_CONST
(
bool
,
matmul_op
->
Op
()
->
GetAttr
(
"transpose_X"
));
bool
transpose_Y
=
BOOST_GET_CONST
(
bool
,
matmul_op
->
Op
()
->
GetAttr
(
"transpose_Y"
));
float
alpha
=
BOOST_GET_CONST
(
float
,
matmul_op
->
Op
()
->
GetAttr
(
"alpha"
));
size_t
matmul_in_x_rank
=
(
matmul_in_x
->
Var
()
->
GetShape
()).
size
();
size_t
matmul_in_y_rank
=
(
matmul_in_y
->
Var
()
->
GetShape
()).
size
();
flag
=
flag
&&
!
transpose_X
&&
!
transpose_Y
&&
std
::
abs
(
alpha
-
1.0
)
<
1e-5
&&
matmul_in_x_rank
==
2
&&
matmul_in_y_rank
==
2
;
std
::
vector
<
Node
*>&
next_ops
=
matmul_out
->
outputs
;
flag
=
flag
&&
next_ops
.
size
()
==
1
&&
next_ops
[
0
]
->
Name
()
==
"elementwise_add"
;
if
(
flag
)
{
OpDesc
desc
;
desc
.
SetType
(
"mul"
);
desc
.
SetInput
(
"X"
,
{
reshape2_in_x
->
Name
()});
desc
.
SetInput
(
"Y"
,
{
matmul_in_y
->
Name
()});
desc
.
SetOutput
(
"Out"
,
{
matmul_out
->
Name
()});
desc
.
SetAttr
(
"x_num_col_dims"
,
1
);
desc
.
SetAttr
(
"y_num_col_dims"
,
1
);
auto
mul_node
=
g
->
CreateOpNode
(
&
desc
);
IR_NODE_LINK_TO
(
reshape2_in_x
,
mul_node
);
IR_NODE_LINK_TO
(
matmul_in_y
,
mul_node
);
IR_NODE_LINK_TO
(
mul_node
,
matmul_out
);
GraphSafeRemoveNodes
(
graph
,
{
reshape2_op
,
matmul_in_x
,
matmul_op
});
++
found_count
;
}
};
gpd
(
graph
,
handler
);
AddStatis
(
found_count
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
map_matmul_to_mul_pass
,
paddle
::
framework
::
ir
::
MapMatmul2MulPass
);
REGISTER_PASS_CAPABILITY
(
map_matmul_to_mul_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"matmul"
,
0
)
.
EQ
(
"mul"
,
0
));
REGISTER_PASS
(
squeeze2_matmul_fuse_pass
,
paddle
::
framework
::
ir
::
Squeeze2MatmulFusePass
);
REGISTER_PASS_CAPABILITY
(
squeeze2_matmul_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"matmul"
,
0
)
.
EQ
(
"squeeze2"
,
0
)
.
EQ
(
"mul"
,
0
));
REGISTER_PASS
(
reshape2_matmul_fuse_pass
,
paddle
::
framework
::
ir
::
Reshape2MatmulFusePass
);
REGISTER_PASS_CAPABILITY
(
reshape2_matmul_fuse_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
()
.
EQ
(
"matmul"
,
0
)
.
EQ
(
"reshape2"
,
0
)
.
EQ
(
"mul"
,
0
));
paddle/fluid/framework/ir/map_matmul_to_mul_pass.h
0 → 100644
浏览文件 @
160b3477
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* Map matmul to mul, so the optimization can use fc_fuse_pass.
* The mul op must satisfy the following conditions:
* 1. the transpose_X and transpose_Y attrs are false
* 2. the alpha attr is 1.0
* 3. the rank of input X and Y is 2
* 4. the next op of matmul is only elementwise_add
*
* Notice:
* the rank of input activation is obtained from var_desc,
* it maybe change in runtime.
*/
class
Graph
;
class
MapMatmul2MulPass
:
public
FusePassBase
{
public:
virtual
~
MapMatmul2MulPass
()
{}
protected:
void
ApplyImpl
(
Graph
*
graph
)
const
override
;
};
/*
* Fuse squeeze2+matmul to mul, so the optimization can use fc_fuse_pass.
* The squeeze2 op must satisfy the following conditions:
* 1. the rank of input X is 4
* 2. the axis attr is [2, 3]
* 3. the next op is only matmul
*
* The matmul op must satisfy the following conditions:
* 1. the transpose_X and transpose_Y attrs are false
* 2. the alpha attr is 1.0
* 3. the rank of input X and Y is 2
* 4. the next op of matmul is only elementwise_add
*
* Notice:
* the rank of input activation is obtained from var_desc,
* it maybe change in runtime. Therefore, the pass considers
* the above passes to reduce the impact on other models.
*/
class
Squeeze2MatmulFusePass
:
public
FusePassBase
{
public:
virtual
~
Squeeze2MatmulFusePass
()
{}
protected:
void
ApplyImpl
(
Graph
*
graph
)
const
override
;
};
/*
* Fuse reshape2+matmul to mul, so the optimization can use fc_fuse_pass.
* The reshape2 op must satisfy the following conditions:
* 1. reshape2 has one input node, which means it don't
* have Shape or ShapeTensor input
* 2. the rank of input X is 4 and the last two dims of input X is 1
* 3. the rank of shape attr is 2
* 4. the next op is only matmul
*
* The matmul op must satisfy the following conditions:
* 1. the transpose_X and transpose_Y attrs are false
* 2. the alpha attr is 1.0
* 3. the rank of input X and Y is 2
* 4. the next op of matmul is only elementwise_add
*
* Notice:
* the shape and rank of input activation is obtained from var_desc,
* they maybe change in runtime. Therefore, the pass considers
* the above passes to reduce the impact on other models.
*/
class
Reshape2MatmulFusePass
:
public
FusePassBase
{
public:
virtual
~
Reshape2MatmulFusePass
()
{}
protected:
void
ApplyImpl
(
Graph
*
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
浏览文件 @
160b3477
...
...
@@ -679,7 +679,7 @@ void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
void
CPUQuantizePass
::
QuantizeMatmul
(
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
Matmul
matmul_pattern
{
pattern
,
name_scope_
};
patterns
::
Matmul
WithInputOps
matmul_pattern
{
pattern
,
name_scope_
};
matmul_pattern
();
int
quantize_matmul_count
=
0
;
...
...
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
160b3477
...
...
@@ -82,11 +82,14 @@ const std::vector<std::string> kTRTSubgraphPasses({
"embedding_eltwise_layernorm_fuse_pass"
,
//
"multihead_matmul_fuse_pass_v2"
,
//
"skip_layernorm_fuse_pass"
,
//
"unsqueeze2_eltwise_fuse_pass"
,
"conv_bn_fuse_pass"
,
//
"fc_fuse_pass"
,
//
"tensorrt_subgraph_pass"
,
//
"conv_bn_fuse_pass"
,
//
"unsqueeze2_eltwise_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
"squeeze2_matmul_fuse_pass"
,
//
"reshape2_matmul_fuse_pass"
,
//
"map_matmul_to_mul_pass"
,
//
"fc_fuse_pass"
,
//
"tensorrt_subgraph_pass"
,
//
"conv_bn_fuse_pass"
,
//
#if CUDNN_VERSION >= 7100 // To run conv_fusion, the version of cudnn must be
// guaranteed at least v7
"conv_elementwise_add_act_fuse_pass"
,
//
...
...
@@ -113,6 +116,9 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
"conv_eltwiseadd_bn_fuse_pass"
,
//
"embedding_eltwise_layernorm_fuse_pass"
,
//
"multihead_matmul_fuse_pass_v2"
,
//
"squeeze2_matmul_fuse_pass"
,
//
"reshape2_matmul_fuse_pass"
,
//
"map_matmul_to_mul_pass"
,
//
"fc_fuse_pass"
,
//
"fc_elementwise_layernorm_fuse_pass"
,
//
#if CUDNN_VERSION >= 7100 // To run conv_fusion, the version of cudnn must be
...
...
@@ -164,6 +170,9 @@ CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
"fc_gru_fuse_pass"
,
//
"mul_gru_fuse_pass"
,
//
"seq_concat_fc_fuse_pass"
,
//
"squeeze2_matmul_fuse_pass"
,
//
"reshape2_matmul_fuse_pass"
,
//
"map_matmul_to_mul_pass"
,
//
"fc_fuse_pass"
,
//
"repeated_fc_relu_fuse_pass"
,
//
"squared_mat_sub_fuse_pass"
,
//
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录