Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1566af8a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1566af8a
编写于
1月 09, 2018
作者:
Z
zhangchao
提交者:
GitHub
1月 09, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7301 from peterzhang2029/conv_group_fix
Fix the docstring of 'filter groups' in img_conv_layer.
上级
ce6dad3b
b3db8ef8
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
16 addition
and
9 deletion
+16
-9
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+16
-9
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
1566af8a
...
...
@@ -2542,15 +2542,21 @@ def img_conv_layer(input,
what-are-deconvolutional-layers/>`_ .
The num_channel means input image's channel number. It may be 1 or 3 when
input is raw pixels of image(mono or RGB), or it may be the previous layer's
num_filters
* num_group
.
num_filters.
There are several groups of filters in PaddlePaddle implementation.
Each group will process some channels of the input. For example, if
num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
32*4 = 128 filters to process the input. The channels will be split into 4
pieces. First 256/4 = 64 channels will be processed by first 32 filters. The
rest channels will be processed by the rest groups of filters.
If the groups attribute is greater than 1, for example groups=2,
the input will be splitted into 2 parts along the channel axis, and
the filters will also be splitted into 2 parts. The first half of the filters
is only connected to the first half of the input channels, while the second
half of the filters is only connected to the second half of the input. After
the computation of convolution for each part of input,
the output will be obtained by concatenating the two results.
The details of grouped convolution, please refer to:
`ImageNet Classification with Deep Convolutional Neural Networks
<http://www.cs.toronto.edu/~kriz/imagenet_classification_with_deep_convolutional.pdf>`_
The example usage is:
.. code-block:: python
...
...
@@ -2575,7 +2581,8 @@ def img_conv_layer(input,
:param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
is not set, it will be set automatically according to filter_size.
:type filter_size_y: int
:param num_filters: Each filter group's number of filter
:param num_filters: The number of filters. It is as same as the output image channel.
:type num_filters: int
:param act: Activation type. ReluActivation is the default activation.
:type act: BaseActivation
:param groups: The group number. 1 is the default group number.
...
...
@@ -7177,7 +7184,7 @@ def img_conv3d_layer(input,
:param filter_size: The dimensions of the filter kernel along three axises. If the parameter
is set to one integer, the three dimensions will be same.
:type filter_size: int | tuple | list
:param num_filters: The number of filters
in each group
.
:param num_filters: The number of filters
. It is as same as the output image channel
.
:type num_filters: int
:param act: Activation type. ReluActivation is the default activation.
:type act: BaseActivation
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录