未验证 提交 14c35a58 编写于 作者: Z zhaoyingli 提交者: GitHub

[AutoParallel] dist slice op (#41780)

* add dist slice

* fix debug

* fix cmakelist
上级 360f0ae4
......@@ -28,5 +28,6 @@ from . import dist_check_finite_and_unscale
from . import dist_update_loss_scaling
from . import dist_split
from . import dist_fill_constant_batch_size_like
from . import dist_slice
from . import dist_fused_feedforward
from . import dist_fused_attention
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .common import DistributedOperatorImplContainer
from .common import DistributedOperatorImpl
from .common import register_distributed_operator_impl_container
from .common import register_distributed_operator_impl
from ..utils import is_dim_shard
from ..utils import compute_compatible_and_update_dim_mapping
from .dist_default import DistributedDefaultImpl0
class DistributedSlice(DistributedOperatorImplContainer):
def __init__(self, op_type):
super(DistributedSlice, self).__init__(op_type)
register_distributed_operator_impl_container(DistributedSlice("slice"))
class DistributedSliceImpl(DistributedOperatorImpl):
def __init__(self, name):
super(DistributedSliceImpl, self).__init__(name)
self._forward_implemented = True
self._backward_implemented = True
def is_input_compatible(self, dist_op):
op_desc = dist_op.serial_op.desc
op_dist_attr = dist_op.dist_attr
in_name = op_desc.input('Input')[0]
axes = op_desc.attr('axes')
in_dims_mapping = op_dist_attr.get_input_dims_mapping(in_name)
for axis in axes:
if is_dim_shard(in_dims_mapping[axis]):
return False
return True
def is_output_compatible(self, dist_op):
return True
def is_compatible(self, dist_op):
if (not self.is_input_compatible(dist_op)) or \
(not self.is_output_compatible(dist_op)):
return False
op_desc = dist_op.serial_op.desc
op_dist_attr = dist_op.dist_attr
in_name = op_desc.input('Input')[0]
out_name = op_desc.output('Out')[0]
decrease_axis = op_desc.attr('decrease_axis')
in_dims_mapping = op_dist_attr.get_input_dims_mapping(in_name)
out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
if len(in_dims_mapping) - len(decrease_axis) != 0 and len(
out_dims_mapping) != len(in_dims_mapping) - len(decrease_axis):
return False
new_out_dims_mapping = []
for i in range(len(in_dims_mapping)):
if i not in decrease_axis:
new_out_dims_mapping.append(in_dims_mapping[i])
if new_out_dims_mapping == []:
new_out_dims_mapping = [-1]
if new_out_dims_mapping != out_dims_mapping:
return False
return True
def is_auto_compatible(self, dist_op):
if (not self.is_input_compatible(dist_op)) or \
(not self.is_output_compatible(dist_op)) or \
(not self.is_compatible(dist_op)):
return False
return True
def update_dims_mapping(self, dist_op):
changed = False
op_desc = dist_op.serial_op.desc
op_dist_attr = dist_op.dist_attr
in_name = op_desc.input('Input')[0]
out_name = op_desc.output('Out')[0]
decrease_axis = op_desc.attr('decrease_axis')
in_dims_mapping = op_dist_attr.get_input_dims_mapping(in_name)
out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
ref_dims_mapping = []
for i in range(len(in_dims_mapping)):
if i not in decrease_axis:
ref_dims_mapping.append(in_dims_mapping[i])
if ref_dims_mapping == []:
ref_dims_mapping = [-1]
assert len(ref_dims_mapping) == len(out_dims_mapping)
for i in range(len(out_dims_mapping)):
if out_dims_mapping[i] != ref_dims_mapping[i]:
out_dims_mapping[i] = ref_dims_mapping[i]
changed = True
return changed
@staticmethod
def forward(ctx, *args, **kwargs):
DistributedDefaultImpl0.forward(ctx, *args, **kwargs)
@staticmethod
def backward(ctx, *args, **kwargs):
DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
register_distributed_operator_impl("slice",
DistributedSliceImpl("decrease_in_axis"))
......@@ -18,5 +18,6 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules(test_recorder MODULES test_recorder ENVS ${dist_ENVS})
py_test_modules(test_trial MODULES test_trial ENVS ${dist_ENVS})
py_test_modules(test_new_cost_model MODULES test_new_cost_model ENVS ${dist_ENVS})
py_test_modules(test_dist_slice MODULES test_dist_slice ENVS ${dist_ENVS})
py_test_modules(test_cluster MODULES test_cluster ENVS ${dist_ENVS})
endif()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import paddle.distributed.auto_parallel as auto
paddle.enable_static()
def make_program_dp2():
main_program = paddle.fluid.Program()
start_program = paddle.fluid.Program()
with paddle.static.program_guard(main_program, start_program):
x = paddle.static.data(name='x', shape=[4, 5, 6], dtype='float32')
auto.shard_tensor(
x,
dist_attr={
"process_mesh": auto.ProcessMesh([0, 1]),
"dims_mapping": [0, -1, -1]
})
tmp_0 = x[0]
tmp_1 = x[:, 0, :]
tmp_2 = x[:, :, 1]
tmp_3 = x[:2, :2, :2]
return main_program, start_program
def make_program_serial():
main_program = paddle.fluid.Program()
start_program = paddle.fluid.Program()
with paddle.static.program_guard(main_program, start_program):
x = paddle.static.data(name='x', shape=[4, 5, 6], dtype='float32')
auto.shard_tensor(
x,
dist_attr={
"process_mesh": auto.ProcessMesh([0]),
"dims_mapping": [-1, -1, -1]
})
tmp_0 = x[0]
tmp_1 = x[:, 0, :]
tmp_2 = x[:, :, 1]
tmp_3 = x[2, 2, :]
tmp_4 = x[:2, :2, :2]
tmp_5 = x[0, 0, 0]
return main_program, start_program
def parallelizer(program_func, rank):
from paddle.distributed.auto_parallel.completion import Completer
from paddle.distributed.auto_parallel.partitioner import Partitioner
from paddle.distributed.auto_parallel.dist_context import DistributedContext
main_program, start_program = program_func()
dist_context = DistributedContext()
completer = Completer(dist_context)
completer.complete_forward_annotation(main_program)
dist_context.block_state.parse_forward_blocks(main_program)
partitioner = Partitioner(dist_context, rank)
dist_main_prog, _, _ = partitioner.partition(main_program, start_program,
[])
return dist_main_prog, dist_context
class TestDistSlice(unittest.TestCase):
def test_dist_slice_dp2(self):
for rank in range(2):
dist_main_prog, dist_context = parallelizer(make_program_dp2, rank)
ops = dist_main_prog.global_block().ops
for op in ops:
axes = op.desc.attr('axes')
op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
if axes[0] == 0:
assert op_dist_attr.impl_type == "default"
else:
assert op_dist_attr.impl_type == "slice"
for out in op.output_arg_names:
var_dims_mapping = op_dist_attr.get_output_dims_mapping(
out)
assert var_dims_mapping[0] == 0
def test_dist_slice_serial(self):
dist_main_prog, dist_context = parallelizer(make_program_serial, 0)
ops = dist_main_prog.global_block().ops
for op in ops:
op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
assert op_dist_attr.impl_type == "slice"
for out in op.output_arg_names:
var_dims_mapping = op_dist_attr.get_output_dims_mapping(out)
ref_dims_mapping = [-1 for i in range(len(var_dims_mapping))]
assert ref_dims_mapping == ref_dims_mapping
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册