未验证 提交 149f76e6 编写于 作者: L liym27 提交者: GitHub

[NPU] Support npu kernel for op elementwise_floordiv (#31822)

上级 b3446670
...@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#ifdef PADDLE_WITH_ASCEND_CL
#include <memory> #include <memory>
#include <string> #include <string>
...@@ -61,13 +60,13 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> { ...@@ -61,13 +60,13 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
auto place = ctx.GetPlace(); auto place = ctx.GetPlace();
auto stream = auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>() ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream(); .stream();
Tensor y_power(y->type()); Tensor y_power(y->type());
y_power.mutable_data<T>(y->dims(), place); y_power.mutable_data<T>(y->dims(), place);
auto y_power_runner = NpuOpRunner("Power", {*y}, auto y_power_runner = NpuOpRunner("Power", {*y}, {y_power},
{y_power}, {{"power", static_cast<float>(-1)}}); {{"power", static_cast<float>(-1)}});
y_power_runner.Run(stream); y_power_runner.Run(stream);
if (dx) { if (dx) {
...@@ -75,32 +74,33 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> { ...@@ -75,32 +74,33 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
Tensor tensor_zeros(x->type()); Tensor tensor_zeros(x->type());
tensor_zeros.mutable_data<T>(x->dims(), place); tensor_zeros.mutable_data<T>(x->dims(), place);
auto tensor_zeros_runner = NpuOpRunner("ZerosLike", {*x}, auto tensor_zeros_runner =
{tensor_zeros}, {}); NpuOpRunner("ZerosLike", {*x}, {tensor_zeros}, {});
tensor_zeros_runner.Run(stream); tensor_zeros_runner.Run(stream);
Tensor x_zero(paddle::framework::proto::VarType::BOOL); Tensor x_zero(paddle::framework::proto::VarType::BOOL);
x_zero.mutable_data<bool>(x->dims(), place); x_zero.mutable_data<bool>(x->dims(), place);
auto x_zero_runner = NpuOpRunner("Equal", {*x, tensor_zeros}, auto x_zero_runner =
{x_zero}, {}); NpuOpRunner("Equal", {*x, tensor_zeros}, {x_zero}, {});
x_zero_runner.Run(stream); x_zero_runner.Run(stream);
Tensor x_nozero(paddle::framework::proto::VarType::BOOL); Tensor x_nozero(paddle::framework::proto::VarType::BOOL);
x_nozero.mutable_data<bool>(x->dims(), place); x_nozero.mutable_data<bool>(x->dims(), place);
auto x_nozero_runner = NpuOpRunner("LogicalNot", {x_zero}, auto x_nozero_runner =
{x_nozero}, {}); NpuOpRunner("LogicalNot", {x_zero}, {x_nozero}, {});
x_nozero_runner.Run(stream); x_nozero_runner.Run(stream);
Tensor x_nozero_f(x->type()); Tensor x_nozero_f(x->type());
x_nozero_f.mutable_data<T>(x->dims(), place); x_nozero_f.mutable_data<T>(x->dims(), place);
auto x_nozero_f_runner = NpuOpRunner("Cast", {x_nozero}, auto x_nozero_f_runner =
{x_nozero_f}, {{"dst_type", static_cast<int32_t>(0)}}); NpuOpRunner("Cast", {x_nozero}, {x_nozero_f},
{{"dst_type", static_cast<int32_t>(0)}});
x_nozero_f_runner.Run(stream); x_nozero_f_runner.Run(stream);
Tensor x_grad_w(x->type()); Tensor x_grad_w(x->type());
x_grad_w.mutable_data<T>(x->dims(), place); x_grad_w.mutable_data<T>(x->dims(), place);
auto x_grad_w_runner = NpuOpRunner("Mul", {x_nozero_f, y_power}, auto x_grad_w_runner =
{x_grad_w}, {}); NpuOpRunner("Mul", {x_nozero_f, y_power}, {x_grad_w}, {});
x_grad_w_runner.Run(stream); x_grad_w_runner.Run(stream);
auto x_grad_runner = NpuOpRunner("Mul", {x_grad_w, *dout}, {*dx}, {}); auto x_grad_runner = NpuOpRunner("Mul", {x_grad_w, *dout}, {*dx}, {});
...@@ -112,14 +112,12 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> { ...@@ -112,14 +112,12 @@ class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> {
Tensor neg_out(y->type()); Tensor neg_out(y->type());
neg_out.mutable_data<T>(y->dims(), place); neg_out.mutable_data<T>(y->dims(), place);
auto neg_out_runner = NpuOpRunner("Neg", {*out}, auto neg_out_runner = NpuOpRunner("Neg", {*out}, {neg_out}, {});
{neg_out}, {});
neg_out_runner.Run(stream); neg_out_runner.Run(stream);
Tensor y_grad_w(y->type()); Tensor y_grad_w(y->type());
y_grad_w.mutable_data<T>(y->dims(), place); y_grad_w.mutable_data<T>(y->dims(), place);
auto y_grad_w_runner = NpuOpRunner("Div", {neg_out, *y}, auto y_grad_w_runner = NpuOpRunner("Div", {neg_out, *y}, {y_grad_w}, {});
{y_grad_w}, {});
y_grad_w_runner.Run(stream); y_grad_w_runner.Run(stream);
auto y_grad_runner = NpuOpRunner("Mul", {y_grad_w, *dout}, {*dy}, {}); auto y_grad_runner = NpuOpRunner("Mul", {y_grad_w, *dout}, {*dy}, {});
...@@ -143,4 +141,3 @@ REGISTER_OP_NPU_KERNEL( ...@@ -143,4 +141,3 @@ REGISTER_OP_NPU_KERNEL(
ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext, float>, ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext, ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>); paddle::platform::float16>);
#endif
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class ElementwiseFloorDivNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
auto runner = NpuOpRunner("FloorDiv", {*x, *y}, {*out}, {});
runner.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(elementwise_floordiv,
ops::ElementwiseFloorDivNPUKernel<int>,
ops::ElementwiseFloorDivNPUKernel<int64_t>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
paddle.enable_static()
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestElementwiseFloorDiv(OpTest):
def setUp(self):
self.op_type = "elementwise_floordiv"
self.set_npu()
self.init_dtype()
self.init_input_output()
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.attrs = {}
self.outputs = {'Out': self.out}
def set_npu(self):
self.__class__.use_npu = True
self.place = paddle.NPUPlace(0)
def init_input_output(self):
self.x = np.random.uniform(1, 1000, [10, 10]).astype(self.dtype)
self.y = np.random.uniform(1, 1000, [10, 10]).astype(self.dtype)
self.out = np.floor_divide(self.x, self.y)
def init_dtype(self):
self.dtype = "int64"
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestElementwiseFloorDiv2(TestElementwiseFloorDiv):
def init_dtype(self):
self.dtype = "int32"
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册