Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
146e942c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
146e942c
编写于
1月 10, 2019
作者:
T
tensor-tang
提交者:
GitHub
1月 10, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15250 from tensor-tang/refine/seqpool/feed
Refine/seqpool/feed with infer zerocopytensor
上级
8f17c714
96786d37
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
378 addition
and
48 deletion
+378
-48
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
+39
-19
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.h
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.h
+14
-0
paddle/fluid/framework/ir/seqpool_concat_fuse_pass_tester.cc
paddle/fluid/framework/ir/seqpool_concat_fuse_pass_tester.cc
+198
-0
paddle/fluid/inference/api/helper.h
paddle/fluid/inference/api/helper.h
+8
-3
paddle/fluid/inference/api/paddle_api.h
paddle/fluid/inference/api/paddle_api.h
+2
-1
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
+2
-2
paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc
...le/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc
+108
-19
paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc
paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc
+6
-4
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
146e942c
...
...
@@ -69,6 +69,7 @@ cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_r
cc_test
(
graph_to_program_pass_test SRCS graph_to_program_pass_test.cc DEPS graph_to_program_pass
)
cc_test
(
test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS graph_pattern_detector
)
cc_test
(
test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto
)
cc_test
(
test_seqpool_concat_fuse_pass SRCS seqpool_concat_fuse_pass_tester.cc DEPS seqpool_concat_fuse_pass framework_proto
)
cc_test
(
test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass
)
if
(
WITH_MKLDNN
)
cc_test
(
test_depthwise_conv_mkldnn_pass SRCS depthwise_conv_mkldnn_pass_tester.cc DEPS depthwise_conv_mkldnn_pass
)
...
...
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.cc
浏览文件 @
146e942c
...
...
@@ -39,21 +39,25 @@ PDNode* BuildSeqPoolConcatPattern(PDPattern* pattern,
auto
is_seqpool_op_with_pootype_of_nth_input_of_concat
=
[
=
](
Node
*
x
,
const
std
::
string
&
type
,
int
idx
)
->
bool
{
bool
ok
=
x
&&
x
->
IsOp
()
&&
x
->
Op
()
->
Type
()
==
"sequence_pool"
&&
x
->
Op
()
->
HasAttr
(
"pooltype"
)
&&
boost
::
get
<
std
::
string
>
(
x
->
Op
()
->
GetAttr
(
"pooltype"
))
==
type
&&
x
->
outputs
.
size
()
==
2
;
// seqpool should only have 2 outputs
if
(
ok
)
{
// only one output of seqpool_op is nth_input_var of concat
// the other one should be unused empty var
bool
this_is_seqpool_op
=
x
&&
x
->
IsOp
()
&&
x
->
Op
()
->
Type
()
==
"sequence_pool"
&&
x
->
Op
()
->
HasAttr
(
"pooltype"
)
&&
boost
::
get
<
std
::
string
>
(
x
->
Op
()
->
GetAttr
(
"pooltype"
))
==
type
&&
x
->
outputs
.
size
()
==
2
;
// seqpool should only have 2 outputs
bool
satisfied_all
=
this_is_seqpool_op
;
if
(
this_is_seqpool_op
)
{
// Only one output of seqpool_op is nth_input_var of concat,
// the other one should be unused empty var.
if
(
is_nth_input_var_of_concat
(
x
->
outputs
[
0
],
idx
))
{
ok
=
ok
&&
x
->
outputs
[
1
]
->
IsVar
()
&&
x
->
outputs
[
1
]
->
outputs
.
size
()
==
0
;
satisfied_all
=
satisfied_all
&&
x
->
outputs
[
1
]
->
IsVar
()
&&
x
->
outputs
[
1
]
->
outputs
.
size
()
==
0
;
}
else
{
ok
=
ok
&&
is_nth_input_var_of_concat
(
x
->
outputs
[
1
],
idx
)
&&
x
->
outputs
[
0
]
->
IsVar
()
&&
x
->
outputs
[
0
]
->
outputs
.
size
()
==
0
;
satisfied_all
=
satisfied_all
&&
is_nth_input_var_of_concat
(
x
->
outputs
[
1
],
idx
)
&&
x
->
outputs
[
0
]
->
IsVar
()
&&
x
->
outputs
[
0
]
->
outputs
.
size
()
==
0
;
}
}
return
ok
;
return
satisfied_all
;
};
auto
*
concat_op
=
pattern
->
NewNode
(
...
...
@@ -72,6 +76,7 @@ PDNode* BuildSeqPoolConcatPattern(PDPattern* pattern,
std
::
vector
<
PDNode
*>
seqpool_ops_input_var
(
num_inputs
);
std
::
vector
<
PDNode
*>
seqpool_ops_output_var
(
num_inputs
);
std
::
vector
<
PDNode
*>
seqpool_ops_output_unused_var
(
num_inputs
);
std
::
vector
<
PDNode
*>
seqpool_ops
(
num_inputs
);
for
(
int
i
=
0
;
i
<
num_inputs
;
++
i
)
{
...
...
@@ -84,6 +89,15 @@ PDNode* BuildSeqPoolConcatPattern(PDPattern* pattern,
},
name_scope
+
"/sequence_pool_out_"
+
std
::
to_string
(
i
));
seqpool_ops_output_unused_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
x
&&
x
->
IsVar
()
&&
x
->
inputs
.
size
()
==
1
&&
x
->
outputs
.
size
()
==
0
&&
is_seqpool_op_with_pootype_of_nth_input_of_concat
(
x
->
inputs
[
0
],
"SUM"
,
i
);
},
name_scope
+
"/sequence_pool_unused_out_"
+
std
::
to_string
(
i
));
seqpool_ops
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
x
&&
x
->
IsOp
()
&&
...
...
@@ -93,23 +107,29 @@ PDNode* BuildSeqPoolConcatPattern(PDPattern* pattern,
seqpool_ops_input_var
[
i
]
=
pattern
->
NewNode
(
[
=
](
Node
*
x
)
{
return
x
&&
x
->
IsVar
()
&&
x
->
outputs
.
size
()
>=
1
&&
is_seqpool_op_with_pootype_of_nth_input_of_concat
(
x
->
outputs
[
0
],
"SUM"
,
i
);
bool
basic
=
x
&&
x
->
IsVar
()
&&
x
->
outputs
.
size
()
>=
1
;
bool
next_is_fine
=
false
;
for
(
auto
*
o
:
x
->
outputs
)
{
if
(
is_seqpool_op_with_pootype_of_nth_input_of_concat
(
o
,
"SUM"
,
i
))
{
next_is_fine
=
true
;
break
;
}
}
return
basic
&&
next_is_fine
;
},
name_scope
+
"/sequence_pool_in_"
+
std
::
to_string
(
i
));
// Links
seqpool_ops
[
i
]
->
LinksFrom
({
seqpool_ops_input_var
[
i
]})
.
LinksTo
({
seqpool_ops_output_var
[
i
]});
.
LinksTo
({
seqpool_ops_output_var
[
i
]
,
seqpool_ops_output_unused_var
[
i
]
});
}
concat_op
->
LinksFrom
(
seqpool_ops_output_var
).
LinksTo
({
concat_out_var
});
return
concat_out_var
;
}
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
Scope
*
scope
,
int
num_inputs
)
{
int
BuildFusion
(
Graph
*
graph
,
const
std
::
string
&
name_scope
,
int
num_inputs
)
{
GraphPatternDetector
gpd
;
auto
*
pattern
=
gpd
.
mutable_pattern
();
BuildSeqPoolConcatPattern
(
pattern
,
name_scope
,
num_inputs
);
...
...
@@ -178,8 +198,8 @@ std::unique_ptr<ir::Graph> SeqPoolConcatFusePass::ApplyImpl(
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
int
fusion_count
=
0
;
for
(
int
i
=
MAX_CONCAT_INPUTS
;
i
>
0
;
--
i
)
{
fusion_count
+=
BuildFusion
(
graph
.
get
(),
name_scope_
+
"/"
+
std
::
to_string
(
i
),
param_scope
(
),
i
);
fusion_count
+=
BuildFusion
(
graph
.
get
(),
name_scope_
+
"/"
+
std
::
to_string
(
i
),
i
);
}
AddStatis
(
fusion_count
);
...
...
paddle/fluid/framework/ir/seqpool_concat_fuse_pass.h
浏览文件 @
146e942c
...
...
@@ -23,6 +23,20 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
/**
* Fuse SequencePool(with sum pooltype yet) and Concat;
*
* Before fuse:
* | | |
* seq_pool, seq_pool, ... seq_pool
* \ | ... /
* concat
* |
* After fuse:
* \ | /
* FusionSeqPoolConcat
* |
*/
class
SeqPoolConcatFusePass
:
public
FusePassBase
{
public:
virtual
~
SeqPoolConcatFusePass
()
{}
...
...
paddle/fluid/framework/ir/seqpool_concat_fuse_pass_tester.cc
0 → 100644
浏览文件 @
146e942c
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/seqpool_concat_fuse_pass.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/op_proto_maker.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
vector
<
std
::
string
>&
outputs
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
type
);
if
(
type
==
"sequence_pool"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
std
::
string
pooltype
=
"SUM"
;
op
->
SetAttr
(
"pooltype"
,
pooltype
);
op
->
SetOutput
(
"MaxIndex"
,
{
outputs
[
0
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
1
]});
}
else
if
(
type
==
"concat"
)
{
op
->
SetInput
(
"X"
,
inputs
);
op
->
SetAttr
(
"axis"
,
1
);
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
}
else
{
op
->
SetInput
(
"X"
,
inputs
);
op
->
SetOutput
(
"Out"
,
outputs
);
}
op
->
SetAttr
(
OpProtoAndCheckerMaker
::
OpRoleAttrName
(),
static_cast
<
int
>
(
OpRole
::
kForward
));
}
int
CountOpType
(
const
ir
::
Graph
*
graph
,
const
std
::
string
&
op_type
=
"fusion_seqpool_concat"
)
{
int
count
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
->
Type
()
==
op_type
)
{
++
count
;
}
}
return
count
;
}
std
::
unique_ptr
<
ir
::
Graph
>
GetNumNodesOfBeforeAfter
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
,
int
*
before
,
int
*
after
,
const
std
::
string
&
pass_type
=
"seqpool_concat_fuse_pass"
)
{
auto
pass
=
PassRegistry
::
Instance
().
Get
(
pass_type
);
*
before
=
graph
->
Nodes
().
size
();
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
*
after
=
graph
->
Nodes
().
size
();
return
graph
;
}
/*
* Before fuse:
* a b c
* | | |
* op1 op2 op3
* / \ / \ / \
* d e f g h i
* \ | /
* concat
* |
* j
* Type of op1, op2 and op3 are sequence_pool, with "SUM" pooltype attr
*
* After fuse:
* a b c
* \ | /
* fusion_seqpool_concat
* |
* j
*/
TEST
(
SeqPoolConcatFusePass
,
basic
)
{
ProgramDesc
prog
;
for
(
auto
&
v
:
std
::
vector
<
std
::
string
>
(
{
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
,
"g"
,
"h"
,
"i"
,
"j"
}))
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
var
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
}
SetOp
(
&
prog
,
"sequence_pool"
,
std
::
vector
<
std
::
string
>
({
"a"
}),
std
::
vector
<
std
::
string
>
({
"d"
,
"e"
}));
SetOp
(
&
prog
,
"sequence_pool"
,
std
::
vector
<
std
::
string
>
({
"b"
}),
std
::
vector
<
std
::
string
>
({
"f"
,
"g"
}));
SetOp
(
&
prog
,
"sequence_pool"
,
std
::
vector
<
std
::
string
>
({
"c"
}),
std
::
vector
<
std
::
string
>
({
"h"
,
"i"
}));
SetOp
(
&
prog
,
"concat"
,
std
::
vector
<
std
::
string
>
({
"e"
,
"g"
,
"i"
}),
std
::
vector
<
std
::
string
>
({
"j"
}));
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
int
before
,
after
;
graph
=
GetNumNodesOfBeforeAfter
(
std
::
move
(
graph
),
&
before
,
&
after
);
// Remove 10 Nodes: op1, op2, op3, d, e, f, g, h, i, concat_op
// Add 1 Node: fusion_seqpool_concat
EXPECT_EQ
(
after
,
before
-
9
);
EXPECT_EQ
(
CountOpType
(
graph
.
get
()),
1
);
}
/*
* Before fuse:
* a b
* | / \
* op1 op2 op3
* / \ / \ \
* c d e f g
* \ /
* concat
* |
* h
* Type of op1 and op2 are sequence_pool, with "SUM" pooltype attr
*
* After fuse:
* a b
* \ / \
* fusion_seqpool_concat op3
* | |
* h g
*/
TEST
(
SeqPoolConcatFusePass
,
advanced
)
{
ProgramDesc
prog
;
for
(
auto
&
v
:
std
::
vector
<
std
::
string
>
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
,
"g"
,
"h"
}))
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
var
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
}
SetOp
(
&
prog
,
"sequence_pool"
,
std
::
vector
<
std
::
string
>
({
"a"
}),
std
::
vector
<
std
::
string
>
({
"c"
,
"d"
}));
SetOp
(
&
prog
,
"sequence_pool"
,
std
::
vector
<
std
::
string
>
({
"b"
}),
std
::
vector
<
std
::
string
>
({
"e"
,
"f"
}));
SetOp
(
&
prog
,
"op3"
,
std
::
vector
<
std
::
string
>
({
"b"
}),
std
::
vector
<
std
::
string
>
({
"g"
}));
SetOp
(
&
prog
,
"concat"
,
std
::
vector
<
std
::
string
>
({
"d"
,
"f"
}),
std
::
vector
<
std
::
string
>
({
"h"
}));
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
int
before
,
after
;
graph
=
GetNumNodesOfBeforeAfter
(
std
::
move
(
graph
),
&
before
,
&
after
);
// Remove 7 Nodes: op1, op2, c, d, e, f concat_op
// Add 1 Node: fusion_seqpool_concat
EXPECT_EQ
(
after
,
before
-
6
);
EXPECT_EQ
(
CountOpType
(
graph
.
get
()),
1
);
}
ProgramDesc
BuildProgramDesc
(
int
num_inputs_of_concat
)
{
ProgramDesc
prog
;
auto
new_var
=
[
&
](
const
std
::
string
&
name
)
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
name
);
var
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
};
std
::
vector
<
std
::
string
>
concat_inputs
;
for
(
int
i
=
0
;
i
<
num_inputs_of_concat
;
++
i
)
{
std
::
string
prefix
=
"seqpool_op_"
+
i
;
new_var
(
prefix
+
"in"
);
new_var
(
prefix
+
"out"
);
new_var
(
prefix
+
"out_unused"
);
SetOp
(
&
prog
,
"sequence_pool"
,
std
::
vector
<
std
::
string
>
({
prefix
+
"in"
}),
std
::
vector
<
std
::
string
>
({
prefix
+
"out"
,
prefix
+
"out_unused"
}));
concat_inputs
.
push_back
(
prefix
+
"out"
);
}
SetOp
(
&
prog
,
"concat"
,
concat_inputs
,
std
::
vector
<
std
::
string
>
({
"concat_out"
}));
return
prog
;
}
// test more inputs of concat
TEST
(
SeqPoolConcatFusePass
,
more_inputs
)
{
for
(
int
num
:
{
1
,
2
,
10
})
{
ProgramDesc
prog
=
BuildProgramDesc
(
num
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
int
before
,
after
;
graph
=
GetNumNodesOfBeforeAfter
(
std
::
move
(
graph
),
&
before
,
&
after
);
// Remove Nodes: n * (seqpool_op, out, out_unused), and concat_op
// Add Node: fusion_seqpool_concat op
EXPECT_EQ
(
after
,
before
-
num
*
3
);
EXPECT_EQ
(
CountOpType
(
graph
.
get
()),
1
);
}
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
seqpool_concat_fuse_pass
);
paddle/fluid/inference/api/helper.h
浏览文件 @
146e942c
...
...
@@ -204,11 +204,14 @@ static std::string DescribeTensor(const PaddleTensor &tensor) {
os
<<
to_string
(
l
)
<<
"; "
;
}
os
<<
"
\n
"
;
os
<<
" - data: "
;
os
<<
" - memory length: "
<<
tensor
.
data
.
length
();
os
<<
"
\n
"
;
os
<<
" - data: "
;
int
dim
=
VecReduceToInt
(
tensor
.
shape
);
float
*
pdata
=
static_cast
<
float
*>
(
tensor
.
data
.
data
());
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
os
<<
static_cast
<
float
*>
(
tensor
.
data
.
data
())
[
i
]
<<
" "
;
os
<<
pdata
[
i
]
<<
" "
;
}
os
<<
'\n'
;
return
os
.
str
();
...
...
@@ -224,10 +227,12 @@ static std::string DescribeZeroCopyTensor(const ZeroCopyTensor &tensor) {
os
<<
to_string
(
l
)
<<
"; "
;
}
os
<<
"
\n
"
;
os
<<
" - data: "
;
PaddlePlace
place
;
int
size
;
const
auto
*
data
=
tensor
.
data
<
float
>
(
&
place
,
&
size
);
os
<<
" - numel: "
<<
size
;
os
<<
"
\n
"
;
os
<<
" - data: "
;
for
(
int
i
=
0
;
i
<
size
;
i
++
)
{
os
<<
data
[
i
]
<<
" "
;
}
...
...
paddle/fluid/inference/api/paddle_api.h
浏览文件 @
146e942c
...
...
@@ -123,7 +123,8 @@ class ZeroCopyTensor {
*/
template
<
typename
T
>
T
*
mutable_data
(
PaddlePlace
place
);
/** Get the memory directly, will return the place and memory size by pointer.
/** Get the memory directly, will return the place and element size by
* pointer.
* This is for reading the output tensor.
*/
template
<
typename
T
>
...
...
paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc
浏览文件 @
146e942c
...
...
@@ -351,10 +351,10 @@ TEST(Analyzer_rnn1, ZeroCopy) {
ASSERT_TRUE
(
native_predictor
->
Run
(
native_inputs
.
front
(),
&
native_outputs
));
LOG
(
INFO
)
<<
"native output "
<<
DescribeTensor
(
native_outputs
.
front
());
int
output_size
{
0
};
int
output_size
{
0
};
// this is the number of elements not memory size
auto
*
zero_copy_data
=
output_tensor
->
data
<
float
>
(
&
place
,
&
output_size
);
auto
*
native_data
=
static_cast
<
float
*>
(
native_outputs
.
front
().
data
.
data
());
for
(
size_t
i
=
0
;
i
<
output_size
/
sizeof
(
float
)
;
i
++
)
{
for
(
int
i
=
0
;
i
<
output_size
;
i
++
)
{
EXPECT_NEAR
(
zero_copy_data
[
i
],
native_data
[
i
],
1e-3
);
}
}
...
...
paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc
浏览文件 @
146e942c
...
...
@@ -121,14 +121,6 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
}
}
void
SetConfig
(
AnalysisConfig
*
cfg
)
{
cfg
->
SetModel
(
FLAGS_infer_model
+
"/model"
,
FLAGS_infer_model
+
"/params"
);
cfg
->
DisableGpu
();
cfg
->
SwitchSpecifyInputNames
();
cfg
->
pass_builder
()
->
TurnOnDebug
();
cfg
->
SetCpuMathLibraryNumThreads
(
FLAGS_paddle_num_threads
);
}
void
SetInput
(
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
*
inputs
)
{
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
std
::
vector
<
PaddleTensor
>
input_slots
;
...
...
@@ -141,15 +133,22 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
}
}
void
SetConfig
(
AnalysisConfig
*
cfg
,
bool
use_mkldnn
=
false
)
{
cfg
->
SetModel
(
FLAGS_infer_model
+
"/model"
,
FLAGS_infer_model
+
"/params"
);
cfg
->
DisableGpu
();
cfg
->
SwitchSpecifyInputNames
();
cfg
->
pass_builder
()
->
TurnOnDebug
();
cfg
->
SetCpuMathLibraryNumThreads
(
FLAGS_paddle_num_threads
);
if
(
use_mkldnn
)
{
cfg
->
EnableMKLDNN
();
}
}
void
profile
(
bool
use_mkldnn
=
false
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
SetConfig
(
&
cfg
,
use_mkldnn
);
if
(
use_mkldnn
)
{
cfg
.
EnableMKLDNN
();
}
std
::
vector
<
PaddleTensor
>
outputs
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
TestPrediction
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
...
...
@@ -169,22 +168,112 @@ TEST(Analyzer_seq_pool1, compare) {
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
input_slots_all
);
}
// Check the fuse status
TEST
(
Analyzer_seq_pool1
,
fuse_statis
)
{
// Compare Deterministic result
TEST
(
Analyzer_seq_pool1
,
compare_determine
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
CompareDeterministic
(
reinterpret_cast
<
const
PaddlePredictor
::
Config
*>
(
&
cfg
),
input_slots_all
);
}
void
analysis_fuse_statis
(
bool
use_zerocopy
)
{
AnalysisConfig
cfg
;
SetConfig
(
&
cfg
);
cfg
.
SwitchUseFeedFetchOps
(
!
use_zerocopy
);
int
num_ops
;
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
>
(
cfg
);
auto
fuse_statis
=
GetFuseStatis
(
static_cast
<
AnalysisPredictor
*>
(
predictor
.
get
()),
&
num_ops
);
auto
fuse_statis
=
GetFuseStatis
(
predictor
.
get
(),
&
num_ops
);
ASSERT_TRUE
(
fuse_statis
.
count
(
"fc_fuse"
)
);
ASSERT_EQ
(
fuse_statis
.
at
(
"fc_fuse"
),
10
);
ASSERT_TRUE
(
fuse_statis
.
count
(
"seqpool_concat_fuse"
));
EXPECT_EQ
(
fuse_statis
.
at
(
"seqpool_concat_fuse"
),
2
);
LOG
(
INFO
)
<<
"num_ops: "
<<
num_ops
;
EXPECT_EQ
(
num_ops
,
195
);
}
// Check the fuse status
TEST
(
Analyzer_seq_pool1
,
fuse_statis
)
{
analysis_fuse_statis
(
false
);
}
void
PrepareZeroCopyInputs
(
const
std
::
unique_ptr
<
PaddlePredictor
>
&
predictor
,
std
::
vector
<
std
::
unique_ptr
<
ZeroCopyTensor
>>
*
inputs
)
{
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
// only feed one batch
const
auto
&
one_batch
=
data
.
NextBatch
();
inputs
->
clear
();
for
(
size_t
i
=
0
;
i
<
one_batch
.
size
();
++
i
)
{
auto
&
slot
=
one_batch
[
i
];
auto
tensor
=
predictor
->
GetInputTensor
(
slot
.
name
+
"_embed"
);
tensor
->
Reshape
(
slot
.
shape
);
tensor
->
SetLoD
({
slot
.
lod
});
ZeroCopyTensorAssignData
<
float
>
(
tensor
.
get
(),
slot
.
data
);
inputs
->
emplace_back
(
std
::
move
(
tensor
));
}
}
// return the output values
std
::
vector
<
float
>
zerocopy_profile
(
int
repeat_times
)
{
AnalysisConfig
config
;
SetConfig
(
&
config
);
config
.
SwitchUseFeedFetchOps
(
false
);
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
>
(
config
);
std
::
vector
<
std
::
unique_ptr
<
ZeroCopyTensor
>>
inputs
;
PrepareZeroCopyInputs
(
predictor
,
&
inputs
);
auto
output_tensor
=
predictor
->
GetOutputTensor
(
"reduce_sum_0.tmp_0"
);
Timer
timer
;
LOG
(
INFO
)
<<
"Warm up run..."
;
timer
.
tic
();
predictor
->
ZeroCopyRun
();
PrintTime
(
FLAGS_batch_size
,
1
,
1
,
0
,
timer
.
toc
(),
1
);
if
(
FLAGS_profile
)
{
paddle
::
platform
::
ResetProfiler
();
}
LOG
(
INFO
)
<<
"Run "
<<
repeat_times
<<
" times..."
;
timer
.
tic
();
for
(
int
i
=
0
;
i
<
repeat_times
;
i
++
)
{
predictor
->
ZeroCopyRun
();
}
PrintTime
(
FLAGS_batch_size
,
repeat_times
,
1
,
0
,
timer
.
toc
()
/
repeat_times
,
1
);
VLOG
(
3
)
<<
"ZeroCopy output: "
<<
DescribeZeroCopyTensor
(
*
output_tensor
);
PaddlePlace
place
;
int
output_size
{
0
};
auto
*
pdata
=
output_tensor
->
data
<
float
>
(
&
place
,
&
output_size
);
std
::
vector
<
float
>
res
(
output_size
);
for
(
int
i
=
0
;
i
<
output_size
;
++
i
)
{
res
[
i
]
=
pdata
[
i
];
}
return
res
;
}
TEST
(
Analyzer_seq_pool1
,
zerocopy_profile
)
{
zerocopy_profile
(
FLAGS_repeat
);
}
TEST
(
Analyzer_seq_pool1
,
zerocopy_fuse_statis
)
{
analysis_fuse_statis
(
true
);
}
TEST
(
Analyzer_seq_pool1
,
zerocopy_compare_native
)
{
AnalysisConfig
config
;
SetConfig
(
&
config
);
config
.
SwitchUseFeedFetchOps
(
true
);
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
>
(
config
.
ToNativeConfig
());
std
::
vector
<
PaddleTensor
>
native_outputs
;
std
::
vector
<
std
::
vector
<
PaddleTensor
>>
input_slots_all
;
SetInput
(
&
input_slots_all
);
ASSERT_TRUE
(
predictor
->
Run
(
input_slots_all
[
0
],
&
native_outputs
));
EXPECT_EQ
(
native_outputs
.
size
(),
1UL
);
auto
zerocopy_output
=
zerocopy_profile
(
1
);
EXPECT_EQ
(
zerocopy_output
.
size
()
*
sizeof
(
float
),
native_outputs
.
front
().
data
.
length
());
auto
*
native_data
=
static_cast
<
float
*>
(
native_outputs
.
front
().
data
.
data
());
for
(
size_t
i
=
0
;
i
<
zerocopy_output
.
size
();
++
i
)
{
EXPECT_NEAR
(
zerocopy_output
[
i
],
native_data
[
i
],
1e-3
);
}
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/operators/fused/fusion_seqpool_concat_op.cc
浏览文件 @
146e942c
...
...
@@ -23,7 +23,7 @@ namespace operators {
void
FusionSeqPoolConcatOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE_GE
(
ctx
->
Inputs
(
"X"
).
size
(),
1UL
,
"Inputs(X) of FusionSeqPoolConcatOp should be empty."
);
"Inputs(X) of FusionSeqPoolConcatOp should
not
be empty."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of FusionSeqPoolConcatOp should not be null."
);
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
...
...
@@ -54,12 +54,13 @@ void FusionSeqPoolConcatOpMaker::Make() {
AddInput
(
"X"
,
"(LoDTensor) Input tensors of this operator."
).
AsDuplicable
();
AddOutput
(
"Out"
,
"(LoDTensor) Output tensor of concat operator."
);
AddAttr
<
std
::
string
>
(
"pooltype"
,
"(string, default '
AVERAGE
') some of the pooling "
"(string, default '
SUM
') some of the pooling "
"pooltype of SequencePoolOp."
)
.
SetDefault
(
"SUM"
)
.
InEnum
({
"AVERAGE"
,
"SUM"
,
"SQRT"
});
AddAttr
<
int
>
(
"axis"
,
"The axis along which the input tensors will be concatenated."
)
"The axis along which the input tensors will be concatenated. "
"Only supports concat axis=1 yet."
)
.
SetDefault
(
1
);
AddComment
(
R"DOC(
Fusion Sequence Pool of pooltype(sum, average and sqrt) and Concat Operator.
...
...
@@ -100,6 +101,7 @@ class FusionSeqPoolConcatKernel : public framework::OpKernel<T> {
jit
::
Get
<
jit
::
kSeqPool
,
jit
::
SeqPoolTuples
<
T
>
,
platform
::
CPUPlace
>
(
attr
);
size_t
n
=
ins
.
size
();
size_t
dst_step_size
=
n
*
w
;
for
(
size_t
i
=
0
;
i
<
n
;
++
i
)
{
auto
x_dims
=
ins
[
i
]
->
dims
();
auto
x_lod
=
ins
[
i
]
->
lod
()[
0
];
...
...
@@ -112,7 +114,7 @@ class FusionSeqPoolConcatKernel : public framework::OpKernel<T> {
for
(
size_t
j
=
0
;
j
<
bs
;
++
j
)
{
attr
.
h
=
static_cast
<
int
>
(
x_lod
[
j
+
1
]
-
x_lod
[
j
]);
seqpool
(
src
,
dst
,
&
attr
);
dst
+=
n
*
w
;
dst
+=
dst_step_size
;
src
+=
attr
.
h
*
attr
.
w
;
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录