Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
13a250a2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
13a250a2
编写于
7月 11, 2022
作者:
Z
zhaoyingli
提交者:
GitHub
7月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[AutoParallel] add 'to_static' in engine api (#44202)
* add 'to_static' in engine api * fix cmakelist
上级
c57e12be
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
272 addition
and
24 deletion
+272
-24
python/paddle/distributed/auto_parallel/dist_context.py
python/paddle/distributed/auto_parallel/dist_context.py
+3
-0
python/paddle/distributed/auto_parallel/engine.py
python/paddle/distributed/auto_parallel/engine.py
+137
-22
python/paddle/distributed/auto_parallel/parallelizer_v2.py
python/paddle/distributed/auto_parallel/parallelizer_v2.py
+9
-2
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
...paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/auto_parallel/test_to_static.py
...dle/fluid/tests/unittests/auto_parallel/test_to_static.py
+122
-0
未找到文件。
python/paddle/distributed/auto_parallel/dist_context.py
浏览文件 @
13a250a2
...
...
@@ -125,6 +125,9 @@ class DistributedContext:
# A flag indicates whether the used parallelism is data parallel
self
.
_data_parallel
=
False
# flag whether using `to_static`
self
.
_dygraph_mode
=
True
@
property
def
serial_main_program
(
self
):
return
self
.
_serial_main_program
...
...
python/paddle/distributed/auto_parallel/engine.py
浏览文件 @
13a250a2
...
...
@@ -21,6 +21,7 @@ import paddle.utils as utils
from
paddle
import
fluid
,
static
from
paddle.io
import
Dataset
from
paddle.jit
import
to_static
from
paddle.metric
import
Metric
from
paddle.static
import
InputSpec
from
paddle.fluid
import
core
...
...
@@ -28,7 +29,7 @@ from paddle.fluid import program_guard
from
paddle.fluid.layers.utils
import
flatten
from
paddle.fluid.executor
import
global_scope
,
_to_name_str
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.framework
import
Operator
from
paddle.fluid.framework
import
Operator
,
Parameter
,
_non_static_mode
from
paddle.fluid.framework
import
_current_expected_place
as
_get_device
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.distributed
import
fleet
...
...
@@ -82,6 +83,7 @@ class Engine:
self
.
_feed_vars
=
{}
self
.
_fetch_vars
=
{}
self
.
_planners
=
{}
self
.
_dygraph_mode
=
False
def
prepare
(
self
,
optimizer
=
None
,
...
...
@@ -131,27 +133,110 @@ class Engine:
def
_build
(
self
,
mode
):
serial_main_prog
=
self
.
_serial_main_progs
.
get
(
mode
,
None
)
if
serial_main_prog
is
not
None
:
return
losses
=
[]
metrics
=
[]
serial_main_prog
=
self
.
_orig_main_prog
.
clone
()
serial_startup_prog
=
self
.
_orig_startup_prog
.
clone
()
with
static
.
program_guard
(
serial_main_prog
,
serial_startup_prog
),
\
utils
.
unique_name
.
guard
():
inputs_spec
=
self
.
inputs_spec
labels_spec
=
self
.
labels_spec
if
self
.
labels_spec
else
[]
inputs
=
[
s
.
_create_feed_layer
()
for
s
in
inputs_spec
]
labels
=
[
s
.
_create_feed_layer
()
for
s
in
labels_spec
]
outputs
=
to_list
(
self
.
model
(
*
inputs
))
if
mode
!=
"predict"
and
self
.
_loss
:
losses
=
to_list
(
self
.
_loss
(
*
(
outputs
+
labels
)))
if
mode
!=
"predict"
:
for
metric
in
self
.
_metrics
:
metrics
.
extend
(
to_list
(
metric
.
compute
(
*
(
outputs
+
labels
))))
if
_non_static_mode
()
or
self
.
_dygraph_mode
:
self
.
_dygraph_mode
=
True
self
.
_logger
.
info
(
"Building model with 'to_static' method."
)
# build forward main program
self
.
static_model
=
to_static
(
self
.
model
,
input_spec
=
self
.
inputs_spec
)
inputs
=
self
.
static_model
.
forward
.
inputs
outputs
=
self
.
static_model
.
forward
.
outputs
forward_main_prog
=
self
.
static_model
.
forward
.
main_program
forward_startup_prog
=
self
.
static_model
.
forward
.
concrete_program
.
startup_program
self
.
concrete_program
=
self
.
static_model
.
forward
.
concrete_program
# build loss main program
outputs_spec
=
[]
outputs_name
=
[]
for
out
in
outputs
:
outputs_spec
.
append
(
InputSpec
(
out
.
shape
,
out
.
dtype
,
out
.
name
))
outputs_name
.
append
(
out
.
name
)
if
isinstance
(
self
.
_loss
,
paddle
.
nn
.
Layer
):
self
.
static_loss
=
to_static
(
self
.
_loss
.
forward
,
input_spec
=
outputs_spec
+
self
.
labels_spec
)
loss_main_prog
=
self
.
static_loss
.
main_program
elif
callable
(
self
.
_loss
):
self
.
static_loss
=
to_static
(
self
.
_loss
,
input_spec
=
outputs_spec
+
self
.
labels_spec
)
loss_main_prog
=
self
.
static_loss
.
main_program
# build startup program
for
param
in
self
.
concrete_program
.
parameters
:
Parameter
(
name
=
param
.
name
,
desc
=
param
,
type
=
param
.
type
,
shape
=
param
.
shape
,
dtype
=
param
.
dtype
,
stop_gradient
=
param
.
stop_gradient
,
block
=
forward_startup_prog
.
global_block
())
paddle
.
enable_static
()
# NOTE: pure program will loss dist_attr
# feeded_var_names = [var.name for var in inputs]
# main_prog_0 = main_prog_0._prune_with_input(
# feeded_var_names=feeded_var_names, targets=outputs)
labels
=
[]
losses
=
[]
metrics
=
[]
# concat forward and loss prog
if
mode
!=
'predict'
and
self
.
_loss
:
forward_block
=
forward_main_prog
.
global_block
()
loss_block
=
loss_main_prog
.
global_block
()
for
idx
,
op
in
enumerate
(
loss_block
.
ops
):
op_desc
=
forward_block
.
desc
.
append_op
()
op_desc
.
copy_from
(
op
.
desc
)
for
in_name
in
op
.
input_arg_names
:
if
in_name
in
outputs_name
:
continue
in_var
=
forward_block
.
_clone_variable
(
loss_block
.
vars
[
in_name
],
force_persistable
=
False
)
if
loss_block
.
vars
[
in_name
].
is_data
:
labels
.
append
(
in_var
)
for
out_name
in
op
.
output_arg_names
:
out_var
=
forward_block
.
_clone_variable
(
loss_block
.
vars
[
out_name
],
force_persistable
=
False
)
if
idx
==
len
(
loss_block
.
ops
)
-
1
:
losses
.
append
(
out_var
)
forward_block
.
_sync_with_cpp
()
serial_main_prog
=
forward_main_prog
serial_startup_prog
=
forward_startup_prog
# update metrics op in program
with
static
.
program_guard
(
serial_main_prog
,
serial_startup_prog
),
\
utils
.
unique_name
.
guard
():
if
mode
!=
"predict"
:
for
metric
in
self
.
_metrics
:
metrics
.
extend
(
to_list
(
metric
.
compute
(
*
(
outputs
+
labels
))))
else
:
# build program in static mode
serial_main_prog
=
self
.
_serial_main_progs
.
get
(
mode
,
None
)
if
serial_main_prog
is
not
None
:
return
losses
=
[]
metrics
=
[]
serial_main_prog
=
self
.
_orig_main_prog
.
clone
()
serial_startup_prog
=
self
.
_orig_startup_prog
.
clone
()
with
static
.
program_guard
(
serial_main_prog
,
serial_startup_prog
),
\
utils
.
unique_name
.
guard
():
inputs_spec
=
self
.
inputs_spec
labels_spec
=
self
.
labels_spec
if
self
.
labels_spec
else
[]
inputs
=
[
s
.
_create_feed_layer
()
for
s
in
inputs_spec
]
labels
=
[
s
.
_create_feed_layer
()
for
s
in
labels_spec
]
outputs
=
to_list
(
self
.
model
(
*
inputs
))
if
mode
!=
"predict"
and
self
.
_loss
:
losses
=
to_list
(
self
.
_loss
(
*
(
outputs
+
labels
)))
if
mode
!=
"predict"
:
for
metric
in
self
.
_metrics
:
metrics
.
extend
(
to_list
(
metric
.
compute
(
*
(
outputs
+
labels
))))
default_ctx
=
get_default_distributed_context
()
if
not
default_ctx
.
has_annotation
:
...
...
@@ -172,6 +257,7 @@ class Engine:
serial_main_prog
,
serial_startup_prog
,
self
.
_optimizer
,
losses
,
feed_vars
,
fetch_vars
,
self
.
cluster
,
self
.
strategy
)
self
.
_dist_contexts
[
mode
].
gradient_scale
=
self
.
_gradient_scale
self
.
_dist_contexts
[
mode
].
_dygraph_mode
=
self
.
_dygraph_mode
def
_plan
(
self
,
mode
):
if
self
.
_planned_mode
is
None
:
...
...
@@ -236,6 +322,35 @@ class Engine:
self
.
_place
=
_get_device
()
if
isinstance
(
self
.
_place
,
fluid
.
CUDAPlace
):
self
.
_place
=
fluid
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
if
self
.
_dygraph_mode
:
paddle
.
disable_static
()
main_program
=
self
.
_dist_main_progs
[
mode
][
self
.
_cur_rank
]
for
param
in
self
.
concrete_program
.
parameters
:
# create var in scope and share parameters to scope
if
param
.
name
not
in
main_program
.
global_block
().
vars
:
continue
# get param_var's dist_attr
var
=
main_program
.
global_block
().
vars
[
param
.
name
]
var_dist_attr
=
self
.
_dist_contexts
[
mode
].
get_tensor_dist_attr_for_program
(
var
)
dist_attr
=
{
"dims_mapping"
:
var_dist_attr
.
dims_mapping
,
"process_shape"
:
var_dist_attr
.
process_mesh
.
topology
,
"process_group"
:
var_dist_attr
.
process_mesh
.
processes
}
# slice param_value with dist_attr
# share sliced_param_value with param_tensor in global_scope
from
.converter
import
Converter
param_tensor
=
global_scope
().
var
(
param
.
name
).
get_tensor
()
sliced_param
=
Converter
.
slice_with_dist_attr
(
param
.
numpy
(),
dist_attr
)
shared_tensor
=
paddle
.
to_tensor
(
sliced_param
,
place
=
self
.
_place
)
param_tensor
.
_share_data_with
(
shared_tensor
.
value
().
get_tensor
())
paddle
.
enable_static
()
if
self
.
_executor
is
None
:
self
.
_executor
=
paddle
.
static
.
Executor
(
self
.
_place
)
uninitialized
=
[]
...
...
python/paddle/distributed/auto_parallel/parallelizer_v2.py
浏览文件 @
13a250a2
...
...
@@ -15,8 +15,10 @@
import
copy
from
collections
import
defaultdict
import
paddle
from
paddle.fluid
import
program_guard
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.framework
import
_non_static_mode
from
paddle.distributed.passes
import
new_pass
from
.reshard
import
Resharder
...
...
@@ -110,9 +112,14 @@ class Parallelizer:
def
_generate_optimizer
(
self
,
main_program
,
startup_program
,
optimizer
,
params_grads
):
if
self
.
_dist_context
.
_dygraph_mode
:
paddle
.
disable_static
()
optimizer
=
copy
.
deepcopy
(
optimizer
)
paddle
.
enable_static
()
else
:
optimizer
=
copy
.
deepcopy
(
optimizer
)
with
program_guard
(
main_program
,
startup_program
):
optimizer_ops
=
copy
.
deepcopy
(
optimizer
).
apply_gradients
(
params_grads
)
optimizer_ops
=
optimizer
.
apply_gradients
(
params_grads
)
self
.
_completer
.
complete_update_annotation
(
main_program
)
return
optimizer_ops
...
...
python/paddle/fluid/tests/unittests/auto_parallel/CMakeLists.txt
浏览文件 @
13a250a2
...
...
@@ -53,4 +53,5 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules
(
test_comp_cost MODULES test_comp_cost ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_dist_context MODULES test_dist_context ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_prim_dist_op MODULES test_prim_dist_op ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_to_static MODULES test_to_static ENVS
${
dist_ENVS
}
)
endif
()
python/paddle/fluid/tests/unittests/auto_parallel/test_to_static.py
0 → 100644
浏览文件 @
13a250a2
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
os
import
numpy
as
np
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
import
paddle.distributed.auto_parallel
as
auto
import
paddle.distributed.fleet
as
fleet
from
paddle.io
import
Dataset
from
paddle.static
import
InputSpec
from
paddle.fluid.framework
import
_non_static_mode
from
paddle.distributed.auto_parallel.engine
import
Engine
batch_size
=
4
batch_num
=
30
hidden_size
=
1024
class_num
=
10
class
MyDataset
(
Dataset
):
def
__init__
(
self
,
num_samples
):
super
(
MyDataset
,
self
).
__init__
()
self
.
num_samples
=
num_samples
def
__getitem__
(
self
,
index
):
input
=
np
.
random
.
uniform
(
size
=
hidden_size
).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
class_num
-
1
,
dtype
=
"int64"
)
return
input
,
label
def
__len__
(
self
):
return
self
.
num_samples
class
MLPLayer
(
nn
.
Layer
):
def
__init__
(
self
,
hidden_size
=
1024
,
intermediate_size
=
4
*
1024
,
dropout_ratio
=
0.1
,
initializer_range
=
0.02
):
super
(
MLPLayer
,
self
).
__init__
()
d_model
=
hidden_size
dim_feedforward
=
intermediate_size
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
None
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
None
)
self
.
linear2
=
nn
.
Linear
(
d_model
,
1
,
weight_attr
,
bias_attr
=
None
)
self
.
norm
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
self
.
dropout
=
nn
.
Dropout
(
dropout_ratio
,
mode
=
"upscale_in_train"
)
def
forward
(
self
,
input
):
out
=
self
.
norm
(
input
)
out
=
self
.
linear0
(
out
)
out
=
F
.
gelu
(
out
,
approximate
=
True
)
out
=
self
.
linear1
(
out
)
out
=
self
.
dropout
(
out
)
out
=
self
.
linear2
(
out
)
return
out
class
TestToStatic
(
unittest
.
TestCase
):
def
test_to_static
(
self
):
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
dropout_ratio
=
0.1
,
initializer_range
=
0.02
)
loss
=
paddle
.
nn
.
CrossEntropyLoss
()
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.00001
,
parameters
=
mlp
.
parameters
())
dataset
=
MyDataset
(
batch_num
*
batch_size
)
inputs
=
InputSpec
([
batch_size
,
hidden_size
],
'float32'
,
'x'
)
labels
=
InputSpec
([
batch_size
],
'int64'
,
'label'
)
engine
=
Engine
(
model
=
mlp
,
inputs_spec
=
inputs
,
labels_spec
=
labels
,
strategy
=
None
)
assert
_non_static_mode
()
==
True
engine
.
prepare
(
optimizer
=
optimizer
,
loss
=
loss
,
metrics
=
paddle
.
metric
.
Accuracy
())
assert
_non_static_mode
()
==
False
engine
.
fit
(
dataset
,
batch_size
=
batch_size
)
engine
.
evaluate
(
dataset
,
batch_size
=
batch_size
)
engine
.
predict
(
dataset
,
batch_size
=
batch_size
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录