Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
139a30ec
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
139a30ec
编写于
3月 25, 2022
作者:
Z
Zhangjingyu06
提交者:
GitHub
3月 25, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify unit test in bn, stack and split. *test=kunlun (#40880)
上级
04087012
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
437 addition
and
485 deletion
+437
-485
paddle/fluid/operators/batch_norm_op_xpu.cc
paddle/fluid/operators/batch_norm_op_xpu.cc
+75
-96
python/paddle/fluid/tests/unittests/xpu/test_batch_norm_op_xpu.py
...addle/fluid/tests/unittests/xpu/test_batch_norm_op_xpu.py
+198
-195
python/paddle/fluid/tests/unittests/xpu/test_split_op_xpu.py
python/paddle/fluid/tests/unittests/xpu/test_split_op_xpu.py
+66
-100
python/paddle/fluid/tests/unittests/xpu/test_stack_op_xpu.py
python/paddle/fluid/tests/unittests/xpu/test_stack_op_xpu.py
+98
-94
未找到文件。
paddle/fluid/operators/batch_norm_op_xpu.cc
浏览文件 @
139a30ec
/* Copyright (c) 20
16
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 20
22
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -38,25 +38,15 @@ class BatchNormXPUKernel : public framework::OpKernel<T> {
bool
global_stats
=
test_mode
||
use_global_stats
;
const
auto
&
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
auto
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
PADDLE_ENFORCE_EQ
(
data_layout_str
==
"NCHW"
||
data_layout_str
==
"NHWC"
,
true
,
platform
::
errors
::
InvalidArgument
(
"The 'data_layout' attribute must be NCHW or NHWC. "
"But recevived 'data_layout' is [%s]."
,
data_layout_str
));
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
true
,
platform
::
errors
::
InvalidArgument
(
"The size of input's dimensions should be between 2 and 5"
"But received: the size of input's dimensions is [%d]"
,
x_dims
.
size
()));
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
data_layout
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
int
temp
=
x_dims
[
3
];
temp
=
(
x_dims
.
size
()
!=
4
)
?
1
:
temp
;
bool
is_nchw
=
(
data_layout
==
DataLayout
::
kNCHW
);
const
int
N
=
x_dims
[
0
];
const
int
C
=
is_nchw
?
x_dims
[
1
]
:
temp
;
const
int
H
=
is_nchw
?
x_dims
[
2
]
:
x_dims
[
1
];
const
int
W
=
is_nchw
?
temp
:
x_dims
[
2
];
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
const
auto
*
x_data
=
x
->
data
<
T
>
();
...
...
@@ -77,7 +67,6 @@ class BatchNormXPUKernel : public framework::OpKernel<T> {
saved_variance
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
bool
is_nchw
=
data_layout_str
==
"NCHW"
;
if
(
!
global_stats
)
{
auto
*
mean_out_data
=
mean_out
->
data
<
float
>
();
...
...
@@ -94,15 +83,27 @@ class BatchNormXPUKernel : public framework::OpKernel<T> {
&
mom_cpu
);
momentum
=
mom_tensor
->
data
<
float
>
()[
0
];
}
int
r
=
xpu
::
batch_norm
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
C
,
H
,
W
,
epsilon
,
momentum
,
scale_data
,
bias_data
,
saved_mean_data
,
saved_variance_data
,
mean_out_data
,
variance_out_data
,
is_nchw
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The batch_norm XPU API return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
if
(
C
==
1
)
{
int
r
=
xpu
::
batch_norm
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
1
,
H
,
W
,
epsilon
,
momentum
,
scale_data
,
bias_data
,
saved_mean_data
,
saved_variance_data
,
mean_out_data
,
variance_out_data
,
true
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The batch_norm XPU API return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
int
r
=
xpu
::
batch_norm
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
C
,
H
,
W
,
epsilon
,
momentum
,
scale_data
,
bias_data
,
saved_mean_data
,
saved_variance_data
,
mean_out_data
,
variance_out_data
,
is_nchw
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The batch_norm XPU API return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
else
{
const
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
variance
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
...
...
@@ -110,7 +111,7 @@ class BatchNormXPUKernel : public framework::OpKernel<T> {
const
auto
*
variance_data
=
variance
->
data
<
float
>
();
int
r
=
xpu
::
batch_norm_infer
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
C
,
H
,
W
,
epsilon
,
scale_data
,
bias_data
,
mean_data
,
variance_data
,
is_nchw
);
mean_data
,
variance_data
,
true
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
...
...
@@ -171,13 +172,6 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> {
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
auto
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
PADDLE_ENFORCE_EQ
(
data_layout_str
==
"NCHW"
||
data_layout_str
==
"NHWC"
,
true
,
platform
::
errors
::
InvalidArgument
(
"The 'data_layout' attribute must be NCHW or NHWC. "
"But recevived 'data_layout' is [%s]."
,
data_layout_str
));
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
...
...
@@ -210,15 +204,13 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> {
}
const
auto
&
x_dims
=
x
->
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
true
,
platform
::
errors
::
InvalidArgument
(
"The size of input's dimensions should be between 2 and 5"
"But received: the size of input's dimensions is [%d]"
,
x_dims
.
size
()));
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
data_layout
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
int
temp
=
x_dims
[
3
];
temp
=
(
x_dims
.
size
()
!=
4
)
?
1
:
temp
;
bool
is_nchw
=
(
data_layout
==
DataLayout
::
kNCHW
);
const
int
N
=
x_dims
[
0
];
const
int
C
=
is_nchw
?
x_dims
[
1
]
:
temp
;
const
int
H
=
is_nchw
?
x_dims
[
2
]
:
x_dims
[
1
];
const
int
W
=
is_nchw
?
temp
:
x_dims
[
2
];
const
auto
*
x_data
=
x
->
data
<
T
>
();
const
auto
*
d_y_data
=
d_y
->
data
<
T
>
();
...
...
@@ -243,45 +235,42 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> {
"the size of scale's dimensions is [%d], the dimensions of scale "
"is [%s]."
,
scale
->
dims
().
size
(),
scale
->
dims
()));
PADDLE_ENFORCE_EQ
(
scale
->
dims
()[
0
],
C
,
platform
::
errors
::
InvalidArgument
(
"The first dimension of scale must equal to Channels[%d]. But "
"received: the first dimension of scale is [%d]"
,
C
,
scale
->
dims
()[
0
]));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
const
auto
*
batch_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
const
auto
*
batch_inv_std
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
auto
*
global_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
global_var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
T
*
mean_data
=
nullptr
;
const
T
*
inv_var_data
=
nullptr
;
// TODO(guozibin): hadle the situation case of N * H * W = 1
if
(
!
use_global_stats
)
{
const
auto
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
// SavedVariance have been reverted in forward operator
const
auto
*
saved_inv_variance
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
mean_data
=
saved_mean
->
data
<
float
>
();
inv_var_data
=
saved_inv_variance
->
data
<
float
>
();
}
else
{
const
auto
*
running_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
running_variance
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
mean_data
=
running_mean
->
data
<
float
>
();
inv_var_data
=
running_variance
->
data
<
float
>
();
float
*
running_inv_var_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
running_variance
->
numel
());
float
*
epsilon_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
1
);
int
r1
=
calculate_inv_var
(
dev_ctx
.
x_context
(),
inv_var_data
,
epsilon
,
C
,
epsilon_data
,
running_inv_var_data
);
PADDLE_ENFORCE_EQ
(
r1
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(batch_norm_grad "
"calculate_inv_var function) "
"return wrong value[%d %s]"
,
r1
,
XPUAPIErrorMsg
[
r1
]));
inv_var_data
=
running_inv_var_data
;
}
if
(
is_inplace
)
{
float
*
global_inv_std_data
;
if
(
use_global_stats
)
{
global_inv_std_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
global_var
->
numel
());
float
*
epsilon_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
1
);
int
r1
=
calculate_inv_var
(
dev_ctx
.
x_context
(),
global_var
->
data
<
float
>
(),
epsilon
,
C
,
epsilon_data
,
global_inv_std_data
);
PADDLE_ENFORCE_EQ
(
r1
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(batch_norm_grad "
"calculate_inv_var function) "
"return wrong value[%d %s]"
,
r1
,
XPUAPIErrorMsg
[
r1
]));
}
auto
px
=
*
x
;
auto
*
inv_std_data
=
use_global_stats
?
global_inv_std_data
:
batch_inv_std
->
data
<
float
>
();
auto
mean_data
=
use_global_stats
?
global_mean
->
data
<
float
>
()
:
batch_mean
->
data
<
float
>
();
int
r2
=
calculate_inv_BN_Y
(
dev_ctx
.
x_context
(),
px
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
scale
->
data
<
float
>
(),
bias
->
data
<
float
>
(),
mean_data
,
inv_
std
_data
,
N
,
scale
->
data
<
float
>
(),
bias
->
data
<
float
>
(),
mean_data
,
inv_
var
_data
,
N
,
C
,
H
*
W
,
x
->
data
<
T
>
());
PADDLE_ENFORCE_EQ
(
r2
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(batch_norm_grad "
...
...
@@ -289,29 +278,19 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> {
"return wrong value[%d %s]"
,
r2
,
XPUAPIErrorMsg
[
r2
]));
}
int
r3
;
bool
is_nchw
=
data_layout_str
==
"NCHW"
;
if
(
use_global_stats
)
{
r3
=
xpu
::
batch_norm_grad
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
d_y_data
,
d_x_data
,
N
,
C
,
H
,
W
,
scale_data
,
nullptr
,
nullptr
,
d_scale_data
,
d_bias_data
,
is_nchw
,
global_mean
->
data
<
float
>
(),
global_var
->
data
<
float
>
(),
epsilon
);
}
else
{
if
(
!
d_x
)
{
d_x_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
x
->
numel
());
}
if
(
!
d_scale
)
{
d_scale_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
C
);
}
if
(
!
d_bias_data
)
{
d_bias_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
C
);
}
r3
=
xpu
::
batch_norm_grad
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
d_y_data
,
d_x_data
,
N
,
C
,
H
,
W
,
scale_data
,
batch_mean
->
data
<
float
>
(),
batch_inv_std
->
data
<
float
>
(),
d_scale_data
,
d_bias_data
,
is_nchw
);
if
(
!
d_x
)
{
d_x_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
x
->
numel
());
}
if
(
!
d_scale
)
{
d_scale_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
C
);
}
if
(
!
d_bias_data
)
{
d_bias_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
C
);
}
int
r3
=
xpu
::
batch_norm_grad
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
d_y_data
,
d_x_data
,
N
,
C
,
H
,
W
,
scale_data
,
mean_data
,
inv_var_data
,
d_scale_data
,
d_bias_data
,
is_nchw
);
PADDLE_ENFORCE_EQ
(
r3
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(batch_norm_grad) return "
"wrong value[%d %s]"
,
...
...
python/paddle/fluid/tests/unittests/xpu/test_batch_norm_op_xpu.py
浏览文件 @
139a30ec
#
Copyright (c) 2020
PaddlePaddle Authors. All Rights Reserved.
#
Copyright (c) 2022
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -26,6 +26,10 @@ import paddle.fluid as fluid
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
def
ref_batch_norm_infer
(
x
,
scale
,
bias
,
mean
,
variance
,
momentum
,
epsilon
,
...
...
@@ -121,213 +125,212 @@ def ref_batch_norm_train(x, y_grad, scale, bias, mean, variance, momentum,
return
y
,
mean_out
,
variance_out
,
saved_mean
,
saved_inv_std
,
x_grad
,
scale_grad
,
bias_grad
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUBatchNormOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"batch_norm"
self
.
dtype
=
np
.
float32
self
.
shape
=
[
2
,
3
,
4
,
5
]
self
.
data_layout
=
"NCHW"
self
.
epsilon
=
1e-05
self
.
momentum
=
0.9
self
.
set_attrs
()
if
self
.
data_layout
==
"NHWC"
:
channel_size
=
self
.
shape
[
3
]
elif
self
.
data_layout
==
"NCHW"
:
channel_size
=
self
.
shape
[
1
]
else
:
raise
ValueError
(
"Unsupported data layout! Only NCHW and NHWC is supported, but received "
+
self
.
data_layout
)
np
.
random
.
seed
(
1024
)
self
.
x_np
=
np
.
random
.
random_sample
(
self
.
shape
).
astype
(
self
.
dtype
)
self
.
scale_np
=
np
.
random
.
random_sample
(
[
channel_size
]).
astype
(
self
.
dtype
)
self
.
bias_np
=
np
.
random
.
random_sample
(
[
channel_size
]).
astype
(
self
.
dtype
)
self
.
mean_np
=
np
.
zeros
([
channel_size
]).
astype
(
self
.
dtype
)
self
.
variance_np
=
np
.
ones
([
channel_size
]).
astype
(
self
.
dtype
)
self
.
saved_mean_np
=
np
.
zeros
([
channel_size
]).
astype
(
self
.
dtype
)
self
.
saved_variance_np
=
np
.
ones
([
channel_size
]).
astype
(
self
.
dtype
)
def
set_attrs
(
self
):
pass
def
test_infer
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
fluid
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
scale
=
paddle
.
fluid
.
data
(
'Scale'
,
self
.
scale_np
.
shape
,
self
.
scale_np
.
dtype
)
bias
=
paddle
.
fluid
.
data
(
'Bias'
,
self
.
bias_np
.
shape
,
self
.
bias_np
.
dtype
)
mean
=
paddle
.
fluid
.
data
(
'Mean'
,
self
.
mean_np
.
shape
,
self
.
mean_np
.
dtype
)
variance
=
paddle
.
fluid
.
data
(
'Variance'
,
self
.
variance_np
.
shape
,
self
.
variance_np
.
dtype
)
y
=
F
.
batch_norm
(
x
,
mean
,
variance
,
scale
,
bias
,
False
,
self
.
momentum
,
self
.
epsilon
,
self
.
data_layout
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
[
y_np
]
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
,
'Scale'
:
self
.
scale_np
,
'Bias'
:
self
.
bias_np
,
'Mean'
:
self
.
mean_np
,
'Variance'
:
self
.
variance_np
},
fetch_list
=
[
y
])
y_np_ref
=
ref_batch_norm_infer
(
self
.
x_np
,
self
.
scale_np
,
self
.
bias_np
,
self
.
mean_np
,
self
.
variance_np
,
self
.
momentum
,
self
.
epsilon
,
self
.
data_layout
)
self
.
assertEqual
(
np
.
allclose
(
y_np_ref
,
y_np
),
True
)
class
XPUTestBatchNormOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'batch_norm'
self
.
use_dynamic_create_class
=
False
def
test_train
(
self
):
y_grad_np
=
np
.
random
.
random_sample
(
self
.
shape
).
astype
(
self
.
dtype
)
y_np
,
mean_out_np
,
variance_out_np
,
saved_mean_np
,
saved_variance_np
,
x_grad_np
,
scale_grad_np
,
bias_grad_np
=
ref_batch_norm_train
(
self
.
x_np
,
y_grad_np
,
self
.
scale_np
,
self
.
bias_np
,
self
.
mean_np
,
self
.
variance_np
,
self
.
momentum
,
self
.
epsilon
,
self
.
data_layout
)
inputs
=
{
'X'
:
self
.
x_np
,
'Scale'
:
self
.
scale_np
,
'Bias'
:
self
.
bias_np
,
'Mean'
:
self
.
mean_np
,
'Variance'
:
self
.
variance_np
,
'Y@GRAD'
:
y_grad_np
}
outputs
=
{
'Y'
:
y_np
,
'Mean'
:
mean_out_np
,
'Variance'
:
variance_out_np
,
'SavedMean'
:
saved_mean_np
,
'SavedVariance'
:
saved_variance_np
,
'X@GRAD'
:
x_grad_np
,
'Scale@GRAD'
:
scale_grad_np
,
'Bias@GRAD'
:
bias_grad_np
}
attrs
=
{
'momentum'
:
self
.
momentum
,
'epsilon'
:
self
.
epsilon
,
'is_test'
:
False
,
'data_layout'
:
self
.
data_layout
,
'use_mkldnn'
:
False
,
'fuse_with_relu'
:
False
,
'use_global_stats'
:
False
,
}
paddle
.
enable_static
()
program
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
program
):
block
=
program
.
global_block
()
# Set inputs, outputs and attributes to the forward op of batch_norm
input_vars
=
{}
for
var_name
in
inputs
:
arg_name
=
var_name
np_value
=
inputs
[
var_name
]
if
not
block
.
has_var
(
var_name
):
block
.
create_var
(
name
=
var_name
,
shape
=
np_value
.
shape
,
dtype
=
np_value
.
dtype
)
input_vars
[
arg_name
]
=
block
.
var
(
var_name
)
fetch_list
=
[]
output_vars
=
{}
for
var_name
in
outputs
:
arg_name
=
var_name
np_value
=
outputs
[
var_name
]
if
not
block
.
has_var
(
var_name
):
block
.
create_var
(
name
=
var_name
,
shape
=
np_value
.
shape
,
dtype
=
np_value
.
dtype
)
if
var_name
==
'Mean'
:
arg_name
=
'MeanOut'
# Share memory
if
var_name
==
'Variance'
:
arg_name
=
'VarianceOut'
# Share memory
output_vars
[
arg_name
]
=
block
.
var
(
var_name
)
fetch_list
.
append
(
var_name
)
batch_norm_op
=
block
.
append_op
(
type
=
"batch_norm"
,
inputs
=
input_vars
,
outputs
=
output_vars
,
attrs
=
attrs
)
# Generate the backward op_desc of batch_norm
grad_op_desc_list
,
op_grad_to_var
=
core
.
get_grad_op_desc
(
batch_norm_op
.
desc
,
set
(),
[])
grad_op_desc
=
grad_op_desc_list
[
0
]
new_op_desc
=
block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
grad_op_desc
)
program
.
_sync_with_cpp
()
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
outs
=
exe
.
run
(
program
,
feed
=
inputs
,
fetch_list
=
fetch_list
)
for
id
,
name
in
enumerate
(
fetch_list
):
self
.
assertEqual
(
np
.
allclose
(
outputs
[
name
],
outs
[
id
],
atol
=
1e-4
),
True
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestBatchNormOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
op_type
=
"batch_norm"
self
.
dtype
=
np
.
float32
self
.
shape
=
[
2
,
3
,
4
,
5
]
self
.
data_layout
=
"NCHW"
self
.
epsilon
=
1e-05
self
.
momentum
=
0.9
self
.
init_dtype
()
self
.
set_xpu
()
self
.
set_attrs
()
if
self
.
data_layout
==
"NHWC"
:
channel_size
=
self
.
shape
[
3
]
elif
self
.
data_layout
==
"NCHW"
:
channel_size
=
self
.
shape
[
1
]
else
:
raise
ValueError
(
"Unsupported data layout! Only NCHW and NHWC is supported, but received "
+
self
.
data_layout
)
np
.
random
.
seed
(
1024
)
self
.
x_np
=
np
.
random
.
random_sample
(
self
.
shape
).
astype
(
self
.
dtype
)
self
.
scale_np
=
np
.
random
.
random_sample
(
[
channel_size
]).
astype
(
self
.
dtype
)
self
.
bias_np
=
np
.
random
.
random_sample
(
[
channel_size
]).
astype
(
self
.
dtype
)
self
.
mean_np
=
np
.
zeros
([
channel_size
]).
astype
(
self
.
dtype
)
self
.
variance_np
=
np
.
ones
([
channel_size
]).
astype
(
self
.
dtype
)
self
.
saved_mean_np
=
np
.
zeros
([
channel_size
]).
astype
(
self
.
dtype
)
self
.
saved_variance_np
=
np
.
ones
([
channel_size
]).
astype
(
self
.
dtype
)
class
TestXPUBatchNormOpUseGlobalStats
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
places
=
[
paddle
.
XPUPlace
(
0
)]
self
.
init_test
()
def
set_attrs
(
self
):
pass
### train mode
def
init_test
(
self
):
self
.
use_global_stats
=
True
self
.
trainable_statistics
=
False
def
init_dtype
(
self
):
self
.
dtype
=
self
.
in_type
def
test_global_stats
(
self
):
for
p
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
p
):
x
=
paddle
.
randn
([
2
,
6
,
6
,
4
])
net1
=
paddle
.
fluid
.
dygraph
.
BatchNorm
(
6
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)),
use_global_stats
=
self
.
use_global_stats
,
trainable_statistics
=
self
.
trainable_statistics
)
net2
=
paddle
.
nn
.
BatchNorm2D
(
6
,
use_global_stats
=
self
.
use_global_stats
)
net2
.
weight
=
net1
.
weight
net2
.
bias
=
net1
.
bias
if
self
.
trainable_statistics
==
True
:
net1
.
training
=
False
net2
.
training
=
False
y1
=
net1
(
x
)
y2
=
net2
(
x
)
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
(),
atol
=
1e-4
),
True
)
def
set_xpu
(
self
):
self
.
__class__
.
use_xpu
=
True
self
.
__class__
.
op_type
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
def
test_infer
(
self
):
paddle
.
enable_static
()
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
fluid
.
data
(
'X'
,
self
.
x_np
.
shape
,
self
.
x_np
.
dtype
)
scale
=
paddle
.
fluid
.
data
(
'Scale'
,
self
.
scale_np
.
shape
,
self
.
scale_np
.
dtype
)
bias
=
paddle
.
fluid
.
data
(
'Bias'
,
self
.
bias_np
.
shape
,
self
.
bias_np
.
dtype
)
mean
=
paddle
.
fluid
.
data
(
'Mean'
,
self
.
mean_np
.
shape
,
self
.
mean_np
.
dtype
)
variance
=
paddle
.
fluid
.
data
(
'Variance'
,
self
.
variance_np
.
shape
,
self
.
variance_np
.
dtype
)
y
=
F
.
batch_norm
(
x
,
mean
,
variance
,
scale
,
bias
,
False
,
self
.
momentum
,
self
.
epsilon
,
self
.
data_layout
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
[
y_np
]
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
,
'Scale'
:
self
.
scale_np
,
'Bias'
:
self
.
bias_np
,
'Mean'
:
self
.
mean_np
,
'Variance'
:
self
.
variance_np
},
fetch_list
=
[
y
])
y_np_ref
=
ref_batch_norm_infer
(
self
.
x_np
,
self
.
scale_np
,
self
.
bias_np
,
self
.
mean_np
,
self
.
variance_np
,
self
.
momentum
,
self
.
epsilon
,
self
.
data_layout
)
self
.
assertEqual
(
np
.
allclose
(
y_np_ref
,
y_np
),
True
)
class
TestXPUBatchNormUseGlobalStatsCase1
(
TestXPUBatchNormOpUseGlobalStats
):
### test mode
def
init_test
(
self
):
self
.
use_global_stats
=
False
self
.
trainable_statistics
=
True
def
test_train
(
self
):
y_grad_np
=
np
.
random
.
random_sample
(
self
.
shape
).
astype
(
self
.
dtype
)
y_np
,
mean_out_np
,
variance_out_np
,
saved_mean_np
,
saved_variance_np
,
x_grad_np
,
scale_grad_np
,
bias_grad_np
=
ref_batch_norm_train
(
self
.
x_np
,
y_grad_np
,
self
.
scale_np
,
self
.
bias_np
,
self
.
mean_np
,
self
.
variance_np
,
self
.
momentum
,
self
.
epsilon
,
self
.
data_layout
)
inputs
=
{
'X'
:
self
.
x_np
,
'Scale'
:
self
.
scale_np
,
'Bias'
:
self
.
bias_np
,
'Mean'
:
self
.
mean_np
,
'Variance'
:
self
.
variance_np
,
'Y@GRAD'
:
y_grad_np
}
outputs
=
{
'Y'
:
y_np
,
'Mean'
:
mean_out_np
,
'Variance'
:
variance_out_np
,
'SavedMean'
:
saved_mean_np
,
'SavedVariance'
:
saved_variance_np
,
'X@GRAD'
:
x_grad_np
,
'Scale@GRAD'
:
scale_grad_np
,
'Bias@GRAD'
:
bias_grad_np
}
attrs
=
{
'momentum'
:
self
.
momentum
,
'epsilon'
:
self
.
epsilon
,
'is_test'
:
False
,
'data_layout'
:
self
.
data_layout
,
'use_mkldnn'
:
False
,
'fuse_with_relu'
:
False
,
'use_global_stats'
:
False
,
}
paddle
.
enable_static
()
program
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
program
):
block
=
program
.
global_block
()
# Set inputs, outputs and attributes to the forward op of batch_norm
input_vars
=
{}
for
var_name
in
inputs
:
arg_name
=
var_name
np_value
=
inputs
[
var_name
]
if
not
block
.
has_var
(
var_name
):
block
.
create_var
(
name
=
var_name
,
shape
=
np_value
.
shape
,
dtype
=
np_value
.
dtype
)
input_vars
[
arg_name
]
=
block
.
var
(
var_name
)
fetch_list
=
[]
output_vars
=
{}
for
var_name
in
outputs
:
arg_name
=
var_name
np_value
=
outputs
[
var_name
]
if
not
block
.
has_var
(
var_name
):
block
.
create_var
(
name
=
var_name
,
shape
=
np_value
.
shape
,
dtype
=
np_value
.
dtype
)
if
var_name
==
'Mean'
:
arg_name
=
'MeanOut'
# Share memory
if
var_name
==
'Variance'
:
arg_name
=
'VarianceOut'
# Share memory
output_vars
[
arg_name
]
=
block
.
var
(
var_name
)
fetch_list
.
append
(
var_name
)
batch_norm_op
=
block
.
append_op
(
type
=
"batch_norm"
,
inputs
=
input_vars
,
outputs
=
output_vars
,
attrs
=
attrs
)
# Generate the backward op_desc of batch_norm
grad_op_desc_list
,
op_grad_to_var
=
core
.
get_grad_op_desc
(
batch_norm_op
.
desc
,
set
(),
[])
grad_op_desc
=
grad_op_desc_list
[
0
]
new_op_desc
=
block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
grad_op_desc
)
program
.
_sync_with_cpp
()
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
outs
=
exe
.
run
(
program
,
feed
=
inputs
,
fetch_list
=
fetch_list
)
for
id
,
name
in
enumerate
(
fetch_list
):
self
.
assertEqual
(
np
.
allclose
(
outputs
[
name
],
outs
[
id
],
atol
=
1e-4
),
True
)
class
TestBatchNormOpUseGlobalStats
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
places
=
[
paddle
.
XPUPlace
(
0
)]
self
.
init_test
()
class
TestXPUBatchNormUseGlobalStatsCase2
(
TestXPUBatchNormOpUseGlobalStats
):
### train mode
def
init_test
(
self
):
self
.
use_global_stats
=
False
self
.
trainable_statistics
=
False
### train mode
def
init_test
(
self
):
self
.
use_global_stats
=
True
self
.
trainable_statistics
=
False
def
test_global_stats
(
self
):
for
p
in
self
.
places
:
with
fluid
.
dygraph
.
guard
(
p
):
x
=
paddle
.
randn
([
2
,
6
,
6
,
4
])
net1
=
paddle
.
fluid
.
dygraph
.
BatchNorm
(
6
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)),
use_global_stats
=
self
.
use_global_stats
,
trainable_statistics
=
self
.
trainable_statistics
)
net2
=
paddle
.
nn
.
BatchNorm2D
(
6
,
use_global_stats
=
self
.
use_global_stats
)
net2
.
weight
=
net1
.
weight
net2
.
bias
=
net1
.
bias
if
self
.
trainable_statistics
==
True
:
net1
.
training
=
False
net2
.
training
=
False
y1
=
net1
(
x
)
y2
=
net2
(
x
)
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
()),
True
)
class
TestXPUBatchNormUseGlobalStatsCase3
(
TestXPU
BatchNormOpUseGlobalStats
):
### test mode
def
init_test
(
self
):
self
.
use_global_stats
=
True
self
.
trainable_statistics
=
True
class
TestBatchNormOpUseGlobalStats1
(
Test
BatchNormOpUseGlobalStats
):
### test mode
def
init_test
(
self
):
self
.
use_global_stats
=
True
self
.
trainable_statistics
=
True
class
TestBatchNormUseGlobalStats2
(
TestBatchNormOpUseGlobalStats
):
### train mode
def
init_test
(
self
):
self
.
use_global_stats
=
True
self
.
trainable_statistics
=
False
class
TestXPUBatchNormUseGlobalStatsCase4
(
TestXPUBatchNormOpUseGlobalStats
):
### train mode
def
init_test
(
self
):
self
.
use_global_stats
=
True
self
.
trainable_statistics
=
False
support_types
=
get_xpu_op_support_types
(
'batch_norm'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestBatchNormOp
,
stype
)
if
__name__
==
"__main__"
:
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_split_op_xpu.py
浏览文件 @
139a30ec
# Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -23,105 +23,71 @@ from op_test_xpu import XPUOpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
# test with attr(num)
class
TestSplitOp
(
XPUOpTest
):
def
initDefaultParameters
(
self
):
self
.
dtype
=
'float32'
self
.
x
=
np
.
random
.
random
((
4
,
5
,
6
)).
astype
(
self
.
dtype
)
self
.
axis
=
2
self
.
sections
=
[]
self
.
num
=
3
self
.
indices_or_sections
=
3
def
setUp
(
self
):
self
.
__class__
.
op_type
=
'split'
self
.
use_xpu
=
True
self
.
use_mkldnn
=
False
self
.
initDefaultParameters
()
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'sections'
:
self
.
sections
,
'num'
:
self
.
num
}
out
=
np
.
split
(
self
.
x
,
self
.
indices_or_sections
,
self
.
axis
)
self
.
outputs
=
{
'Out'
:
[(
'out%d'
%
i
,
out
[
i
])
\
for
i
in
range
(
len
(
out
))]}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
# unknown sections
class
TestSplitOp_2
(
XPUOpTest
):
def
initDefaultParameters
(
self
):
self
.
dtype
=
'float32'
self
.
x
=
np
.
random
.
random
((
4
,
5
,
6
)).
astype
(
self
.
dtype
)
self
.
axis
=
2
self
.
sections
=
[
2
,
1
,
-
1
]
self
.
num
=
0
self
.
indices_or_sections
=
[
2
,
3
]
def
setUp
(
self
):
self
.
__class__
.
op_type
=
'split'
self
.
use_xpu
=
True
self
.
use_mkldnn
=
False
self
.
initDefaultParameters
()
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'sections'
:
self
.
sections
,
'num'
:
self
.
num
}
out
=
np
.
split
(
self
.
x
,
self
.
indices_or_sections
,
self
.
axis
)
self
.
outputs
=
{
'Out'
:
[(
'out%d'
%
i
,
out
[
i
])
\
for
i
in
range
(
len
(
out
))]}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
# test with int32
class
TestSplitOp_5
(
XPUOpTest
):
def
initDefaultParameters
(
self
):
self
.
dtype
=
'int32'
self
.
x
=
np
.
random
.
random
((
4
,
5
,
6
)).
astype
(
self
.
dtype
)
self
.
axis
=
2
self
.
sections
=
[]
self
.
num
=
3
self
.
indices_or_sections
=
3
def
setUp
(
self
):
self
.
__class__
.
op_type
=
'split'
self
.
use_xpu
=
True
self
.
use_mkldnn
=
False
self
.
initDefaultParameters
()
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'sections'
:
self
.
sections
,
'num'
:
self
.
num
}
out
=
np
.
split
(
self
.
x
,
self
.
indices_or_sections
,
self
.
axis
)
self
.
outputs
=
{
'Out'
:
[(
'out%d'
%
i
,
out
[
i
])
\
for
i
in
range
(
len
(
out
))]}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
class
XPUTestSplitOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'split'
self
.
use_dynamic_create_class
=
False
# test with attr(num)
class
TestSplitOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
init_dtype
()
self
.
__class__
.
use_xpu
=
True
self
.
__class__
.
op_type
=
'split'
self
.
use_mkldnn
=
False
self
.
initParameters
()
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'sections'
:
self
.
sections
,
'num'
:
self
.
num
}
out
=
np
.
split
(
self
.
x
,
self
.
indices_or_sections
,
self
.
axis
)
self
.
outputs
=
{
'Out'
:
[(
'out%d'
%
i
,
out
[
i
])
\
for
i
in
range
(
len
(
out
))]}
def
init_dtype
(
self
):
self
.
dtype
=
self
.
in_type
def
initParameters
(
self
):
self
.
x
=
np
.
random
.
random
((
4
,
5
,
6
)).
astype
(
self
.
dtype
)
self
.
axis
=
2
self
.
sections
=
[]
self
.
num
=
3
self
.
indices_or_sections
=
3
def
test_check_output
(
self
):
self
.
check_output_with_place
(
paddle
.
XPUPlace
(
0
))
# unknown sections
class
TestSplitOp1
(
TestSplitOp
):
def
initParameters
(
self
):
self
.
x
=
np
.
random
.
random
((
4
,
5
,
6
)).
astype
(
self
.
dtype
)
self
.
axis
=
2
self
.
sections
=
[
2
,
1
,
-
1
]
self
.
num
=
0
self
.
indices_or_sections
=
[
2
,
3
]
# test with int32
class
TestSplitOp2
(
TestSplitOp
):
def
initParameters
(
self
):
self
.
x
=
np
.
random
.
random
((
4
,
5
,
6
)).
astype
(
np
.
int32
)
self
.
axis
=
2
self
.
sections
=
[]
self
.
num
=
3
self
.
indices_or_sections
=
3
support_types
=
get_xpu_op_support_types
(
'split'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestSplitOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_stack_op_xpu.py
浏览文件 @
139a30ec
# Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -23,116 +23,120 @@ from op_test_xpu import XPUOpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
@
skip_check_grad_ci
(
reason
=
"There is no grad kernel for stack_xpu op."
)
class
TestStackOpBase
(
XPUOpTest
):
def
initDefaultParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
5
,
6
,
7
)
self
.
axis
=
0
self
.
dtype
=
'float32'
def
initParameters
(
self
):
pass
def
get_x_names
(
self
):
x_names
=
[]
for
i
in
range
(
self
.
num_inputs
):
x_names
.
append
(
'x{}'
.
format
(
i
))
return
x_names
def
setUp
(
self
):
self
.
initDefaultParameters
()
self
.
initParameters
()
self
.
op_type
=
'stack'
self
.
x
=
[]
for
i
in
range
(
self
.
num_inputs
):
self
.
x
.
append
(
np
.
random
.
random
(
size
=
self
.
input_dim
).
astype
(
self
.
dtype
))
tmp
=
[]
x_names
=
self
.
get_x_names
()
for
i
in
range
(
self
.
num_inputs
):
tmp
.
append
((
x_names
[
i
],
self
.
x
[
i
]))
self
.
inputs
=
{
'X'
:
tmp
}
self
.
outputs
=
{
'Y'
:
np
.
stack
(
self
.
x
,
axis
=
self
.
axis
)}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
def
test_check_grad
(
self
):
if
self
.
dtype
==
'int64'
or
self
.
dtype
==
'int32'
:
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
class
XPUTestStackOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'stack'
self
.
use_dynamic_create_class
=
False
@
skip_check_grad_ci
(
reason
=
"There is no grad kernel for stack_xpu op."
)
class
TestStackOp
(
XPUOpTest
):
def
initDefaultParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
5
,
6
,
7
)
self
.
axis
=
0
self
.
dtype
=
np
.
float32
def
setUp
(
self
):
self
.
initDefaultParameters
()
self
.
initParameters
()
self
.
__class__
.
use_xpu
=
True
self
.
__class__
.
op_type
=
'stack'
self
.
x
=
[]
for
i
in
range
(
self
.
num_inputs
):
self
.
x
.
append
(
np
.
random
.
random
(
size
=
self
.
input_dim
).
astype
(
self
.
dtype
))
tmp
=
[]
x_names
=
self
.
get_x_names
()
for
i
in
range
(
self
.
num_inputs
):
tmp
.
append
((
x_names
[
i
],
self
.
x
[
i
]))
self
.
inputs
=
{
'X'
:
tmp
}
self
.
outputs
=
{
'Y'
:
np
.
stack
(
self
.
x
,
axis
=
self
.
axis
)}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
def
init_dtype
(
self
):
self
.
dtype
=
self
.
in_type
def
initParameters
(
self
):
pass
else
:
if
paddle
.
is_compiled_with_xpu
():
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
self
.
get_x_names
(),
'Y'
)
class
TestStackOp1
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
num_inputs
=
16
class
TestStackOp2
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
num_inputs
=
30
def
get_x_names
(
self
):
x_names
=
[]
for
i
in
range
(
self
.
num_inputs
):
x_names
.
append
(
'x{}'
.
format
(
i
))
return
x_names
def
test_check_output
(
self
):
self
.
check_output_with_place
(
paddle
.
XPUPlace
(
0
))
class
TestStackOp3
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
-
1
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
int32
or
self
.
dtype
==
np
.
int64
:
pass
else
:
self
.
check_grad_with_place
(
paddle
.
XPUPlace
(
0
),
self
.
get_x_names
(),
'Y'
)
def
test_check_grad
(
self
):
pass
class
TestStackOp1
(
TestStackOp
):
def
initParameters
(
self
):
self
.
num_inputs
=
16
class
TestStackOp2
(
TestStackOp
):
def
initParameters
(
self
):
self
.
num_inputs
=
30
class
TestStackOp4
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
-
4
def
test_check_grad
(
self
):
pass
class
TestStackOp3
(
TestStackOp
):
def
initParameters
(
self
):
self
.
axis
=
-
1
def
test_check_grad
(
self
):
pass
class
TestStackOp5
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
1
class
TestStackOp4
(
TestStackOp
):
def
initParameters
(
self
):
self
.
axis
=
-
4
def
test_check_grad
(
self
):
pass
class
TestStackOp6
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
3
class
TestStackOp5
(
TestStackOp
):
def
initParameters
(
self
):
self
.
axis
=
1
class
TestStackOp6
(
TestStackOp
):
def
initParameters
(
self
):
self
.
axis
=
3
class
TestStackOpint64
(
TestStackOpBase
):
def
initDefaul
tParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
5
,
6
,
7
)
self
.
axis
=
0
self
.
dtype
=
'int64'
class
TestStackOp7
(
TestStackOp
):
def
ini
tParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
5
,
6
,
7
)
self
.
axis
=
0
self
.
dtype
=
np
.
int64
def
initParameters
(
self
):
self
.
num_inputs
=
16
def
test_check_grad
(
self
):
pass
class
TestStackOp8
(
TestStackOp
):
def
initParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
5
,
6
,
7
)
self
.
axis
=
0
self
.
dtype
=
np
.
int32
class
TestStackOpint
(
TestStackOpBase
):
def
initDefaultParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
5
,
6
,
7
)
self
.
axis
=
0
self
.
dtype
=
'int32'
def
test_check_grad
(
self
):
pass
def
initParameters
(
self
):
self
.
num_inputs
=
16
support_types
=
get_xpu_op_support_types
(
'stack'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestStackOp
,
stype
)
if
__name__
==
'__main__'
:
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录