未验证 提交 1349584e 编写于 作者: L Leo Guo 提交者: GitHub

Migrate scale and scatter to phi, and modify the code style for...

Migrate scale and scatter to phi, and modify the code style for roi_align_kernel. test=kunlun (#45938)
上级 f85f2e83
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/kernels/scale_kernel.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class ScaleXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
virtual void Compute(const framework::ExecutionContext& ctx) const {
auto* in_var = ctx.InputVar("X");
auto* in = framework::GetLoDTensorOrSelectedRowsValueFromVar(*in_var);
auto scale = static_cast<float>(ctx.Attr<float>("scale"));
auto bias = static_cast<float>(ctx.Attr<float>("bias"));
auto bias_after_scale = ctx.Attr<bool>("bias_after_scale");
auto* out_var = ctx.OutputVar("Out");
if (in_var->IsType<phi::SelectedRows>() && in_var != out_var) {
auto& in_slr = in_var->Get<phi::SelectedRows>();
auto* out_slr = out_var->GetMutable<phi::SelectedRows>();
out_slr->set_rows(in_slr.rows());
out_slr->set_height(in_slr.height());
}
auto* out =
framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(out_var);
out->mutable_data<T>(in->place());
auto& dev_ctx = ctx.template device_context<DeviceContext>();
// call phi kernel
phi::ScaleKernel<T>(
static_cast<const typename framework::ConvertToPhiContext<
DeviceContext>::TYPE&>(dev_ctx),
*in,
scale,
bias,
bias_after_scale,
out);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
scale,
ops::ScaleXPUKernel<paddle::platform::XPUDeviceContext, float>,
ops::ScaleXPUKernel<paddle::platform::XPUDeviceContext,
paddle::platform::float16>,
ops::ScaleXPUKernel<paddle::platform::XPUDeviceContext, int64_t>);
#endif
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class ScatterOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<Tensor>("X");
auto *index = ctx.Input<Tensor>("Ids");
auto *updates = ctx.Input<Tensor>("Updates");
auto *out = ctx.Output<Tensor>("Out");
bool overwrite = ctx.Attr<bool>("overwrite");
// In place output: Out = X, Out[ids] = Updates
framework::TensorCopy(*x, ctx.GetPlace(), out);
// Apply ScatterUpdate: Out[index] = Updates[:]
const auto &index_type = framework::TransToProtoVarType(index->dtype());
bool index_type_match = index_type == framework::proto::VarType::INT32 ||
index_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(index_type_match,
true,
platform::errors::InvalidArgument(
"Index holds the wrong type, it holds [%s],"
"but desires to be [%s] or [%s].",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));
// check index of shape 1-D
PADDLE_ENFORCE_EQ(
index->dims().size() == 1 ||
(index->dims().size() == 2 && index->dims()[1] == 1),
true,
platform::errors::InvalidArgument(
"index's shape is error, "
"expect index'dims shape is 1 or 2 and index.dims[1] is 1"
"but got index'dims shape is %d",
index->dims().size()));
int index_size = static_cast<int>(index->dims()[0]);
auto x_dims = x->dims();
auto update_dims = updates->dims();
for (int i = 1; i < x_dims.size(); i++)
PADDLE_ENFORCE_EQ(
x_dims[i],
update_dims[i],
platform::errors::InvalidArgument(
"The dimensions of the source tensor and target tensor should"
" match, but received source tensor's %d-th dimension is %d,"
"target tensor's %d-th dimension is %d.",
i,
x_dims[i],
i,
update_dims[i]));
int dim0 = static_cast<int>(x->dims()[0]);
int dim1 = static_cast<int>(
phi::product(phi::slice_ddim(x_dims, 1, x_dims.size())));
T *out_data = out->data<T>();
const T *updates_data = updates->data<T>();
auto &dev_ctx =
ctx.template device_context<paddle::platform::XPUDeviceContext>();
int r = XPU_SUCCESS;
Tensor indices_cpu(index->type());
framework::TensorCopy(*index, platform::CPUPlace(), &indices_cpu);
if (index_type == framework::proto::VarType::INT32) {
auto index_data = const_cast<int *>(index->data<int>());
xpu::VectorParam<int> indices{
indices_cpu.data<int>(), index_size, index_data};
r = xpu::scatter(dev_ctx.x_context(),
updates_data,
out_data,
indices,
dim0,
dim1,
overwrite);
} else {
auto index_data = const_cast<int64_t *>(index->data<int64_t>());
xpu::VectorParam<int64_t> indices{
indices_cpu.data<int64_t>(), index_size, index_data};
r = xpu::scatter(dev_ctx.x_context(),
updates_data,
out_data,
indices,
dim0,
dim1,
overwrite);
}
PADDLE_ENFORCE_EQ(r,
XPU_SUCCESS,
platform::errors::External(
"XPU scatter kernel return wrong value[%d %s]",
r,
XPUAPIErrorMsg[r]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(scatter,
ops::ScatterOpXPUKernel<float>,
ops::ScatterOpXPUKernel<int64_t>);
#endif
...@@ -137,7 +137,7 @@ void RoiAlignKernel(const Context& dev_ctx, ...@@ -137,7 +137,7 @@ void RoiAlignKernel(const Context& dev_ctx,
sampling_ratio, sampling_ratio,
true, true,
aligned); aligned);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "roi_align_grad"); PADDLE_ENFORCE_XDNN_SUCCESS(r, "roi_align");
if (dev_ctx.x_context()->xpu_stream) { if (dev_ctx.x_context()->xpu_stream) {
dev_ctx.Wait(); dev_ctx.Wait();
} }
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
#include "paddle/phi/kernels/scale_kernel.h" #include "paddle/phi/kernels/scale_kernel.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h" #include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/common/data_type.h" #include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/float16.h" #include "paddle/phi/common/float16.h"
...@@ -30,7 +30,7 @@ void ScaleKernel(const Context& dev_ctx, ...@@ -30,7 +30,7 @@ void ScaleKernel(const Context& dev_ctx,
float bias, float bias,
bool bias_after_scale, bool bias_after_scale,
DenseTensor* out) { DenseTensor* out) {
out->mutable_data<T>(dev_ctx.GetPlace()); dev_ctx.template Alloc<T>(out);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
x.dims(), x.dims(),
...@@ -47,11 +47,7 @@ void ScaleKernel(const Context& dev_ctx, ...@@ -47,11 +47,7 @@ void ScaleKernel(const Context& dev_ctx,
bias_after_scale, bias_after_scale,
scale.to<float>(), scale.to<float>(),
bias); bias);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
r,
XPU_SUCCESS,
phi::errors::External(
"XPU scale kernel return wrong value[%d %s]", r, XPUAPIErrorMsg[r]));
} }
} // namespace phi } // namespace phi
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/scatter_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void ScatterKernel(const Context &ctx,
const DenseTensor &x,
const DenseTensor &index,
const DenseTensor &updates,
bool overwrite,
DenseTensor *out) {
phi::Copy(ctx, x, ctx.GetPlace(), false, out);
// Apply ScatterUpdate: Out[index] = Updates[:]
const auto &index_type = index.dtype();
bool index_type_match =
index_type == phi::DataType::INT32 || index_type == phi::DataType::INT64;
PADDLE_ENFORCE_EQ(
index_type_match,
true,
phi::errors::InvalidArgument("Index holds the wrong type, it holds [%s],"
"but desires to be [%s] or [%s].",
index_type,
phi::DataType::INT32,
phi::DataType::INT64));
// check index of shape 1-D
PADDLE_ENFORCE_EQ(
index.dims().size() == 1 ||
(index.dims().size() == 2 && index.dims()[1] == 1),
true,
phi::errors::InvalidArgument(
"index's shape is error, "
"expect index'dims shape is 1 or 2 and index.dims[1] is 1"
"but got index'dims shape is %d",
index.dims().size()));
int index_size = static_cast<int>(index.dims()[0]);
auto x_dims = x.dims();
auto update_dims = updates.dims();
for (int i = 1; i < x_dims.size(); i++)
PADDLE_ENFORCE_EQ(
x_dims[i],
update_dims[i],
phi::errors::InvalidArgument(
"The dimensions of the source tensor and target tensor should"
" match, but received source tensor's %d-th dimension is %d,"
"target tensor's %d-th dimension is %d.",
i,
x_dims[i],
i,
update_dims[i]));
int dim0 = static_cast<int>(x.dims()[0]);
int dim1 =
static_cast<int>(phi::product(phi::slice_ddim(x_dims, 1, x_dims.size())));
T *out_data = out->data<T>();
const T *updates_data = updates.data<T>();
DenseTensor indices_cpu(index.type());
phi::Copy(ctx, index, phi::CPUPlace(), false, &indices_cpu);
int r = 0;
if (index_type == phi::DataType::INT32) {
auto index_data = const_cast<int *>(index.data<int>());
xpu::VectorParam<int> indices{
indices_cpu.data<int>(), index_size, index_data};
r = xpu::scatter(ctx.x_context(),
updates_data,
out_data,
indices,
dim0,
dim1,
overwrite);
} else {
auto index_data = const_cast<int64_t *>(index.data<int64_t>());
xpu::VectorParam<int64_t> indices{
indices_cpu.data<int64_t>(), index_size, index_data};
r = xpu::scatter(ctx.x_context(),
updates_data,
out_data,
indices,
dim0,
dim1,
overwrite);
}
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scatter");
}
} // namespace phi
PD_REGISTER_KERNEL(
scatter, XPU, ALL_LAYOUT, phi::ScatterKernel, float, int, int64_t) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册