Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
12e9c003
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
12e9c003
编写于
1月 23, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add optimizer
上级
a3f0aed0
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
77 addition
and
25 deletion
+77
-25
demo/mnist/api_train.py
demo/mnist/api_train.py
+15
-25
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+4
-0
python/paddle/v2/optimizer.py
python/paddle/v2/optimizer.py
+58
-0
未找到文件。
demo/mnist/api_train.py
浏览文件 @
12e9c003
...
...
@@ -13,15 +13,7 @@ import numpy as np
import
random
from
mnist_util
import
read_from_mnist
from
paddle.trainer_config_helpers
import
*
def
optimizer_config
():
settings
(
learning_rate
=
1e-4
,
learning_method
=
AdamOptimizer
(),
batch_size
=
1000
,
model_average
=
ModelAverage
(
average_window
=
0.5
),
regularization
=
L2Regularization
(
rate
=
0.5
))
import
paddle.v2
def
network_config
():
...
...
@@ -75,19 +67,23 @@ def input_order_converter(generator):
def
main
():
api
.
initPaddle
(
"-use_gpu=false"
,
"-trainer_count=4"
)
# use 4 cpu cores
# get enable_types for each optimizer.
# enable_types = [value, gradient, momentum, etc]
# For each optimizer(SGD, Adam), GradientMachine should enable different
# buffers.
opt_config_proto
=
parse_optimizer_config
(
optimizer_config
)
opt_config
=
api
.
OptimizationConfig
.
createFromProto
(
opt_config_proto
)
_temp_optimizer_
=
api
.
ParameterOptimizer
.
create
(
opt_config
)
enable_types
=
_temp_optimizer_
.
getParameterTypes
()
optimizer
=
paddle
.
v2
.
optimizer
.
Adam
(
learning_rate
=
1e-4
,
batch_size
=
1000
,
model_average
=
ModelAverage
(
average_window
=
0.5
),
regularization
=
L2Regularization
(
rate
=
0.5
))
# Create Local Updater. Local means not run in cluster.
# For a cluster training, here we can change to createRemoteUpdater
# in future.
updater
=
optimizer
.
create_local_updater
()
assert
isinstance
(
updater
,
api
.
ParameterUpdater
)
# Create Simple Gradient Machine.
model_config
=
parse_network_config
(
network_config
)
m
=
api
.
GradientMachine
.
createFromConfigProto
(
model_config
,
api
.
CREATE_MODE_NORMAL
,
enable_types
)
m
=
api
.
GradientMachine
.
createFromConfigProto
(
model_config
,
api
.
CREATE_MODE_NORMAL
,
optimizer
.
enable_types
())
# This type check is not useful. Only enable type hint in IDE.
# Such as PyCharm
...
...
@@ -96,12 +92,6 @@ def main():
# Initialize Parameter by numpy.
init_parameter
(
network
=
m
)
# Create Local Updater. Local means not run in cluster.
# For a cluster training, here we can change to createRemoteUpdater
# in future.
updater
=
api
.
ParameterUpdater
.
createLocalUpdater
(
opt_config
)
assert
isinstance
(
updater
,
api
.
ParameterUpdater
)
# Initialize ParameterUpdater.
updater
.
init
(
m
)
...
...
python/paddle/v2/__init__.py
浏览文件 @
12e9c003
...
...
@@ -11,3 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
optimizer
__all__
=
[
'optimizer'
]
python/paddle/v2/optimizer.py
0 → 100644
浏览文件 @
12e9c003
import
py_paddle.swig_paddle
as
swig_api
import
paddle.trainer_config_helpers.optimizers
as
v1_optimizers
import
paddle.trainer_config_helpers.config_parser_utils
as
config_parser_utils
import
paddle.v2
__all__
=
[
'Adam'
,
'Adamax'
]
class
Optimizer
(
object
):
def
__init__
(
self
,
**
kwargs
):
if
'batch_size'
in
kwargs
:
del
kwargs
[
'batch_size'
]
# not important for python library.
def
__impl__
():
v1_optimizers
.
settings
(
batch_size
=
1
,
**
kwargs
)
self
.
__opt_conf_proto__
=
config_parser_utils
.
parse_optimizer_config
(
__impl__
)
self
.
__opt_conf__
=
swig_api
.
OptimizationConfig
.
createFromProto
(
self
.
__opt_conf_proto__
)
def
enable_types
(
self
):
"""
get enable_types for each optimizer.
enable_types = [value, gradient, momentum, etc]
For each optimizer(SGD, Adam), GradientMachine should enable different
buffers.
"""
tmp
=
swig_api
.
ParameterOptimizer
.
create
(
self
.
__opt_conf__
)
assert
isinstance
(
tmp
,
swig_api
.
ParameterOptimizer
)
return
tmp
.
getParameterTypes
()
def
create_local_updater
(
self
):
return
swig_api
.
ParameterUpdater
.
createLocalUpdater
(
self
.
__opt_conf__
)
def
create_remote_updater
(
self
,
pass_num
):
return
swig_api
.
ParameterUpdater
.
createRemoteUpdater
(
self
.
__opt_conf__
,
pass_num
)
class
Adam
(
Optimizer
):
def
__init__
(
self
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-8
,
**
kwargs
):
learning_method
=
v1_optimizers
.
AdamOptimizer
(
beta1
=
beta1
,
beta2
=
beta2
,
epsilon
=
epsilon
)
super
(
Adam
,
self
).
__init__
(
learning_method
=
learning_method
,
**
kwargs
)
class
Adamax
(
Optimizer
):
def
__init__
(
self
,
beta1
=
0.9
,
beta2
=
0.999
,
**
kwargs
):
learning_method
=
v1_optimizers
.
AdamaxOptimizer
(
beta1
=
beta1
,
beta2
=
beta2
)
super
(
Adamax
,
self
).
__init__
(
learning_method
=
learning_method
,
**
kwargs
)
if
__name__
==
'__main__'
:
swig_api
.
initPaddle
(
'--use_gpu=false'
)
opt
=
paddle
.
v2
.
optimizer
.
Adam
()
print
opt
.
enable_types
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录