Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
12b9b03e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
12b9b03e
编写于
10月 31, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
10月 31, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] update dygraph PTQ export_model api (#47415)
* update dygraph PTQ export_model api * remove postprocess
上级
df64e790
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
132 addition
and
81 deletion
+132
-81
python/paddle/fluid/contrib/slim/quantization/imperative/ptq.py
.../paddle/fluid/contrib/slim/quantization/imperative/ptq.py
+109
-69
python/paddle/fluid/contrib/slim/quantization/imperative/ptq_registry.py
...luid/contrib/slim/quantization/imperative/ptq_registry.py
+23
-12
未找到文件。
python/paddle/fluid/contrib/slim/quantization/imperative/ptq.py
浏览文件 @
12b9b03e
...
@@ -31,9 +31,9 @@ from .ptq_registry import PTQRegistry
...
@@ -31,9 +31,9 @@ from .ptq_registry import PTQRegistry
__all__
=
[
'ImperativePTQ'
]
__all__
=
[
'ImperativePTQ'
]
_logger
=
get_logger
(
__name__
,
_logger
=
get_logger
(
logging
.
INFO
,
__name__
,
logging
.
INFO
,
fmt
=
'%(asctime)s-%(levelname)s: %(message)s'
fmt
=
'%(asctime)s-%(levelname)s: %(message)s'
)
)
class
ImperativePTQ
(
object
):
class
ImperativePTQ
(
object
):
...
@@ -75,17 +75,20 @@ class ImperativePTQ(object):
...
@@ -75,17 +75,20 @@ class ImperativePTQ(object):
Return
Return
quantized_model(paddle.nn.Layer): The quantized model.
quantized_model(paddle.nn.Layer): The quantized model.
"""
"""
assert
isinstance
(
model
,
paddle
.
nn
.
Layer
),
\
assert
isinstance
(
"The model must be the instance of paddle.nn.Layer."
model
,
paddle
.
nn
.
Layer
),
"The model must be the instance of paddle.nn.Layer."
if
not
inplace
:
if
not
inplace
:
model
=
copy
.
deepcopy
(
model
)
model
=
copy
.
deepcopy
(
model
)
if
fuse
:
if
fuse
:
model
.
eval
()
model
.
eval
()
model
=
fuse_utils
.
fuse_layers
(
model
,
fuse_list
)
model
=
fuse_utils
.
fuse_layers
(
model
,
fuse_list
)
for
name
,
layer
in
model
.
named_sublayers
():
for
name
,
layer
in
model
.
named_sublayers
():
if
PTQRegistry
.
is_supported_layer
(
layer
)
\
if
(
and
utils
.
is_leaf_layer
(
layer
)
\
PTQRegistry
.
is_supported_layer
(
layer
)
and
not
self
.
_is_skip_layer
(
layer
):
and
utils
.
is_leaf_layer
(
layer
)
and
not
self
.
_is_skip_layer
(
layer
)
):
# Add quant config
# Add quant config
quant_config
=
copy
.
deepcopy
(
self
.
_quant_config
)
quant_config
=
copy
.
deepcopy
(
self
.
_quant_config
)
...
@@ -98,7 +101,8 @@ class ImperativePTQ(object):
...
@@ -98,7 +101,8 @@ class ImperativePTQ(object):
quant_hook_handle
=
layer
.
register_forward_post_hook
(
hook
)
quant_hook_handle
=
layer
.
register_forward_post_hook
(
hook
)
quant_config
.
quant_hook_handle
=
quant_hook_handle
quant_config
.
quant_hook_handle
=
quant_hook_handle
layer
.
_forward_post_hooks
.
move_to_end
(
layer
.
_forward_post_hooks
.
move_to_end
(
quant_hook_handle
.
_hook_id
,
last
=
False
)
quant_hook_handle
.
_hook_id
,
last
=
False
)
return
model
return
model
...
@@ -110,14 +114,14 @@ class ImperativePTQ(object):
...
@@ -110,14 +114,14 @@ class ImperativePTQ(object):
Args:
Args:
model (Layer): The model to be saved.
model (Layer): The model to be saved.
path (str): The path prefix to save model. The format is
path (str): The path prefix to save model. The format is
``dirname/file_prefix`` or ``file_prefix``.
``dirname/file_prefix`` or ``file_prefix``.
input_spec (list[InputSpec|Tensor], optional): Describes the input
input_spec (list[InputSpec|Tensor], optional): Describes the input
of the saved model's forward method, which can be described by
of the saved model's forward method, which can be described by
InputSpec or example Tensor. If None, all input variables of
InputSpec or example Tensor. If None, all input variables of
the original Layer's forward method would be the inputs of
the original Layer's forward method would be the inputs of
the saved model. Default None.
the saved model. Default None.
**config
s
(dict, optional): Other save configuration options for
**config (dict, optional): Other save configuration options for
compatibility. We do not recommend using these configurations,
compatibility. We do not recommend using these configurations,
they may be removed in the future. If not necessary, DO NOT use
they may be removed in the future. If not necessary, DO NOT use
them. Default None.
them. Default None.
...
@@ -125,16 +129,17 @@ class ImperativePTQ(object):
...
@@ -125,16 +129,17 @@ class ImperativePTQ(object):
(1) output_spec (list[Tensor]): Selects the output targets of
(1) output_spec (list[Tensor]): Selects the output targets of
the saved model. By default, all return variables of original
the saved model. By default, all return variables of original
Layer's forward method are kept as the output of the saved model.
Layer's forward method are kept as the output of the saved model.
If the provided ``output_spec`` list is not all output variables,
If the provided ``output_spec`` list is not all output variables,
the saved model will be pruned according to the given
the saved model will be pruned according to the given
``output_spec`` list.
``output_spec`` list.
Returns:
Returns:
None
None
"""
"""
assert
isinstance
(
model
,
paddle
.
nn
.
Layer
),
\
assert
isinstance
(
"The model must be the instance of paddle.nn.Layer."
model
,
paddle
.
nn
.
Layer
),
"The model must be the instance of paddle.nn.Layer."
# Convert and save dygraph quantized model
# Convert and save dygraph quantized model
self
.
_convert
(
model
)
self
.
_convert
(
model
)
...
@@ -156,12 +161,16 @@ class ImperativePTQ(object):
...
@@ -156,12 +161,16 @@ class ImperativePTQ(object):
model_filename
=
basename
+
INFER_MODEL_SUFFIX
model_filename
=
basename
+
INFER_MODEL_SUFFIX
params_filename
=
basename
+
INFER_PARAMS_SUFFIX
params_filename
=
basename
+
INFER_PARAMS_SUFFIX
[
infer_program
,
feed_target_names
,
[
fetch_targets
]
=
(
paddle
.
fluid
.
io
.
load_inference_model
(
infer_program
,
dirname
=
dirname
,
feed_target_names
,
executor
=
exe
,
fetch_targets
,
model_filename
=
model_filename
,
]
=
paddle
.
fluid
.
io
.
load_inference_model
(
params_filename
=
params_filename
))
dirname
=
dirname
,
executor
=
exe
,
model_filename
=
model_filename
,
params_filename
=
params_filename
,
)
# Process inference program
# Process inference program
self
.
_clean_up
(
infer_program
)
self
.
_clean_up
(
infer_program
)
...
@@ -169,13 +178,15 @@ class ImperativePTQ(object):
...
@@ -169,13 +178,15 @@ class ImperativePTQ(object):
self
.
_remove_scale_op
(
infer_program
)
self
.
_remove_scale_op
(
infer_program
)
# Save final program
# Save final program
paddle
.
fluid
.
io
.
save_inference_model
(
dirname
=
dirname
,
paddle
.
fluid
.
io
.
save_inference_model
(
feeded_var_names
=
feed_target_names
,
dirname
=
dirname
,
target_vars
=
fetch_targets
,
feeded_var_names
=
feed_target_names
,
executor
=
exe
,
target_vars
=
fetch_targets
,
main_program
=
infer_program
.
clone
(),
executor
=
exe
,
model_filename
=
model_filename
,
main_program
=
infer_program
.
clone
(),
params_filename
=
params_filename
)
model_filename
=
model_filename
,
params_filename
=
params_filename
,
)
if
is_dynamic_mode
:
if
is_dynamic_mode
:
paddle
.
disable_static
()
paddle
.
disable_static
()
...
@@ -213,8 +224,9 @@ class ImperativePTQ(object):
...
@@ -213,8 +224,9 @@ class ImperativePTQ(object):
Returns:
Returns:
None
None
"""
"""
assert
isinstance
(
model
,
paddle
.
nn
.
Layer
),
\
assert
isinstance
(
"The input model must be the instance of paddle.nn.Layer."
model
,
paddle
.
nn
.
Layer
),
"The input model must be the instance of paddle.nn.Layer."
total_num
=
0
total_num
=
0
cur_num
=
0
cur_num
=
0
...
@@ -226,8 +238,9 @@ class ImperativePTQ(object):
...
@@ -226,8 +238,9 @@ class ImperativePTQ(object):
if
self
.
_is_quant_layer
(
sub_layer
):
if
self
.
_is_quant_layer
(
sub_layer
):
cur_num
+=
1
cur_num
+=
1
if
cur_num
%
5
==
0
:
if
cur_num
%
5
==
0
:
_logger
.
info
(
"Process the %s / %s layer"
%
_logger
.
info
(
(
cur_num
,
total_num
))
"Process the %s / %s layer"
%
(
cur_num
,
total_num
)
)
quant_config
=
sub_layer
.
_quant_config
quant_config
=
sub_layer
.
_quant_config
...
@@ -236,7 +249,7 @@ class ImperativePTQ(object):
...
@@ -236,7 +249,7 @@ class ImperativePTQ(object):
quant_config
.
out_act_quantizer
.
cal_thresholds
()
quant_config
.
out_act_quantizer
.
cal_thresholds
()
if
PTQRegistry
.
is_simulated_quant_layer
(
sub_layer
):
if
PTQRegistry
.
is_simulated_quant_layer
(
sub_layer
):
weights
=
(
sub_layer
.
weight
,
)
weights
=
(
sub_layer
.
weight
,)
quant_config
.
wt_quantizer
.
sample_data
(
sub_layer
,
weights
)
quant_config
.
wt_quantizer
.
sample_data
(
sub_layer
,
weights
)
quant_config
.
wt_quantizer
.
cal_thresholds
()
quant_config
.
wt_quantizer
.
cal_thresholds
()
...
@@ -250,18 +263,25 @@ class ImperativePTQ(object):
...
@@ -250,18 +263,25 @@ class ImperativePTQ(object):
Returns:
Returns:
None
None
"""
"""
assert
isinstance
(
sub_layer
,
paddle
.
nn
.
Layer
),
\
assert
isinstance
(
"The input model must be the instance of paddle.nn.Layer."
sub_layer
,
paddle
.
nn
.
Layer
),
"The input model must be the instance of paddle.nn.Layer."
layer_info
=
PTQRegistry
.
layer_info
(
sub_layer
)
layer_info
=
PTQRegistry
.
layer_info
(
sub_layer
)
output_names
=
layer_info
.
output_names
output_names
=
layer_info
.
output_names
output_thresholds
=
quant_config
.
out_act_quantizer
.
thresholds
output_thresholds
=
quant_config
.
out_act_quantizer
.
thresholds
assert
len
(
output_names
)
==
1
assert
len
(
output_names
)
==
1
assert
len
(
output_thresholds
)
==
1
if
len
(
output_thresholds
)
==
1
:
save_name
=
output_names
[
0
]
+
str
(
0
)
+
"_threshold"
save_name
=
output_names
[
0
]
+
str
(
0
)
+
"_threshold"
sub_layer
.
_set_op_attrs
({
save_name
:
output_thresholds
[
0
]})
sub_layer
.
_set_op_attrs
({
save_name
:
output_thresholds
[
0
]})
sub_layer
.
_set_op_attrs
({
"out_threshold"
:
output_thresholds
[
0
]})
sub_layer
.
_set_op_attrs
({
"out_threshold"
:
output_thresholds
[
0
]})
else
:
_logger
.
warning
(
"output_thresholds shape of {} need to be 1, but received {}"
.
format
(
output_names
[
0
],
len
(
output_thresholds
)
)
)
def
_wrap_simulated_layers
(
self
,
model
):
def
_wrap_simulated_layers
(
self
,
model
):
"""
"""
...
@@ -272,12 +292,14 @@ class ImperativePTQ(object):
...
@@ -272,12 +292,14 @@ class ImperativePTQ(object):
Returns:
Returns:
None
None
"""
"""
assert
isinstance
(
model
,
paddle
.
nn
.
Layer
),
\
assert
isinstance
(
"The input model must be the instance of paddle.nn.Layer."
model
,
paddle
.
nn
.
Layer
),
"The input model must be the instance of paddle.nn.Layer."
for
name
,
sub_layer
in
model
.
named_sublayers
():
for
name
,
sub_layer
in
model
.
named_sublayers
():
if
self
.
_is_quant_layer
(
sub_layer
)
\
if
self
.
_is_quant_layer
(
and
PTQRegistry
.
is_simulated_quant_layer
(
sub_layer
):
sub_layer
)
and
PTQRegistry
.
is_simulated_quant_layer
(
sub_layer
):
quant_config
=
sub_layer
.
_quant_config
quant_config
=
sub_layer
.
_quant_config
assert
quant_config
.
enable_in_act_quantizer
==
True
assert
quant_config
.
enable_in_act_quantizer
==
True
...
@@ -303,36 +325,44 @@ class ImperativePTQ(object):
...
@@ -303,36 +325,44 @@ class ImperativePTQ(object):
"activation_bits"
:
in_act_quantizer
.
quant_bits
,
"activation_bits"
:
in_act_quantizer
.
quant_bits
,
}
}
quant_layer
=
quant_layers
.
__dict__
[
quant_layer_name
](
sub_layer
,
quant_layer
=
quant_layers
.
__dict__
[
quant_layer_name
](
**
kwargs
)
sub_layer
,
**
kwargs
)
# save the input thresholds
# save the input thresholds
assert
hasattr
(
quant_layer
,
"_fake_quant_input"
)
assert
hasattr
(
quant_layer
,
"_fake_quant_input"
)
assert
hasattr
(
quant_layer
.
_fake_quant_input
,
"_scale"
)
assert
hasattr
(
quant_layer
.
_fake_quant_input
,
"_scale"
)
assert
len
(
in_act_quantizer
.
thresholds
)
==
1
if
len
(
in_act_quantizer
.
thresholds
)
==
1
:
input_threshold
=
np
.
array
([
in_act_quantizer
.
thresholds
[
0
]],
input_threshold
=
np
.
array
(
dtype
=
np
.
float32
)
[
in_act_quantizer
.
thresholds
[
0
]],
dtype
=
np
.
float32
quant_layer
.
_fake_quant_input
.
_scale
.
set_value
(
input_threshold
)
)
quant_layer
.
_fake_quant_input
.
_scale
.
set_value
(
input_threshold
)
assert
hasattr
(
quant_layer
,
"_fake_quant_weight"
)
assert
hasattr
(
quant_layer
,
"_fake_quant_weight"
)
assert
hasattr
(
quant_layer
.
_fake_quant_weight
,
"_scale"
)
assert
hasattr
(
quant_layer
.
_fake_quant_weight
,
"_scale"
)
assert
len
(
wt_quantizer
.
thresholds
)
==
1
assert
len
(
wt_quantizer
.
thresholds
)
==
1
weight_threshold
=
wt_quantizer
.
thresholds
[
0
]
weight_threshold
=
wt_quantizer
.
thresholds
[
0
]
if
isinstance
(
weight_threshold
,
list
):
if
isinstance
(
weight_threshold
,
list
):
weight_threshold
=
np
.
array
(
weight_threshold
,
weight_threshold
=
np
.
array
(
dtype
=
np
.
float32
)
weight_threshold
,
dtype
=
np
.
float32
)
else
:
else
:
weight_threshold
=
np
.
array
([
weight_threshold
],
weight_threshold
=
np
.
array
(
dtype
=
np
.
float32
)
[
weight_threshold
],
dtype
=
np
.
float32
)
quant_layer
.
_fake_quant_weight
.
_scale
.
set_value
(
quant_layer
.
_fake_quant_weight
.
_scale
.
set_value
(
weight_threshold
)
weight_threshold
)
# save the output thresholds
# save the output thresholds
self
.
_save_output_thresholds
(
quant_layer
,
quant_config
)
self
.
_save_output_thresholds
(
quant_layer
,
quant_config
)
# replace the layer
# replace the layer
parent_layer
,
sub_name
=
\
parent_layer
,
sub_name
=
utils
.
find_parent_layer_and_sub_name
(
utils
.
find_parent_layer_and_sub_name
(
model
,
name
)
model
,
name
)
setattr
(
parent_layer
,
sub_name
,
quant_layer
)
setattr
(
parent_layer
,
sub_name
,
quant_layer
)
def
_gather_input_thresholds
(
self
,
program
,
scope
):
def
_gather_input_thresholds
(
self
,
program
,
scope
):
...
@@ -351,30 +381,37 @@ class ImperativePTQ(object):
...
@@ -351,30 +381,37 @@ class ImperativePTQ(object):
if
previous_op
is
None
:
if
previous_op
is
None
:
continue
continue
if
"quantize_dequantize"
in
previous_op
.
type
or
\
if
(
previous_op
.
type
==
"moving_average_abs_max_scale"
:
"quantize_dequantize"
in
previous_op
.
type
or
previous_op
.
type
==
"moving_average_abs_max_scale"
):
attr_name
=
previous_op
.
output
(
'OutScale'
)[
0
]
attr_name
=
previous_op
.
output
(
'OutScale'
)[
0
]
in_threshold
=
utils
.
load_variable_data
(
scope
,
attr_name
)
in_threshold
=
utils
.
load_variable_data
(
scope
,
attr_name
)
in_threshold
=
utils
.
fp_numpy_to_naive
(
in_threshold
)
in_threshold
=
utils
.
fp_numpy_to_naive
(
in_threshold
)
argname
,
index
=
utils
.
_get_input_name_index
(
argname
,
index
=
utils
.
_get_input_name_index
(
op
,
in_var_name
)
op
,
in_var_name
op
.
_set_attr
(
argname
+
str
(
index
)
+
"_threshold"
,
)
in_threshold
)
op
.
_set_attr
(
argname
+
str
(
index
)
+
"_threshold"
,
in_threshold
)
op
.
_set_attr
(
"with_quant_attr"
,
True
)
op
.
_set_attr
(
"with_quant_attr"
,
True
)
else
:
else
:
for
out_var_name
in
utils
.
_get_op_output_var_names
(
for
out_var_name
in
utils
.
_get_op_output_var_names
(
previous_op
):
previous_op
):
if
out_var_name
!=
in_var_name
:
if
out_var_name
!=
in_var_name
:
continue
continue
argname
,
index
=
utils
.
_get_output_name_index
(
argname
,
index
=
utils
.
_get_output_name_index
(
previous_op
,
out_var_name
)
previous_op
,
out_var_name
)
attr_name
=
argname
+
str
(
index
)
+
"_threshold"
attr_name
=
argname
+
str
(
index
)
+
"_threshold"
if
not
previous_op
.
has_attr
(
attr_name
):
if
not
previous_op
.
has_attr
(
attr_name
):
continue
continue
threshold
=
previous_op
.
attr
(
attr_name
)
threshold
=
previous_op
.
attr
(
attr_name
)
argname
,
index
=
utils
.
_get_input_name_index
(
argname
,
index
=
utils
.
_get_input_name_index
(
op
,
in_var_name
)
op
,
in_var_name
)
attr_name
=
argname
+
str
(
index
)
+
"_threshold"
attr_name
=
argname
+
str
(
index
)
+
"_threshold"
op
.
_set_attr
(
attr_name
,
threshold
)
op
.
_set_attr
(
attr_name
,
threshold
)
op
.
_set_attr
(
"with_quant_attr"
,
True
)
op
.
_set_attr
(
"with_quant_attr"
,
True
)
...
@@ -390,8 +427,11 @@ class ImperativePTQ(object):
...
@@ -390,8 +427,11 @@ class ImperativePTQ(object):
"""
"""
def
_helper
(
op
,
next_op
,
old_attr_name
,
new_attr_name
):
def
_helper
(
op
,
next_op
,
old_attr_name
,
new_attr_name
):
if
op
.
has_attr
(
old_attr_name
)
and
next_op
.
has_attr
(
old_attr_name
)
\
if
(
and
op
.
attr
(
old_attr_name
)
==
next_op
.
attr
(
old_attr_name
):
op
.
has_attr
(
old_attr_name
)
and
next_op
.
has_attr
(
old_attr_name
)
and
op
.
attr
(
old_attr_name
)
==
next_op
.
attr
(
old_attr_name
)
):
threshold
=
op
.
attr
(
old_attr_name
)
threshold
=
op
.
attr
(
old_attr_name
)
op
.
_remove_attr
(
old_attr_name
)
op
.
_remove_attr
(
old_attr_name
)
next_op
.
_remove_attr
(
old_attr_name
)
next_op
.
_remove_attr
(
old_attr_name
)
...
@@ -417,8 +457,8 @@ class ImperativePTQ(object):
...
@@ -417,8 +457,8 @@ class ImperativePTQ(object):
old_attr_name
=
argname
+
str
(
index
)
+
"_threshold"
old_attr_name
=
argname
+
str
(
index
)
+
"_threshold"
argname
,
index
=
utils
.
_get_output_name_index
(
argname
,
index
=
utils
.
_get_output_name_index
(
next_op
,
next_op
,
next_op
.
output
(
"Out"
)[
0
]
next_op
.
output
(
"Out"
)[
0
]
)
)
new_attr_name
=
argname
+
str
(
index
)
+
"_threshold"
new_attr_name
=
argname
+
str
(
index
)
+
"_threshold"
_helper
(
op
,
next_op
,
old_attr_name
,
new_attr_name
)
_helper
(
op
,
next_op
,
old_attr_name
,
new_attr_name
)
...
...
python/paddle/fluid/contrib/slim/quantization/imperative/ptq_registry.py
浏览文件 @
12b9b03e
...
@@ -41,6 +41,7 @@ PTQ_LAYERS_INFO = [
...
@@ -41,6 +41,7 @@ PTQ_LAYERS_INFO = [
LayerInfo
(
paddle
.
nn
.
ReLU
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
ReLU
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
ReLU6
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
ReLU6
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Hardswish
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Hardswish
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Swish
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Sigmoid
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Sigmoid
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Softmax
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Softmax
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Tanh
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Tanh
,
[
'X'
],
[],
[
'Out'
]),
...
@@ -48,10 +49,15 @@ PTQ_LAYERS_INFO = [
...
@@ -48,10 +49,15 @@ PTQ_LAYERS_INFO = [
]
]
QUANT_LAYERS_INFO
=
[
QUANT_LAYERS_INFO
=
[
LayerInfo
(
paddle
.
nn
.
quant
.
quant_layers
.
QuantizedConv2D
,
[
'Input'
],
LayerInfo
(
[
'Filter'
],
[
'Output'
]),
paddle
.
nn
.
quant
.
quant_layers
.
QuantizedConv2D
,
LayerInfo
(
paddle
.
nn
.
quant
.
quant_layers
.
QuantizedLinear
,
[
'X'
],
[
'Y'
],
[
'Input'
],
[
'Out'
]),
[
'Filter'
],
[
'Output'
],
),
LayerInfo
(
paddle
.
nn
.
quant
.
quant_layers
.
QuantizedLinear
,
[
'X'
],
[
'Y'
],
[
'Out'
]
),
]
]
SIMULATED_LAYERS
=
[
paddle
.
nn
.
Conv2D
,
paddle
.
nn
.
Linear
]
SIMULATED_LAYERS
=
[
paddle
.
nn
.
Conv2D
,
paddle
.
nn
.
Linear
]
...
@@ -61,6 +67,7 @@ class PTQRegistry(object):
...
@@ -61,6 +67,7 @@ class PTQRegistry(object):
"""
"""
Register the supported layers for PTQ and provide layers info.
Register the supported layers for PTQ and provide layers info.
"""
"""
supported_layers_map
=
{}
supported_layers_map
=
{}
registered_layers_map
=
{}
registered_layers_map
=
{}
is_inited
=
False
is_inited
=
False
...
@@ -89,8 +96,9 @@ class PTQRegistry(object):
...
@@ -89,8 +96,9 @@ class PTQRegistry(object):
flag(bool): Whther the layer is supported.
flag(bool): Whther the layer is supported.
"""
"""
cls
.
_init
()
cls
.
_init
()
return
layer
in
cls
.
supported_layers_map
or
\
return
layer
in
cls
.
supported_layers_map
or
isinstance
(
isinstance
(
layer
,
tuple
(
cls
.
supported_layers_map
.
keys
()))
layer
,
tuple
(
cls
.
supported_layers_map
.
keys
())
)
@
classmethod
@
classmethod
def
is_registered_layer
(
cls
,
layer
):
def
is_registered_layer
(
cls
,
layer
):
...
@@ -102,8 +110,9 @@ class PTQRegistry(object):
...
@@ -102,8 +110,9 @@ class PTQRegistry(object):
flag(bool): Wether the layer is register layer_info.
flag(bool): Wether the layer is register layer_info.
"""
"""
cls
.
_init
()
cls
.
_init
()
return
layer
in
cls
.
registered_layers_map
or
\
return
layer
in
cls
.
registered_layers_map
or
isinstance
(
isinstance
(
layer
,
tuple
(
cls
.
registered_layers_map
.
keys
()))
layer
,
tuple
(
cls
.
registered_layers_map
.
keys
())
)
@
classmethod
@
classmethod
def
is_simulated_quant_layer
(
cls
,
layer
):
def
is_simulated_quant_layer
(
cls
,
layer
):
...
@@ -114,8 +123,9 @@ class PTQRegistry(object):
...
@@ -114,8 +123,9 @@ class PTQRegistry(object):
Returns:
Returns:
flag(bool): Whther the layer is supported.
flag(bool): Whther the layer is supported.
"""
"""
return
layer
in
SIMULATED_LAYERS
or
\
return
layer
in
SIMULATED_LAYERS
or
isinstance
(
isinstance
(
layer
,
tuple
(
SIMULATED_LAYERS
))
layer
,
tuple
(
SIMULATED_LAYERS
)
)
@
classmethod
@
classmethod
def
layer_info
(
cls
,
layer
):
def
layer_info
(
cls
,
layer
):
...
@@ -126,8 +136,9 @@ class PTQRegistry(object):
...
@@ -126,8 +136,9 @@ class PTQRegistry(object):
Returns:
Returns:
layer_info(LayerInfo): The layer info of the input layer.
layer_info(LayerInfo): The layer info of the input layer.
"""
"""
assert
cls
.
is_registered_layer
(
layer
),
\
assert
cls
.
is_registered_layer
(
"The input layer is not register."
layer
),
"The input layer is not register."
for
layer_key
,
layer_info
in
cls
.
registered_layers_map
.
items
():
for
layer_key
,
layer_info
in
cls
.
registered_layers_map
.
items
():
if
layer
==
layer_key
or
isinstance
(
layer
,
layer_key
):
if
layer
==
layer_key
or
isinstance
(
layer
,
layer_key
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录