Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
128bdf66
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
128bdf66
编写于
11月 20, 2021
作者:
J
Jiabin Yang
提交者:
GitHub
11月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert "Refactor dygraph to eager (#37318)" (#37386)
上级
4d891c00
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
4 addition
and
423 deletion
+4
-423
paddle/fluid/CMakeLists.txt
paddle/fluid/CMakeLists.txt
+1
-1
paddle/fluid/eager/CMakeLists.txt
paddle/fluid/eager/CMakeLists.txt
+0
-1
paddle/fluid/eager/eager_tensor.h
paddle/fluid/eager/eager_tensor.h
+0
-265
paddle/fluid/eager/tests/CMakeLists.txt
paddle/fluid/eager/tests/CMakeLists.txt
+0
-2
paddle/fluid/eager/tests/data_structure_tests/CMakeLists.txt
paddle/fluid/eager/tests/data_structure_tests/CMakeLists.txt
+0
-1
paddle/fluid/eager/tests/data_structure_tests/eager_tensor_test.cc
...uid/eager/tests/data_structure_tests/eager_tensor_test.cc
+0
-135
paddle/pten/api/include/tensor.h
paddle/pten/api/include/tensor.h
+3
-18
未找到文件。
paddle/fluid/CMakeLists.txt
浏览文件 @
128bdf66
...
...
@@ -11,6 +11,6 @@ add_subdirectory(imperative)
add_subdirectory
(
operators
)
add_subdirectory
(
string
)
add_subdirectory
(
pybind
)
add_subdirectory
(
eager
)
# NOTE: please add subdirectory inference at last.
add_subdirectory
(
inference
)
paddle/fluid/eager/CMakeLists.txt
已删除
100644 → 0
浏览文件 @
4d891c00
add_subdirectory
(
tests
)
paddle/fluid/eager/eager_tensor.h
已删除
100644 → 0
浏览文件 @
4d891c00
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Python.h>
// framework deps
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/pten_utils.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable.h"
// pten deps
#include "paddle/pten/all.h"
#include "paddle/pten/api/all.h"
#include "paddle/pten/api/lib/utils/tensor_utils.h"
/**
* This class is used by Eager mode for now. It's painful to do this in Eager
* Mode, the better
* choice is to use paddle::experimental::Tensor directly. However, we have a
* punch of nested kernel code, and
* they use paddle::framework::Variable in inner logic code. So, we have to
* provide variable in
* paddle::framework::ExecutionContext to support it. We should remove this as
* soon as we finish our latest
* Pten Lib, and use paddle::experimental::Tensor instead.
*
* Note: Keep this class as clean as possible.
* This class should only support method declared in
* paddle::experimental::Tensor with access method of
* paddle::framework::Variable no more members are acceptable.
* **/
namespace
egr
{
class
EagerTensor
final
{
public:
/* Part 1: Constructors */
EagerTensor
()
:
tensor_
(
std
::
make_shared
<
paddle
::
experimental
::
Tensor
>
()),
var_
(
paddle
::
framework
::
Variable
())
{}
explicit
EagerTensor
(
const
std
::
string
&
name
)
:
tensor_
(
std
::
make_shared
<
paddle
::
experimental
::
Tensor
>
(
name
)),
var_
(
paddle
::
framework
::
Variable
())
{}
/**
* @description: Use a TensorImpl pointer to construct a Tensor
* @param {shared_ptr<TensorBase>} tensor_impl
* @return {Tensor}
*/
explicit
EagerTensor
(
const
std
::
shared_ptr
<
pten
::
TensorBase
>&
tensor_impl
)
:
tensor_
(
std
::
make_shared
<
paddle
::
experimental
::
Tensor
>
(
tensor_impl
)),
var_
(
paddle
::
framework
::
Variable
())
{}
EagerTensor
(
const
EagerTensor
&
)
=
default
;
EagerTensor
(
EagerTensor
&&
)
=
default
;
/* Part 2: Name access methods */
/**
* @description: Return the name of current Tensor.
* @param None
* @return {const std::string&}
*/
const
std
::
string
&
name
()
const
{
return
tensor_
->
name
();
}
/**
* @description: Set the name of current Tensor.
* @param {const std::string& name}
* @return None
*/
void
set_name
(
const
std
::
string
&
name
)
{
tensor_
->
set_name
(
name
);
}
/* Part 3: Dimension, DataType and DataLayout methods */
/**
* @description: Return the number of elements of current Tensor.
* @param None
* @return {int64_t}
*/
int64_t
numel
()
const
{
return
tensor_
->
numel
();
}
/**
* @description: Return the shape (dimensions) of current Tensor.
* @param None
* @return {DDim}
*/
paddle
::
framework
::
DDim
shape
()
const
{
return
tensor_
->
dims
();
}
/**
* @description: Return the data type of current Tensor.
* @param None
* @return {DataType}
*/
paddle
::
experimental
::
DataType
type
()
const
{
return
tensor_
->
type
();
}
/**
* @description: Return the layout of current Tensor.
* @param None
* @return {DataLayout}
*/
paddle
::
experimental
::
DataLayout
layout
()
const
{
return
tensor_
->
layout
();
}
/* Part 3: Device and Backend methods */
/**
* @description: Return the place (device) of current Tensor.
* @param None
* @return {Place}
*/
paddle
::
platform
::
Place
place
()
const
{
return
tensor_
->
inner_place
();
}
/**
* Backend judgment APIs, shield the concept of Backend.
*/
bool
is_cpu
()
const
{
return
paddle
::
platform
::
is_cpu_place
(
place
());
}
bool
is_cuda
()
const
{
return
paddle
::
platform
::
is_gpu_place
(
place
());
}
/* Part 4: Data Access methods */
/**
* @description: Return the implemention of current Tensor.
* @param None
* @return {std::shared_ptr<TensorBase>}
*/
std
::
shared_ptr
<
pten
::
TensorBase
>
impl
()
const
{
return
tensor_
->
impl
();
}
/**
* @description: Set the implemention of current Tensor.
* @param {std::shared_ptr<TensorBase>}
* @return None
*/
void
set_impl
(
const
std
::
shared_ptr
<
pten
::
TensorBase
>&
impl
)
{
tensor_
->
set_impl
(
impl
);
}
// TODO(chenweihang): Whether API Tensor need `data` and `mutable_data`?
// TODO(chenweihang): slice and split methods use kernels?
/* Part 5: Status utils methods */
/**
* @description: Determine whether it is a meaningful Tensor
* @param None
* @return {bool}
*/
bool
defined
()
const
{
return
tensor_
->
defined
();
}
/**
* @description: Determine whether Tensor is initialized
* @param None
* @return {bool}
*/
bool
initialized
()
const
{
return
tensor_
->
initialized
();
}
/**
* @description: Reset the Tensor implementation
* @param None
* @return {void}
*/
void
reset
()
{
tensor_
->
reset
();
}
/* Part 6: Operator overloading */
EagerTensor
&
operator
=
(
const
EagerTensor
&
x
)
&
{
tensor_
=
x
.
tensor_
;
var_
=
x
.
var_
;
return
*
this
;
}
EagerTensor
&
operator
=
(
EagerTensor
&&
x
)
&
{
tensor_
=
std
::
move
(
x
.
tensor_
);
var_
=
std
::
move
(
x
.
var_
);
return
*
this
;
}
/* Part 7: Autograd methods */
paddle
::
experimental
::
AbstractAutogradMeta
*
get_autograd_meta
()
const
{
return
tensor_
->
get_autograd_meta
();
}
void
set_autograd_meta
(
std
::
shared_ptr
<
paddle
::
experimental
::
AbstractAutogradMeta
>
autograd_meta
)
{
tensor_
->
set_autograd_meta
(
autograd_meta
);
}
/** Part 9: Get framework::Variable from EagerTensor **/
const
paddle
::
framework
::
Variable
&
Var
()
const
{
return
var_
;
}
paddle
::
framework
::
Variable
*
MutableVar
()
{
return
&
var_
;
}
/** Part 10: Sync paddle::framework::Variable with pten::Tensor **/
void
SyncToVar
(
paddle
::
framework
::
proto
::
VarType_Type
type
=
paddle
::
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
// Synchronize allocation only once.
if
(
!
var_
.
IsInitialized
())
{
// TODO(jiabin): Support selected rows later.
if
(
this
->
initialized
())
{
if
(
type
==
paddle
::
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
auto
*
framework_tensor
=
var_
.
GetMutable
<
paddle
::
framework
::
LoDTensor
>
();
framework_tensor
->
Resize
(
tensor_
->
dims
());
framework_tensor
->
set_layout
(
pten
::
TransToFluidDataLayout
(
tensor_
->
layout
()));
// Contruct framework::Tensor from egr::EagerTensor
auto
tensor_dense
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
tensor_
->
impl
());
if
(
tensor_dense
)
{
paddle
::
experimental
::
MovesStorage
(
tensor_dense
.
get
(),
framework_tensor
);
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unrecognized egr::EagerTensor type, only "
"DenseTensor is supported for now."
));
}
}
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Can not Sync EagerTensor %s whose "
"pten::DenseTensor is not initialized!"
,
name
()));
}
}
}
/** Part 11: Sync paddle::framework::Variable with pten::Tensor **/
void
SyncToTensor
()
{
// Synchronize allocation only once.
if
(
!
this
->
defined
()
||
!
this
->
initialized
())
{
// TODO(jiabin): Support selected rows later.
if
(
var_
.
IsInitialized
())
{
if
(
var_
.
IsType
<
paddle
::
framework
::
LoDTensor
>
())
{
SetImplWithLegacyTensor
<
paddle
::
framework
::
LoDTensor
,
pten
::
DenseTensor
>
();
}
else
if
(
var_
.
IsType
<
paddle
::
framework
::
Tensor
>
())
{
SetImplWithLegacyTensor
<
paddle
::
framework
::
Tensor
,
pten
::
DenseTensor
>
();
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Unable to fetch underlying tensor "
"from VarBase, only LoDTensor and "
"Tensor are supported for now"
));
}
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Fatal
(
"Can not Sync EagerTensor %s whose paddle::framework::Variable is "
"not initialized!"
,
name
()));
}
}
}
void
ResetVar
(
const
paddle
::
framework
::
Variable
&
src
)
{
var_
=
src
;
}
private:
template
<
typename
LEGACY_TYPE
,
typename
TYPE
>
void
SetImplWithLegacyTensor
()
{
const
auto
&
framework_tensor
=
var_
.
Get
<
LEGACY_TYPE
>
();
this
->
set_impl
(
std
::
move
(
paddle
::
experimental
::
MakePtenDenseTensor
(
framework_tensor
)));
var_
.
Clear
();
}
private:
std
::
shared_ptr
<
paddle
::
experimental
::
Tensor
>
tensor_
=
nullptr
;
paddle
::
framework
::
Variable
var_
;
};
}
// namespace egr
paddle/fluid/eager/tests/CMakeLists.txt
已删除
100644 → 0
浏览文件 @
4d891c00
set
(
eager_deps pten pten_api python
)
add_subdirectory
(
data_structure_tests
)
paddle/fluid/eager/tests/data_structure_tests/CMakeLists.txt
已删除
100644 → 0
浏览文件 @
4d891c00
cc_test
(
test_egr_ds_eager_tensor SRCS eager_tensor_test.cc DEPS
${
eager_deps
}
)
paddle/fluid/eager/tests/data_structure_tests/eager_tensor_test.cc
已删除
100644 → 0
浏览文件 @
4d891c00
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/eager/eager_tensor.h"
#include "paddle/pten/api/lib/utils/allocator.h"
// TODO(jiabin): remove nolint here!!!
using
namespace
egr
;
// NOLINT
namespace
eager_test
{
using
AbstractAutogradMeta
=
paddle
::
experimental
::
AbstractAutogradMeta
;
class
AutogradMetaTest
:
public
AbstractAutogradMeta
{
public:
explicit
AutogradMetaTest
(
int
val
)
:
val_
(
val
)
{}
int
val_
=
0
;
};
}
TEST
(
EagerTensor
,
Constructor
)
{
EagerTensor
et1
=
EagerTensor
();
EagerTensor
et2
=
EagerTensor
(
"et2"
);
CHECK_EQ
(
et1
.
defined
(),
false
);
CHECK_EQ
(
et2
.
name
(),
"et2"
);
pten
::
DenseTensorMeta
meta
=
pten
::
DenseTensorMeta
(
pten
::
DataType
::
FLOAT32
,
paddle
::
framework
::
make_ddim
({
1
,
2
}));
std
::
shared_ptr
<
pten
::
DenseTensor
>
dt
=
std
::
make_shared
<
pten
::
DenseTensor
>
(
std
::
make_shared
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
()),
meta
);
auto
*
dt_ptr
=
dt
->
mutable_data
<
float
>
();
dt_ptr
[
0
]
=
5.0
f
;
dt_ptr
[
1
]
=
10.0
f
;
EagerTensor
et3
=
EagerTensor
(
dt
);
auto
*
et3_ptr
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
et3
.
impl
())
->
data
<
float
>
();
CHECK_EQ
(
et3_ptr
[
0
],
5.0
f
);
CHECK_EQ
(
et3_ptr
[
1
],
10.0
f
);
// copy constructor
EagerTensor
et4
(
et3
);
auto
*
et4_ptr
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
et4
.
impl
())
->
data
<
float
>
();
CHECK_EQ
(
et4_ptr
[
0
],
5.0
f
);
CHECK_EQ
(
et4_ptr
[
1
],
10.0
f
);
EagerTensor
et5
(
std
::
move
(
et4
));
auto
*
et5_ptr
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
et5
.
impl
())
->
data
<
float
>
();
CHECK_EQ
(
et5_ptr
[
0
],
5.0
f
);
CHECK_EQ
(
et5_ptr
[
1
],
10.0
f
);
}
TEST
(
EagerTensor
,
MemberFunction
)
{
EagerTensor
et3
;
pten
::
DenseTensorMeta
meta
=
pten
::
DenseTensorMeta
(
pten
::
DataType
::
FLOAT32
,
paddle
::
framework
::
make_ddim
({
1
,
2
}));
std
::
shared_ptr
<
pten
::
DenseTensor
>
dt
=
std
::
make_shared
<
pten
::
DenseTensor
>
(
std
::
make_shared
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
()),
meta
);
auto
*
dt_ptr
=
dt
->
mutable_data
<
float
>
();
dt_ptr
[
0
]
=
5.0
f
;
dt_ptr
[
1
]
=
10.0
f
;
VLOG
(
6
)
<<
"Make Dense Tensor"
;
et3
.
set_name
(
"et3"
);
VLOG
(
6
)
<<
"Set Name"
;
CHECK_EQ
(
et3
.
name
(),
"et3"
);
CHECK_EQ
(
et3
.
defined
(),
false
);
et3
.
set_impl
(
dt
);
VLOG
(
6
)
<<
"Set impl"
;
CHECK_EQ
(
et3
.
initialized
(),
true
);
CHECK_EQ
(
et3
.
is_cpu
(),
true
);
CHECK_EQ
(
et3
.
is_cuda
(),
false
);
CHECK_EQ
(
et3
.
numel
(),
2
);
auto
expected_dim
=
paddle
::
framework
::
make_ddim
({
1
,
2
});
CHECK_EQ
(
et3
.
shape
(),
expected_dim
);
CHECK_EQ
(
et3
.
type
(),
paddle
::
experimental
::
DataType
::
FLOAT32
);
CHECK_EQ
(
et3
.
layout
(),
paddle
::
experimental
::
DataLayout
::
NCHW
);
CHECK
(
paddle
::
platform
::
is_cpu_place
(
et3
.
place
()));
VLOG
(
6
)
<<
"Get impl"
;
auto
*
dt3_ptr
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
et3
.
impl
())
->
data
<
float
>
();
CHECK_EQ
(
dt3_ptr
[
0
],
5.0
f
);
CHECK_EQ
(
dt3_ptr
[
1
],
10.0
f
);
EagerTensor
et4
=
et3
;
VLOG
(
6
)
<<
"copy ="
;
CHECK
(
et4
.
initialized
()
==
true
);
auto
*
dt4_ptr
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
et4
.
impl
())
->
data
<
float
>
();
CHECK_EQ
(
dt4_ptr
[
0
],
5.0
f
);
CHECK_EQ
(
dt4_ptr
[
1
],
10.0
f
);
VLOG
(
6
)
<<
"move ="
;
EagerTensor
et5
=
std
::
move
(
et4
);
auto
*
dt5_ptr
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
et5
.
impl
())
->
data
<
float
>
();
CHECK_EQ
(
dt5_ptr
[
0
],
5.0
f
);
CHECK_EQ
(
dt5_ptr
[
1
],
10.0
f
);
VLOG
(
6
)
<<
"AutogradMeta"
;
auto
autograd_meta_test
=
std
::
make_shared
<
eager_test
::
AutogradMetaTest
>
(
2
);
et3
.
set_autograd_meta
(
autograd_meta_test
);
auto
*
tmp_autograd_meta_test
=
static_cast
<
eager_test
::
AutogradMetaTest
*>
(
et3
.
get_autograd_meta
());
CHECK_EQ
(
tmp_autograd_meta_test
->
val_
,
2
);
VLOG
(
6
)
<<
"SyncToVar"
;
et3
.
SyncToVar
();
CHECK_EQ
(
et3
.
Var
().
Get
<
paddle
::
framework
::
LoDTensor
>
().
data
<
float
>
()[
0
],
5.0
f
);
CHECK_EQ
(
et3
.
Var
().
Get
<
paddle
::
framework
::
LoDTensor
>
().
data
<
float
>
()[
1
],
10.0
f
);
VLOG
(
6
)
<<
"SyncToTensor"
;
CHECK
(
et3
.
initialized
()
==
false
);
et3
.
SyncToTensor
();
CHECK
(
et3
.
initialized
()
==
true
);
VLOG
(
6
)
<<
"Check Tensor"
;
auto
*
dt3_tmp_ptr
=
std
::
dynamic_pointer_cast
<
pten
::
DenseTensor
>
(
et3
.
impl
())
->
data
<
float
>
();
CHECK_EQ
(
dt3_tmp_ptr
[
0
],
5.0
f
);
CHECK_EQ
(
dt3_tmp_ptr
[
1
],
10.0
f
);
et3
.
reset
();
CHECK
(
et3
.
defined
()
==
false
);
VLOG
(
6
)
<<
"Finish"
;
}
paddle/pten/api/include/tensor.h
浏览文件 @
128bdf66
...
...
@@ -86,16 +86,13 @@ class AbstractAutogradMeta {
class
PD_DLL_DECL
Tensor
final
{
public:
/* Part 1: Construction and destruction methods */
/**
* @brief Construct a new Tensor object
*/
Tensor
()
=
default
;
/**
* @brief Construct a new Tensor object with name
* */
explicit
Tensor
(
const
std
::
string
&
name
)
{
name_
=
name
;
}
/**
* @brief Construct a new Tensor object by copy
*/
...
...
@@ -131,19 +128,7 @@ class PD_DLL_DECL Tensor final {
*/
Tensor
(
const
PlaceType
&
place
,
const
std
::
vector
<
int64_t
>&
shape
);
/**
* @brief Return the name of Tensor.
*
* @return const std::string&
*/
const
std
::
string
&
name
()
const
{
return
name_
;
}
/**
* @brief Set name of Tensor.
*
* @param const std::string& name
*/
void
set_name
(
const
std
::
string
&
name
)
{
name_
=
name
;
}
/* Part 2: Dimension, DataType and DataLayout methods */
/**
* @brief Return the number of elements of Tensor.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录