Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
127d2664
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
127d2664
编写于
1月 18, 2023
作者:
W
wangruting
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
merge develop
上级
184fa04c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
154 addition
and
45 deletion
+154
-45
paddle/fluid/prim/api/manual/backward/composite_backward_api.h
...e/fluid/prim/api/manual/backward/composite_backward_api.h
+154
-45
未找到文件。
paddle/fluid/prim/api/manual/backward/composite_backward_api.h
浏览文件 @
127d2664
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#pragma once
#include "paddle/fluid/prim/api/generated/prim_api/prim_api.h"
#include "paddle/fluid/prim/api/manual/prim_api/prim_api.h"
#include "paddle/fluid/prim/api/manual/utils/utils.h"
#include "paddle/phi/common/int_array.h"
...
...
@@ -23,16 +24,17 @@ namespace prim {
using
Tensor
=
paddle
::
experimental
::
Tensor
;
using
IntArray
=
paddle
::
experimental
::
IntArrayBase
<
paddle
::
experimental
::
Tensor
>
;
// using IntArray = paddle::experimental::IntArray;
// This function should have as same signature as phi, which defined in
// paddle/phi/api/backward/backward_api.h
template
<
typename
T
>
void
tanh_grad
(
const
Tensor
&
out
,
const
Tensor
&
grad_out
,
Tensor
*
grad_x
)
{
if
(
!
grad_x
)
return
;
auto
tmp
=
pow
<
T
>
(
out
,
2.0
);
tmp
=
scale
<
T
>
(
tmp
,
-
1.0
,
1.0
,
true
);
auto
grad_x_tmp
=
multiply
<
T
>
(
grad_out
,
tmp
);
set_output
<
T
>
(
grad_x_tmp
,
grad_x
);
set_output
<
T
>
(
grad_x_tmp
.
impl
()
,
grad_x
);
}
template
<
typename
T
>
void
subtract_grad
(
const
Tensor
&
x
,
const
Tensor
&
y
,
...
...
@@ -42,26 +44,33 @@ void subtract_grad(const Tensor& x,
Tensor
*
dy
)
{
if
(
dy
)
{
auto
scale_out_grad
=
scale
<
T
>
(
out_grad
,
-
1.0
,
0.0
,
true
);
if
(
phi
::
product
(
x
.
dims
())
>
phi
::
product
(
y
.
dims
()
))
{
if
(
x
.
dims
()
!=
y
.
dims
(
))
{
// Maybe need reduce here
phi
::
DDim
reduce_dim
=
get_reduce_dims
(
x
.
dims
(),
y
.
dims
());
auto
dy_reduce_res
=
sum
<
T
>
(
scale_out_grad
,
phi
::
vectorize
(
reduce_dim
),
y
.
dtype
(),
false
);
auto
dy_tmp
=
reshape
<
T
>
(
dy_reduce_res
,
phi
::
vectorize
(
y
.
dims
()));
set_output
<
T
>
(
dy_tmp
,
dy
);
phi
::
DDim
reduce_dim
=
get_reduce_dims
(
y
.
dims
(),
x
.
dims
());
if
(
!
reduce_dim
.
size
())
{
by_pass
<
T
>
(
scale_out_grad
,
dy
);
}
else
{
auto
dy_reduce_res
=
sum
<
T
>
(
scale_out_grad
,
phi
::
vectorize
(
reduce_dim
),
y
.
dtype
(),
false
);
auto
dy_tmp
=
reshape
<
T
>
(
dy_reduce_res
,
phi
::
vectorize
(
y
.
dims
()));
set_output
<
T
>
(
dy_tmp
.
impl
(),
dy
);
}
}
else
{
by_pass
<
T
>
(
scale_out_grad
,
dy
);
}
}
if
(
dx
)
{
if
(
phi
::
product
(
y
.
dims
())
>
phi
::
product
(
x
.
dims
()
))
{
if
(
y
.
dims
()
!=
x
.
dims
(
))
{
// Maybe need reduce here
auto
reduce_dim
=
get_reduce_dims
(
y
.
dims
(),
x
.
dims
());
auto
dx_reduce_res
=
sum
<
T
>
(
out_grad
,
phi
::
vectorize
(
reduce_dim
),
x
.
dtype
(),
false
);
auto
dx_tmp
=
reshape
<
T
>
(
dx_reduce_res
,
phi
::
vectorize
(
x
.
dims
()));
set_output
<
T
>
(
dx_tmp
,
dx
);
auto
reduce_dim
=
get_reduce_dims
(
x
.
dims
(),
y
.
dims
());
if
(
!
reduce_dim
.
size
())
{
by_pass
<
T
>
(
out_grad
,
dx
);
}
else
{
auto
dx_reduce_res
=
sum
<
T
>
(
out_grad
,
phi
::
vectorize
(
reduce_dim
),
x
.
dtype
(),
false
);
auto
dx_tmp
=
reshape
<
T
>
(
dx_reduce_res
,
phi
::
vectorize
(
x
.
dims
()));
set_output
<
T
>
(
dx_tmp
.
impl
(),
dx
);
}
}
else
{
by_pass
<
T
>
(
out_grad
,
dx
);
}
...
...
@@ -76,25 +85,34 @@ void add_grad(const Tensor& x,
Tensor
*
dx
,
Tensor
*
dy
)
{
if
(
dy
)
{
if
(
phi
::
product
(
x
.
dims
())
>
phi
::
product
(
y
.
dims
()
))
{
if
(
x
.
dims
()
!=
y
.
dims
(
))
{
// Maybe need reduce here
phi
::
DDim
reduce_dim
=
get_reduce_dims
(
x
.
dims
(),
y
.
dims
());
auto
dy_reduce_res
=
sum
<
T
>
(
out_grad
,
phi
::
vectorize
(
reduce_dim
),
y
.
dtype
(),
false
);
auto
dy_tmp
=
reshape
<
T
>
(
dy_reduce_res
,
phi
::
vectorize
(
y
.
dims
()));
set_output
<
T
>
(
dy_tmp
,
dy
);
phi
::
DDim
reduce_dim
=
get_reduce_dims
(
y
.
dims
(),
x
.
dims
());
if
(
!
reduce_dim
.
size
())
{
by_pass
<
T
>
(
out_grad
,
dy
);
}
else
{
auto
dy_reduce_res
=
sum
<
T
>
(
out_grad
,
phi
::
vectorize
(
reduce_dim
),
y
.
dtype
(),
false
);
auto
dy_tmp
=
reshape
<
T
>
(
dy_reduce_res
,
phi
::
vectorize
(
y
.
dims
()));
set_output
<
T
>
(
dy_tmp
.
impl
(),
dy
);
}
}
else
{
by_pass
<
T
>
(
out_grad
,
dy
);
}
}
if
(
dx
)
{
if
(
phi
::
product
(
y
.
dims
())
>
phi
::
product
(
x
.
dims
()
))
{
if
(
y
.
dims
()
!=
x
.
dims
(
))
{
// Maybe need reduce here
auto
reduce_dim
=
get_reduce_dims
(
y
.
dims
(),
x
.
dims
());
auto
dx_reduce_res
=
sum
<
T
>
(
out_grad
,
phi
::
vectorize
(
reduce_dim
),
x
.
dtype
(),
false
);
auto
dx_tmp
=
reshape
<
T
>
(
dx_reduce_res
,
phi
::
vectorize
(
x
.
dims
()));
set_output
<
T
>
(
dx_tmp
,
dx
);
auto
reduce_dim
=
get_reduce_dims
(
x
.
dims
(),
y
.
dims
());
if
(
!
reduce_dim
.
size
())
{
by_pass
<
T
>
(
out_grad
,
dx
);
}
else
{
auto
dx_reduce_res
=
sum
<
T
>
(
out_grad
,
phi
::
vectorize
(
reduce_dim
),
x
.
dtype
(),
false
);
auto
dx_tmp
=
reshape
<
T
>
(
dx_reduce_res
,
phi
::
vectorize
(
x
.
dims
()));
set_output
<
T
>
(
dx_tmp
.
impl
(),
dx
);
}
}
else
{
by_pass
<
T
>
(
out_grad
,
dx
);
}
...
...
@@ -131,11 +149,12 @@ void sum_grad(const Tensor& x,
axis_
=
axis
.
GetData
();
}
auto
out_grad_
=
unsqueeze
<
T
>
(
out_grad
,
axis_
);
x_grad_tmp
=
expand
<
T
>
(
out_grad_
,
x_dim
);
x_grad_tmp
=
expand
<
T
>
(
out_grad_
,
IntArray
(
x_dim
)
);
}
else
{
x_grad_tmp
=
expand
<
T
>
(
out_grad
,
x_dim
);
x_grad_tmp
=
expand
<
T
>
(
out_grad
,
IntArray
(
x_dim
)
);
}
set_output
<
T
>
(
x_grad_tmp
,
x_grad
);
set_output
<
T
>
(
x_grad_tmp
.
impl
(),
x_grad
);
}
template
<
typename
T
>
...
...
@@ -152,15 +171,19 @@ void divide_grad(const Tensor& x,
auto
tmp1
=
divide
<
T
>
(
x
,
tmp0
);
auto
tmp2
=
scale
<
T
>
(
tmp1
,
-
1.0
,
0.0
,
true
);
auto
dy_res
=
multiply
<
T
>
(
tmp2
,
out_grad
);
if
(
phi
::
product
(
x
.
dims
())
>
phi
::
product
(
y
.
dims
()
))
{
if
(
x
.
dims
()
!=
y
.
dims
(
))
{
// Maybe need reduce here
phi
::
DDim
reduce_dim
=
get_reduce_dims
(
x
.
dims
(),
y
.
dims
());
auto
dy_reduce_res
=
sum
<
T
>
(
dy_res
,
phi
::
vectorize
(
reduce_dim
),
y
.
dtype
(),
false
);
auto
dy_tmp
=
reshape
<
T
>
(
dy_reduce_res
,
phi
::
vectorize
(
y
.
dims
()));
set_output
<
T
>
(
dy_tmp
,
dy
);
phi
::
DDim
reduce_dim
=
get_reduce_dims
(
y
.
dims
(),
x
.
dims
());
if
(
!
reduce_dim
.
size
())
{
set_output
<
T
>
(
dy_res
.
impl
(),
dy
);
}
else
{
auto
dy_reduce_res
=
sum
<
T
>
(
dy_res
,
phi
::
vectorize
(
reduce_dim
),
y
.
dtype
(),
false
);
auto
dy_tmp
=
reshape
<
T
>
(
dy_reduce_res
,
phi
::
vectorize
(
y
.
dims
()));
set_output
<
T
>
(
dy_tmp
.
impl
(),
dy
);
}
}
else
{
set_output
<
T
>
(
dy_res
,
dy
);
set_output
<
T
>
(
dy_res
.
impl
()
,
dy
);
}
}
// indicate we will compute dy
if
(
dx
)
{
...
...
@@ -168,15 +191,20 @@ void divide_grad(const Tensor& x,
auto
one_tensor
=
full
<
T
>
(
phi
::
vectorize
(
y
.
dims
()),
1.0
);
auto
tmp0
=
divide
<
T
>
(
one_tensor
,
y
);
auto
dx_res
=
multiply
<
T
>
(
tmp0
,
out_grad
);
if
(
phi
::
product
(
y
.
dims
())
>
phi
::
product
(
x
.
dims
()
))
{
if
(
y
.
dims
()
!=
x
.
dims
(
))
{
// Maybe need reduce here
auto
reduce_dim
=
get_reduce_dims
(
y
.
dims
(),
x
.
dims
());
auto
dx_reduce_res
=
sum
<
T
>
(
dx_res
,
phi
::
vectorize
(
reduce_dim
),
x
.
dtype
(),
false
);
auto
dx_tmp
=
reshape
<
T
>
(
dx_reduce_res
,
phi
::
vectorize
(
x
.
dims
()));
set_output
<
T
>
(
dx_tmp
,
dx
);
auto
reduce_dim
=
get_reduce_dims
(
x
.
dims
(),
y
.
dims
());
if
(
!
reduce_dim
.
size
())
{
set_output
<
T
>
(
dx_res
.
impl
(),
dx
);
}
else
{
auto
dx_reduce_res
=
sum
<
T
>
(
dx_res
,
phi
::
vectorize
(
reduce_dim
),
x
.
dtype
(),
false
);
auto
dx_tmp
=
reshape
<
T
>
(
dx_reduce_res
,
phi
::
vectorize
(
x
.
dims
()));
set_output
<
T
>
(
dx_tmp
.
impl
(),
dx
);
}
}
else
{
set_output
<
T
>
(
dx_res
,
dx
);
set_output
<
T
>
(
dx_res
.
impl
()
,
dx
);
}
}
// indicate we will compute dx
}
...
...
@@ -187,8 +215,89 @@ void sqrt_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
auto
div_x
=
full
<
T
>
(
phi
::
vectorize
(
out
.
dims
()),
0.5
);
auto
tmp
=
divide
<
T
>
(
div_x
,
out
);
auto
x_grad_tmp
=
multiply
<
T
>
(
out_grad
,
tmp
);
set_output
<
T
>
(
x_grad_tmp
,
x_grad
);
set_output
<
T
>
(
x_grad_tmp
.
impl
()
,
x_grad
);
}
}
template
<
typename
T
>
void
multiply_grad
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
out_grad
,
int
axis
,
Tensor
*
x_grad
,
Tensor
*
y_grad
)
{
if
(
x_grad
)
{
auto
x_grad_unreduce
=
multiply
<
T
>
(
out_grad
,
y
);
if
(
x
.
dims
()
!=
y
.
dims
())
{
auto
axes
=
get_reduce_dims
(
x
.
dims
(),
y
.
dims
());
if
(
!
axes
.
size
())
{
set_output
<
T
>
(
x_grad_unreduce
.
impl
(),
x_grad
);
}
else
{
auto
x_grad_reduced
=
sum
<
T
>
(
x_grad_unreduce
,
phi
::
vectorize
(
axes
),
x_grad_unreduce
.
dtype
(),
false
);
if
(
x_grad_reduced
.
dims
().
size
()
!=
x
.
dims
().
size
())
{
x_grad_reduced
=
reshape
<
T
>
(
x_grad_reduced
,
x
.
shape
());
}
set_output
<
T
>
(
x_grad_reduced
.
impl
(),
x_grad
);
}
}
else
{
set_output
<
T
>
(
x_grad_unreduce
.
impl
(),
x_grad
);
}
}
if
(
y_grad
)
{
auto
y_grad_unreduce
=
multiply
<
T
>
(
out_grad
,
x
);
if
(
y
.
dims
()
!=
x
.
dims
())
{
auto
axes
=
get_reduce_dims
(
y
.
dims
(),
x
.
dims
());
if
(
!
axes
.
size
())
{
set_output
<
T
>
(
y_grad_unreduce
.
impl
(),
y_grad
);
}
else
{
auto
y_grad_reduced
=
sum
<
T
>
(
y_grad_unreduce
,
phi
::
vectorize
(
axes
),
y_grad_unreduce
.
dtype
(),
false
);
if
(
y_grad_reduced
.
dims
().
size
()
!=
y
.
dims
().
size
())
{
y_grad_reduced
=
reshape
<
T
>
(
y_grad_reduced
,
y
.
shape
());
}
set_output
<
T
>
(
y_grad_reduced
.
impl
(),
y_grad
);
}
}
else
{
set_output
<
T
>
(
y_grad_unreduce
.
impl
(),
y_grad
);
}
}
}
template
<
typename
T
>
void
expand_grad
(
const
Tensor
&
x
,
const
Tensor
&
out_grad
,
const
IntArray
&
shape
,
Tensor
*
x_grad
)
{
if
(
x_grad
)
{
auto
out_dims
=
phi
::
make_ddim
(
shape
.
GetData
());
if
(
out_dims
!=
x
.
dims
())
{
auto
axes
=
get_reduce_dims
(
x
.
dims
(),
out_dims
);
if
(
!
axes
.
size
())
{
by_pass
<
T
>
(
out_grad
,
x_grad
);
}
else
{
auto
reduced
=
sum
<
T
>
(
out_grad
,
phi
::
vectorize
(
axes
),
x
.
dtype
(),
false
);
if
(
reduced
.
dims
().
size
()
!=
x
.
dims
().
size
())
{
reduced
=
reshape
<
T
>
(
reduced
,
x
.
shape
());
}
set_output
<
T
>
(
reduced
.
impl
(),
x_grad
);
}
}
else
{
by_pass
<
T
>
(
out_grad
,
x_grad
);
}
}
}
template
<
typename
T
>
void
exp_grad
(
const
Tensor
&
out
,
const
Tensor
&
out_grad
,
Tensor
*
x_grad
)
{
if
(
x_grad
)
{
set_output
<
T
>
(
multiply
<
T
>
(
out_grad
,
out
).
impl
(),
x_grad
);
}
}
}
// namespace prim
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录