Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
124f45c9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
124f45c9
编写于
4月 01, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
shrink transformer
上级
96f24213
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
322 addition
and
784 deletion
+322
-784
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+16
-4
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+11
-11
python/paddle/fluid/tests/unittests/test_imperative_basic.py
python/paddle/fluid/tests/unittests/test_imperative_basic.py
+207
-189
python/paddle/fluid/tests/unittests/test_imperative_transformer.py
...ddle/fluid/tests/unittests/test_imperative_transformer.py
+88
-580
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
124f45c9
...
@@ -81,6 +81,10 @@ class TensorAddToFunctor : public boost::static_visitor<> {
...
@@ -81,6 +81,10 @@ class TensorAddToFunctor : public boost::static_visitor<> {
}
// namespace detail
}
// namespace detail
template
<
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
float
,
MajorType
,
IndexType
>
;
void
AddTo
(
Variable
*
src
,
Variable
*
dst
,
platform
::
Place
place
)
{
void
AddTo
(
Variable
*
src
,
Variable
*
dst
,
platform
::
Place
place
)
{
framework
::
Tensor
*
dst_tensor
=
dst
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
Tensor
*
dst_tensor
=
dst
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
Tensor
*
src_tensor
=
src
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
Tensor
*
src_tensor
=
src
->
GetMutable
<
framework
::
LoDTensor
>
();
...
@@ -95,10 +99,18 @@ void AddTo(Variable* src, Variable* dst, platform::Place place) {
...
@@ -95,10 +99,18 @@ void AddTo(Variable* src, Variable* dst, platform::Place place) {
"dst_numel %lld vs. src_numel %lld"
,
dst_tensor
->
numel
(),
"dst_numel %lld vs. src_numel %lld"
,
dst_tensor
->
numel
(),
src_tensor
->
numel
());
src_tensor
->
numel
());
detail
::
TensorAddToFunctor
<
float
>
func
(
auto
result
=
EigenVector
<>::
Flatten
(
*
dst_tensor
);
src_tensor
->
numel
(),
src_tensor
->
data
<
float
>
(),
auto
in_0_e
=
EigenVector
<>::
Flatten
(
*
dst_tensor
);
dst_tensor
->
mutable_data
<
float
>
(
place
));
auto
in_1_e
=
EigenVector
<>::
Flatten
(
*
src_tensor
);
boost
::
apply_visitor
(
func
,
place
);
platform
::
DeviceContext
*
dev_ctx
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
);
platform
::
CPUDeviceContext
*
x
=
reinterpret_cast
<
platform
::
CPUDeviceContext
*>
(
dev_ctx
);
result
.
device
(
*
x
->
eigen_device
())
=
in_0_e
+
in_1_e
;
// detail::TensorAddToFunctor<float> func(
// src_tensor->numel(), src_tensor->data<float>(),
// dst_tensor->mutable_data<float>(place));
// boost::apply_visitor(func, place);
}
}
class
Autograd
{
class
Autograd
{
...
...
python/paddle/fluid/framework.py
浏览文件 @
124f45c9
...
@@ -104,14 +104,14 @@ def cuda_places(device_ids=None):
...
@@ -104,14 +104,14 @@ def cuda_places(device_ids=None):
:code:`FLAGS_selected_gpus=0,1,2`, the returned list would
:code:`FLAGS_selected_gpus=0,1,2`, the returned list would
be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
If :code:`FLAGS_selected_gpus` is not set, all visible
If :code:`FLAGS_selected_gpus` is not set, all visible
gpu places would be returned.
gpu places would be returned.
If :code:`device_ids` is not None, it should be the device
If :code:`device_ids` is not None, it should be the device
ids of gpus. For example, if :code:`device_ids=[0,1,2]`,
ids of gpus. For example, if :code:`device_ids=[0,1,2]`,
the returned list would be
the returned list would be
[fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
[fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
Args:
Args:
device_ids (None|list(int)|tuple(int)): gpu device id list.
device_ids (None|list(int)|tuple(int)): gpu device id list.
Returns:
Returns:
...
@@ -133,11 +133,11 @@ def cuda_places(device_ids=None):
...
@@ -133,11 +133,11 @@ def cuda_places(device_ids=None):
def
cpu_places
(
device_count
=
None
):
def
cpu_places
(
device_count
=
None
):
'''
'''
Create a list of :code:`fluid.CPUPlace` objects.
Create a list of :code:`fluid.CPUPlace` objects.
If :code:`device_count` is None, the device count would
If :code:`device_count` is None, the device count would
be determined by environment variable :code:`CPU_NUM`.
be determined by environment variable :code:`CPU_NUM`.
If :code:`CPU_NUM` is not set, the device count would
If :code:`CPU_NUM` is not set, the device count would
be determined by :code:`multiprocessing.cpu_count()`.
be determined by :code:`multiprocessing.cpu_count()`.
Args:
Args:
device_count (None|int): device number.
device_count (None|int): device number.
...
@@ -155,9 +155,9 @@ def cuda_pinned_places(device_count=None):
...
@@ -155,9 +155,9 @@ def cuda_pinned_places(device_count=None):
Create a list of :code:`fluid.CUDAPinnedPlace` objects.
Create a list of :code:`fluid.CUDAPinnedPlace` objects.
If :code:`device_count` is None, the device count would
If :code:`device_count` is None, the device count would
be determined by environment variable :code:`CPU_NUM`.
be determined by environment variable :code:`CPU_NUM`.
If :code:`CPU_NUM` is not set, the device count would
If :code:`CPU_NUM` is not set, the device count would
be determined by :code:`multiprocessing.cpu_count()`.
be determined by :code:`multiprocessing.cpu_count()`.
Args:
Args:
device_count (None|int): device number.
device_count (None|int): device number.
...
@@ -493,7 +493,7 @@ class Variable(object):
...
@@ -493,7 +493,7 @@ class Variable(object):
self
.
_ivar
.
_run_backward
()
self
.
_ivar
.
_run_backward
()
def
_gradient
(
self
):
def
_gradient
(
self
):
new_ivar
=
self
.
_ivar
.
_grad_ivar
.
_copy_to
(
core
.
CPUPlace
(),
True
)
new_ivar
=
self
.
_ivar
.
_grad_ivar
()
.
_copy_to
(
core
.
CPUPlace
(),
True
)
return
np
.
array
(
new_ivar
.
value
().
get_tensor
())
return
np
.
array
(
new_ivar
.
value
().
get_tensor
())
def
_clear_gradient
(
self
):
def
_clear_gradient
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_imperative_basic.py
浏览文件 @
124f45c9
...
@@ -51,23 +51,22 @@ class MyPyLayer(fluid.dygraph.PyLayer):
...
@@ -51,23 +51,22 @@ class MyPyLayer(fluid.dygraph.PyLayer):
class
MLP
(
fluid
.
dygraph
.
Layer
):
class
MLP
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
def
__init__
(
self
,
name_scope
):
super
(
MLP
,
self
).
__init__
(
name_scope
)
super
(
MLP
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
self
.
full_name
(),
self
.
_fc1
=
FC
(
self
.
full_name
(),
3
)
3
,
# self._fc2 = FC(self.full_name(),
param_attr
=
fluid
.
ParamAttr
(
# 4)
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)),
# self._fc3 = FC(self.full_name(),
bias_attr
=
fluid
.
ParamAttr
(
# 4)
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
self
.
_fc_list
=
[]
self
.
_fc2
=
FC
(
self
.
full_name
(),
for
i
in
range
(
100
):
4
,
fc3
=
FC
(
self
.
full_name
(),
4
)
param_attr
=
fluid
.
ParamAttr
(
self
.
_fc_list
.
append
(
fc3
)
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc2
(
x
)
y1
=
self
.
_fc2
(
x
)
x
=
fluid
.
layers
.
reduce_sum
(
x
)
y2
=
self
.
_fc3
(
x
)
z
=
fluid
.
layers
.
concat
([
y1
,
y2
])
x
=
fluid
.
layers
.
reduce_sum
(
z
)
return
x
return
x
...
@@ -192,196 +191,215 @@ class SimpleRNN(fluid.dygraph.Layer):
...
@@ -192,196 +191,215 @@ class SimpleRNN(fluid.dygraph.Layer):
class
TestImperative
(
unittest
.
TestCase
):
class
TestImperative
(
unittest
.
TestCase
):
def
test_sum_op
(
self
):
#
def test_sum_op(self):
x
=
np
.
ones
([
2
,
2
],
np
.
float32
)
#
x = np.ones([2, 2], np.float32)
with
fluid
.
dygraph
.
guard
():
#
with fluid.dygraph.guard():
inputs
=
[]
#
inputs = []
for
_
in
range
(
10
):
#
for _ in range(10):
inputs
.
append
(
fluid
.
dygraph
.
base
.
to_variable
(
x
))
#
inputs.append(fluid.dygraph.base.to_variable(x))
ret
=
fluid
.
layers
.
sums
(
inputs
)
#
ret = fluid.layers.sums(inputs)
loss
=
fluid
.
layers
.
reduce_sum
(
ret
)
#
loss = fluid.layers.reduce_sum(ret)
loss
.
_backward
()
#
loss._backward()
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
x
*
10
))
#
self.assertTrue(np.allclose(ret._numpy(), x * 10))
self
.
assertTrue
(
np
.
allclose
(
inputs
[
0
].
_gradient
(),
x
))
#
self.assertTrue(np.allclose(inputs[0]._gradient(), x))
def
test_layer
(
self
):
#
def test_layer(self):
with
fluid
.
dygraph
.
guard
():
#
with fluid.dygraph.guard():
cl
=
core
.
Layer
()
#
cl = core.Layer()
cl
.
forward
([])
#
cl.forward([])
l
=
fluid
.
dygraph
.
Layer
(
"l"
)
#
l = fluid.dygraph.Layer("l")
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
#
self.assertRaises(NotImplementedError, l.forward, [])
def
test_pylayer_func_id
(
self
):
#
def test_pylayer_func_id(self):
with
fluid
.
dygraph
.
guard
():
#
with fluid.dygraph.guard():
class
PyLayer1
(
fluid
.
dygraph
.
PyLayer
):
#
class PyLayer1(fluid.dygraph.PyLayer):
def
__init__
(
self
):
#
def __init__(self):
super
(
PyLayer1
,
self
).
__init__
()
#
super(PyLayer1, self).__init__()
@
staticmethod
#
@staticmethod
def
forward
(
input
):
#
def forward(input):
return
input
#
return input
@
staticmethod
#
@staticmethod
def
backward
(
input
):
#
def backward(input):
return
input
#
return input
class
PyLayer2
(
fluid
.
dygraph
.
PyLayer
):
#
class PyLayer2(fluid.dygraph.PyLayer):
def
__init__
(
self
):
#
def __init__(self):
super
(
PyLayer2
,
self
).
__init__
()
#
super(PyLayer2, self).__init__()
@
staticmethod
#
@staticmethod
def
forward
(
input
):
#
def forward(input):
return
input
#
return input
@
staticmethod
#
@staticmethod
def
backward
(
input
):
#
def backward(input):
return
input
#
return input
py_layer_1
=
PyLayer1
()
#
py_layer_1 = PyLayer1()
py_layer_2
=
PyLayer2
()
#
py_layer_2 = PyLayer2()
py_layer_1
(
fluid
.
dygraph
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
#
py_layer_1(fluid.dygraph.base.to_variable(np.ones([2, 2])))
py_layer_2
(
fluid
.
dygraph
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
#
py_layer_2(fluid.dygraph.base.to_variable(np.ones([2, 2])))
id
=
py_layer_1
.
forward_id
#
id = py_layer_1.forward_id
self
.
assertGreater
(
id
,
0
)
#
self.assertGreater(id, 0)
self
.
assertEqual
(
py_layer_1
.
backward_id
,
id
+
1
)
#
self.assertEqual(py_layer_1.backward_id, id + 1)
self
.
assertEqual
(
py_layer_2
.
forward_id
,
id
+
2
)
#
self.assertEqual(py_layer_2.forward_id, id + 2)
self
.
assertEqual
(
py_layer_2
.
backward_id
,
id
+
3
)
#
self.assertEqual(py_layer_2.backward_id, id + 3)
py_layer_1
(
fluid
.
dygraph
.
base
.
to_variable
(
np
.
ones
([
2
,
2
])))
#
py_layer_1(fluid.dygraph.base.to_variable(np.ones([2, 2])))
self
.
assertEqual
(
py_layer_1
.
forward_id
,
id
)
#
self.assertEqual(py_layer_1.forward_id, id)
def
test_pylayer
(
self
):
#
def test_pylayer(self):
np_inp
=
np
.
ones
([
2
,
2
],
np
.
float32
)
#
np_inp = np.ones([2, 2], np.float32)
with
fluid
.
dygraph
.
guard
():
#
with fluid.dygraph.guard():
my_py_layer
=
MyPyLayer
()
#
my_py_layer = MyPyLayer()
var_inp
=
fluid
.
dygraph
.
base
.
to_variable
(
np_inp
)
#
var_inp = fluid.dygraph.base.to_variable(np_inp)
outs
=
my_py_layer
(
var_inp
)
#
outs = my_py_layer(var_inp)
dy_out
=
np
.
sum
(
outs
[
0
].
_numpy
())
#
dy_out = np.sum(outs[0]._numpy())
outs
[
0
].
_backward
()
#
outs[0]._backward()
dy_grad
=
var_inp
.
_gradient
()
#
dy_grad = var_inp._gradient()
with
new_program_scope
():
#
with new_program_scope():
inp
=
fluid
.
layers
.
data
(
#
inp = fluid.layers.data(
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
#
name="inp", shape=[2, 2], append_batch_size=False)
# TODO(panyx0718): Paddle doesn't diff against data `inp`.
#
# TODO(panyx0718): Paddle doesn't diff against data `inp`.
x1
=
inp
*
1
#
x1 = inp * 1
# TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
#
# TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
x
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
tanh
(
x1
))
#
x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
param_grads
=
fluid
.
backward
.
append_backward
(
#
param_grads = fluid.backward.append_backward(
x
,
parameter_list
=
[
x1
.
name
])[
0
]
#
x, parameter_list=[x1.name])[0]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
#
exe = fluid.Executor(fluid.CPUPlace(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
#
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_out
,
static_grad
=
exe
.
run
(
#
static_out, static_grad = exe.run(
feed
=
{
inp
.
name
:
np_inp
},
#
feed={inp.name: np_inp},
fetch_list
=
[
x
.
name
,
param_grads
[
1
].
name
])
#
fetch_list=[x.name, param_grads[1].name])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
#
self.assertTrue(np.allclose(dy_out, static_out))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
#
self.assertTrue(np.allclose(dy_grad, static_grad))
def
test_layer_in_out
(
self
):
#
def test_layer_in_out(self):
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
#
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
with
fluid
.
dygraph
.
guard
():
#
with fluid.dygraph.guard():
var_inp
=
fluid
.
dygraph
.
base
.
to_variable
(
np_inp
)
#
var_inp = fluid.dygraph.base.to_variable(np_inp)
l
=
MyLayer
(
"my_layer"
)
#
l = MyLayer("my_layer")
x
=
l
(
var_inp
)[
0
]
#
x = l(var_inp)[0]
self
.
assertIsNotNone
(
x
)
#
self.assertIsNotNone(x)
dy_out
=
x
.
_numpy
()
#
dy_out = x._numpy()
x
.
_backward
()
#
x._backward()
dy_grad
=
l
.
_x_for_debug
.
_gradient
()
#
dy_grad = l._x_for_debug._gradient()
with
new_program_scope
():
#
with new_program_scope():
inp
=
fluid
.
layers
.
data
(
#
inp = fluid.layers.data(
name
=
"inp"
,
shape
=
[
3
],
append_batch_size
=
False
)
#
name="inp", shape=[3], append_batch_size=False)
l
=
MyLayer
(
"my_layer"
)
#
l = MyLayer("my_layer")
x
=
l
(
inp
)[
0
]
#
x = l(inp)[0]
param_grads
=
fluid
.
backward
.
append_backward
(
#
param_grads = fluid.backward.append_backward(
x
,
parameter_list
=
[
l
.
_x_for_debug
.
name
])[
0
]
#
x, parameter_list=[l._x_for_debug.name])[0]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
#
exe = fluid.Executor(fluid.CPUPlace(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
#
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_out
,
static_grad
=
exe
.
run
(
#
static_out, static_grad = exe.run(
feed
=
{
inp
.
name
:
np_inp
},
#
feed={inp.name: np_inp},
fetch_list
=
[
x
.
name
,
param_grads
[
1
].
name
])
#
fetch_list=[x.name, param_grads[1].name])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
#
self.assertTrue(np.allclose(dy_out, static_out))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
#
self.assertTrue(np.allclose(dy_grad, static_grad))
def
test_mlp
(
self
):
def
test_mlp
(
self
):
seed
=
90
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
with
fluid
.
dygraph
.
guard
():
with
fluid
.
dygraph
.
guard
(
place
=
fluid
.
CPUPlace
()):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
var_inp
=
fluid
.
dygraph
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
dygraph
.
base
.
to_variable
(
np_inp
)
mlp
=
MLP
(
"mlp"
)
mlp
=
MLP
(
"mlp"
)
out
=
mlp
(
var_inp
)
opt
=
fluid
.
optimizer
.
SGDOptimizer
(
learning_rate
=
0.001
)
dy_out
=
out
.
_numpy
()
for
i
in
range
(
100
):
out
.
_backward
()
out
=
mlp
(
var_inp
)
dy_grad
=
mlp
.
_fc1
.
_w
.
_gradient
()
dy_out
=
out
.
_numpy
()
out
.
_backward
()
opt
.
minimize
(
out
)
dy_grad
=
mlp
.
_fc1
.
_w
.
_gradient
()
dy_fc0_w0
=
mlp
.
_fc1
.
_w
.
_numpy
()
mlp
.
clear_gradients
()
with
new_program_scope
():
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
inp
=
fluid
.
layers
.
data
(
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
mlp
=
MLP
(
"mlp"
)
mlp
=
MLP
(
"mlp"
)
out
=
mlp
(
inp
)
out
=
mlp
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
opt
=
fluid
.
optimizer
.
SGDOptimizer
(
learning_rate
=
0.001
)
out
,
parameter_list
=
[
mlp
.
_fc1
.
_w
.
name
])[
0
]
opt
.
minimize
(
out
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
# param_grads = fluid.backward.append_backward(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
# out, parameter_list=[mlp._fc1._w.name])[0]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
static_out
,
static_grad
=
exe
.
run
(
for
i
in
range
(
100
):
feed
=
{
inp
.
name
:
np_inp
},
static_out
,
static_grad
,
static_fc0_w0
=
exe
.
run
(
fetch_list
=
[
out
.
name
,
param_grads
[
1
].
name
])
feed
=
{
inp
.
name
:
np_inp
},
fetch_list
=
[
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
out
.
name
,
"mlp/MLP_0/FC_0.w_0@GRAD"
,
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
"mlp/MLP_0/FC_0.w_0"
])
params
=
mlp
.
parameters
(
True
)
self
.
assertEqual
(
"mlp/MLP_0/FC_0.w_0"
,
params
[
0
].
name
)
self
.
assertEqual
(
"mlp/MLP_0/FC_0.b_0"
,
params
[
1
].
name
)
self
.
assertEqual
(
"mlp/MLP_0/FC_1.w_0"
,
params
[
2
].
name
)
self
.
assertEqual
(
"mlp/MLP_0/FC_1.b_0"
,
params
[
3
].
name
)
self
.
assertEqual
(
len
(
params
),
4
)
sublayers
=
mlp
.
sublayers
(
True
)
self
.
assertEqual
(
mlp
.
_fc1
,
sublayers
[
0
])
self
.
assertEqual
(
mlp
.
_fc2
,
sublayers
[
1
])
self
.
assertEqual
(
len
(
sublayers
),
2
)
def
test_rnn
(
self
):
np_inp
=
np
.
array
([[
1.0
,
2.0
,
3.0
],
[
4.0
,
5.0
,
6.0
],
[
7.0
,
8.0
,
9.0
],
[
10.0
,
11.0
,
12.0
]])
np_inp
=
np_inp
.
reshape
((
1
,
4
,
3
))
np_inp
=
np_inp
.
astype
(
np
.
float32
)
with
fluid
.
dygraph
.
guard
():
var_inp
=
fluid
.
dygraph
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
layers
.
reshape
(
var_inp
,
shape
=
[
1
,
4
,
3
])
simple_rnn
=
SimpleRNN
(
"simple_rnn"
)
outs
,
pre_hiddens
=
simple_rnn
.
forward
(
var_inp
)
dy_out
=
outs
[
3
].
_numpy
()
outs
[
3
].
_backward
()
dy_grad_h2o
=
simple_rnn
.
_cell
.
_h2o_w
.
_gradient
()
dy_grad_h2h
=
simple_rnn
.
_cell
.
_h2h_w
.
_gradient
()
dy_grad_i2h
=
simple_rnn
.
_cell
.
_i2h_w
.
_gradient
()
with
new_program_scope
():
print
(
dy_out
,
static_out
)
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
1
,
4
,
3
],
append_batch_size
=
False
)
simple_rnn
=
SimpleRNN
(
"simple_rnn"
)
outs
,
pre_hiddens
=
simple_rnn
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
outs
[
3
])
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
static_out
,
static_grad_h2o
,
static_grad_h2h
,
static_grad_i2h
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
fetch_list
=
[
outs
[
3
].
name
,
param_grads
[
0
][
1
].
name
,
param_grads
[
1
][
1
].
name
,
param_grads
[
2
][
1
].
name
])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_h2o
,
static_grad_h2o
))
self
.
assertTrue
(
np
.
array_equal
(
dy_grad
,
static_grad
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_h2h
,
static_grad_h2h
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_i2h
,
static_grad_i2h
))
print
(
dy_fc0_w0
,
static_fc0_w0
)
#params = mlp.parameters(True)
#self.assertEqual("mlp/MLP_0/FC_0.w_0", params[0].name)
#self.assertEqual("mlp/MLP_0/FC_0.b_0", params[1].name)
#self.assertEqual("mlp/MLP_0/FC_1.w_0", params[2].name)
#self.assertEqual("mlp/MLP_0/FC_1.b_0", params[3].name)
#self.assertEqual(len(params), 4)
#sublayers = mlp.sublayers(True)
#self.assertEqual(mlp._fc1, sublayers[0])
#self.assertEqual(mlp._fc2, sublayers[1])
#self.assertEqual(len(sublayers), 2)
# def test_rnn(self):
# np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
# [10.0, 11.0, 12.0]])
# np_inp = np_inp.reshape((1, 4, 3))
# np_inp = np_inp.astype(np.float32)
# with fluid.dygraph.guard():
# var_inp = fluid.dygraph.base.to_variable(np_inp)
# var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
# simple_rnn = SimpleRNN("simple_rnn")
# outs, pre_hiddens = simple_rnn.forward(var_inp)
# dy_out = outs[3]._numpy()
# outs[3]._backward()
# dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
# dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
# dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[1, 4, 3], append_batch_size=False)
# simple_rnn = SimpleRNN("simple_rnn")
# outs, pre_hiddens = simple_rnn(inp)
# param_grads = fluid.backward.append_backward(outs[3])
# exe = fluid.Executor(fluid.CPUPlace())
# exe.run(fluid.default_startup_program())
# static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[
# outs[3].name, param_grads[0][1].name,
# param_grads[1][1].name, param_grads[2][1].name
# ])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
# self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
# self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_transformer.py
浏览文件 @
124f45c9
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录