Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
118d950e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
118d950e
编写于
2月 14, 2018
作者:
H
helinwang
提交者:
GitHub
2月 14, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8425 from tonyyang-svail/tonyyang-svail-patch-2
design doc for parallel_do.md
上级
9890bb59
8b24bd4f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
162 addition
and
0 deletion
+162
-0
doc/design/parallel_do.md
doc/design/parallel_do.md
+162
-0
未找到文件。
doc/design/parallel_do.md
0 → 100644
浏览文件 @
118d950e
# Design Doc: Parallel_Do in PaddlePaddle
In PaddlePaddle, we use parallel_do primitive to represent multithread data parallel processing.
## Design overview
The definition of a parallel_do op looks like the following
```
c++
AddInput
(
kInputs
,
"Inputs needed to be split onto different devices"
).
AsDuplicable
();
AddInput
(
kParameters
,
"Parameters are duplicated over different devices"
)
.
AsDuplicable
();
AddInput
(
kPlaces
,
"Devices used for parallel processing"
);
AddOutput
(
kOutputs
,
"Outputs needed to be merged from different devices"
).
AsDuplicable
();
AddOutput
(
kParallelScopes
,
"Scopes for all local variables in forward pass. One scope for each device"
);
AddAttr
<
framework
::
BlockDesc
*>
(
kParallelBlock
,
"List of operaters to be executed in parallel"
);
```
A vanilla implementation of parallel_do can be shown as the following (
`|`
means single thread and
`||||`
means multiple threads)
```
In the forward pass
| Split input onto different devices
| Copy parameter to onto different devices
|||| Compute forward pass in parallel
| Merge output from different devices
In the backward pass
| Split output@grad onto different devices
|||| Compute backward pass in parallel
| accumulate param@grad from different devices to the first device
| Merge input@grad from different devices
| Copy param@grad to the place of parallel_do_op
```
This implementation allows to write mixed device program like this
```
python
# get embedding feature on CPU
feature
=
some_cpu_only_op
(
data
)
gpu_places
=
get_place
(
use_gpu
=
True
)
# parallel processing on multiple GPUs
pd
=
ParallelDo
(
gpu_places
)
with
pd
.
do
():
read_input
(
feature
)
prediction
=
my_net
(
feature
)
write_output
(
prediction
)
prediction
=
pd
()
loss
=
cross_entropy
(
prediction
,
label
)
```
And the programDesc are like the following
```
# start_program will be run by executor(CPUPlace), all w1, w2 will be allocated on CPU
start_program
{
vars: w1, w2
ops: init(w1), init(w2)
}
main_program
{
block0 {
vars: data, places, w1, w2
ops: data, get_place, parallel_do(block1),
parallel_do_grad(block2),
sgd(w2, w2_grad),
sgd(w1, w1_grad)
}
block1 {
parent_block: 0
vars: data, h1, h2, loss
ops: fc, fc, softmax
}
block2 {
parent_block: 1
vars: data_grad, h1_grad, h2_grad, loss_gard, w1_grad, w2_grad
ops: softmax_grad,
fc_grad
fc_grad
}
}
```
## Proformance Imporvement
There are serial places we can make this parallel_do faster.
### forward: split input onto different devices
If the input of the parallel_do is independent from any prior opeartors, we can avoid this step by
prefetching the input onto different devices in a seperate background thread. And the python code
looks like this.
```
python
pd
=
ParallelDo
(
gpu_places
)
with
pd
.
do
():
feature
=
get_data_from_prefetch_queue
(
gpu_places
)
prediction
=
my_net
(
feature
)
write_output
(
activation
)
```
### forward: Copy parameter to onto different devices
We can avoid this step by making each device have a copy of the parameter. This requires:
1.
`fluid.default_start_up_program()`
to be run on all devices
1.
In the backward, allreduce param@grad at different devices, this requires
1.
`backward.py`
add
`allreduce`
operators at parallel_do_grad
1.
`allreduce`
operators need to be called in async mode to achieve maximum throughput
1.
apply gradients related op(i.e. cliping, normalization, decay, sgd) on different devices in parallel
By doing so, we also avoided "backward: accumulate param@grad from different devices to the first device".
And the ProgramDesc looks like the following
```
# w1, w2 will be allocated on all GPUs
start_program
{
block0 {
parallel_do(block1)
}
block1 {
parent_block: 0
vars: w1, w2
ops: init(w1), init(w2)
}
}
main_program
{
block0 {
vars: data, places, w1, w2
ops: data, get_place, parallel_do(block1),
parallel_do_grad(block2), # append_backward
parallel_do(block3) # append_optimization
}
block1 {
parent_block: 0
vars: data, h1, h2, loss
ops: fc, fc, softmax
}
block2 {
parent_block: 1
vars: data_grad, h1_grad, h2_grad, loss_gard, w1_grad, w2_grad
ops: softmax_grad,
fc_grad, allreduce(places, scopes, w1_grad),
fc_grad, allreduce(places, scopes, w2_grad)
}
block3 {
parent_block: 0
vars: lr
ops: sgd(w2, w2_grad),
sgd(w1, w1_grad)
}
}
```
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录