Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1149a378
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1149a378
编写于
8月 01, 2022
作者:
zhouweiwei2014
提交者:
GitHub
8月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Sparse] optimize sparse attention (#44743)
上级
c28bb981
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
54 addition
and
101 deletion
+54
-101
paddle/fluid/platform/dynload/cusparse.h
paddle/fluid/platform/dynload/cusparse.h
+1
-0
paddle/phi/backends/dynload/cusparse.h
paddle/phi/backends/dynload/cusparse.h
+1
-0
paddle/phi/kernels/funcs/sparse/sparse_blas_impl.cu.h
paddle/phi/kernels/funcs/sparse/sparse_blas_impl.cu.h
+11
-2
paddle/phi/kernels/sparse/gpu/fused_attention_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/fused_attention_grad_kernel.cu
+8
-15
paddle/phi/kernels/sparse/gpu/fused_attention_kernel.cu
paddle/phi/kernels/sparse/gpu/fused_attention_kernel.cu
+32
-83
python/paddle/fluid/tests/unittests/test_sparse_fused_attention_op.py
...e/fluid/tests/unittests/test_sparse_fused_attention_op.py
+1
-1
未找到文件。
paddle/fluid/platform/dynload/cusparse.h
浏览文件 @
1149a378
...
...
@@ -56,6 +56,7 @@ CUSPARSE_ROUTINE_EACH(PLATFORM_DECLARE_DYNAMIC_LOAD_CUSPARSE_WRAP)
#if CUDA_VERSION >= 11030
#define CUSPARSE_ROUTINE_EACH_R2(__macro) \
__macro(cusparseSpMM_preprocess); \
__macro(cusparseSDDMM_bufferSize); \
__macro(cusparseSDDMM_preprocess); \
__macro(cusparseSDDMM);
...
...
paddle/phi/backends/dynload/cusparse.h
浏览文件 @
1149a378
...
...
@@ -68,6 +68,7 @@ CUSPARSE_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CUSPARSE_WRAP)
#if CUDA_VERSION >= 11030
#define CUSPARSE_ROUTINE_EACH_R2(__macro) \
__macro(cusparseSpMM_preprocess); \
__macro(cusparseSDDMM_bufferSize); \
__macro(cusparseSDDMM_preprocess); \
__macro(cusparseSDDMM);
...
...
paddle/phi/kernels/funcs/sparse/sparse_blas_impl.cu.h
浏览文件 @
1149a378
...
...
@@ -48,6 +48,15 @@ inline cusparseOperation_t GetTransposeOperation(const bool trans) {
}
}
inline
cusparseSpMMAlg_t
GetSpMMAlgorithm
(
const
SparseCsrTensor
&
x
)
{
// TODO(zhouwei): will change to 'CUSPARSE_SPMM_CSR_ALG2' when support batch
return
CUSPARSE_SPMM_CSR_ALG2
;
}
inline
cusparseSpMMAlg_t
GetSpMMAlgorithm
(
const
SparseCooTensor
&
x
)
{
return
CUSPARSE_SPMM_ALG_DEFAULT
;
}
/************* SPARSE MATRIX DESCRIPTOR (COO/CSR) ************/
template
<
typename
T
,
typename
IntT
>
...
...
@@ -324,7 +333,7 @@ void SparseBlas<phi::GPUContext>::SPMM(bool transa,
&
beta
,
out_descriptor
.
descriptor
(),
gpu_type
,
CUSPARSE_SPMM_ALG_DEFAULT
,
GetSpMMAlgorithm
(
mat_a
)
,
&
buffer_size
);
});
...
...
@@ -341,7 +350,7 @@ void SparseBlas<phi::GPUContext>::SPMM(bool transa,
&
beta
,
out_descriptor
.
descriptor
(),
gpu_type
,
CUSPARSE_SPMM_ALG_DEFAULT
,
GetSpMMAlgorithm
(
mat_a
)
,
tmp_buffer_ptr
);
});
}
...
...
paddle/phi/kernels/sparse/gpu/fused_attention_grad_kernel.cu
浏览文件 @
1149a378
...
...
@@ -43,21 +43,14 @@ __global__ void AttnSoftmaxGpuGradKernel(const int64_t* out_crows,
int
row_nnz
=
static_cast
<
int
>
(
out_crows
[
crow_idx
+
1
]
-
out_crows
[
crow_idx
]);
if
(
row_nnz
==
0
)
return
;
int
kIteration
=
(
row_nnz
+
WARP_SIZE
-
1
)
/
WARP_SIZE
;
T
mul_result
=
0
;
for
(
int
i
=
0
;
i
<
kIteration
;
++
i
)
{
int
idx
=
threadIdx
.
x
+
i
*
WARP_SIZE
;
if
(
idx
>=
row_nnz
)
break
;
mul_result
+=
out_values
[
row_first
+
idx
]
*
dout_values
[
row_first
+
idx
];
T
mul
=
0
;
for
(
int
idx
=
threadIdx
.
x
;
idx
<
row_nnz
;
idx
+=
blockDim
.
x
)
{
mul
+=
out_values
[
row_first
+
idx
]
*
dout_values
[
row_first
+
idx
];
}
T
sum
=
phi
::
funcs
::
warpReduceSum
<
T
>
(
mul_result
,
0xFFFFFFFF
);
for
(
int
i
=
0
;
i
<
kIteration
;
++
i
)
{
int
idx
=
threadIdx
.
x
+
i
*
WARP_SIZE
;
if
(
idx
>=
row_nnz
)
break
;
T
mul_sum
=
phi
::
funcs
::
warpReduceSum
<
T
>
(
mul
,
0xFFFFFFFF
);
dx_values
[
row_first
+
idx
]
=
(
dout_values
[
row_first
+
idx
]
-
sum
)
*
for
(
int
idx
=
threadIdx
.
x
;
idx
<
row_nnz
;
idx
+=
blockDim
.
x
)
{
dx_values
[
row_first
+
idx
]
=
(
dout_values
[
row_first
+
idx
]
-
mul_sum
)
*
out_values
[
row_first
+
idx
]
/
scale
;
}
}
...
...
@@ -96,8 +89,8 @@ void FusedAttentionCsrGradKernel(const Context& dev_ctx,
int
N
=
q_dim
[
q_rank
-
1
];
int
batch_nnz
=
softmax
.
nnz
()
/
batch_num
;
dim3
grid
((
total_row_num
+
3
)
/
4
);
dim3
block
(
WARP_SIZE
,
4
);
dim3
grid
((
total_row_num
+
7
)
/
8
);
dim3
block
(
WARP_SIZE
,
8
);
AttnSoftmaxGpuGradKernel
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
softmax
.
non_zero_crows
().
data
<
int64_t
>
(),
...
...
paddle/phi/kernels/sparse/gpu/fused_attention_kernel.cu
浏览文件 @
1149a378
...
...
@@ -26,30 +26,7 @@ limitations under the License. */
namespace
phi
{
namespace
sparse
{
#define PRIVATE_CASE_VISIT_ATTN_SOFTMAX(NAME, size, HINT, ...) \
case size: { \
constexpr int HINT = size; \
__VA_ARGS__(); \
break; \
}
#define VISIT_ATTN_SFOTMAX(SIZE, NAME, ...) \
[&] { \
const auto& __size__ = SIZE; \
switch (__size__) { \
PRIVATE_CASE_VISIT_ATTN_SOFTMAX(NAME, 1, KBufferSize, __VA_ARGS__) \
PRIVATE_CASE_VISIT_ATTN_SOFTMAX(NAME, 2, KBufferSize, __VA_ARGS__) \
PRIVATE_CASE_VISIT_ATTN_SOFTMAX(NAME, 3, KBufferSize, __VA_ARGS__) \
PRIVATE_CASE_VISIT_ATTN_SOFTMAX(NAME, 4, KBufferSize, __VA_ARGS__) \
PRIVATE_CASE_VISIT_ATTN_SOFTMAX(NAME, 8, KBufferSize, __VA_ARGS__) \
PRIVATE_CASE_VISIT_ATTN_SOFTMAX(NAME, 12, KBufferSize, __VA_ARGS__) \
PRIVATE_CASE_VISIT_ATTN_SOFTMAX(NAME, 16, KBufferSize, __VA_ARGS__) \
default: \
PD_THROW("function " #NAME " is not implemented for columns>512 "); \
} \
}()
template
<
typename
T
,
int
BufferSize
>
template
<
typename
T
>
__global__
void
AttnSoftmaxGpuKernel
(
const
int64_t
*
x_crows
,
const
int64_t
*
x_cols
,
const
T
*
x_values
,
...
...
@@ -58,7 +35,6 @@ __global__ void AttnSoftmaxGpuKernel(const int64_t* x_crows,
T
*
out_values
,
int
M
,
int
total_row_num
,
float
scale
,
int
num_heads
,
int
batch_nnz
)
{
// out = exp(x-x_max) / sum(exp(x-x_max))
...
...
@@ -72,17 +48,10 @@ __global__ void AttnSoftmaxGpuKernel(const int64_t* x_crows,
int
row_nnz
=
static_cast
<
int
>
(
x_crows
[
crow_idx
+
1
]
-
x_crows
[
crow_idx
]);
if
(
row_nnz
==
0
)
return
;
T
buffer
[
BufferSize
]
=
{
0
};
int
kIteration
=
(
row_nnz
+
WARP_SIZE
-
1
)
/
WARP_SIZE
;
T
max_val
=
-
std
::
numeric_limits
<
T
>::
infinity
();
for
(
int
i
=
0
;
i
<
kIteration
;
++
i
)
{
for
(
int
i
dx
=
threadIdx
.
x
;
idx
<
row_nnz
;
idx
+=
blockDim
.
x
)
{
bool
mask
=
false
;
int
idx
=
threadIdx
.
x
+
i
*
WARP_SIZE
;
if
(
idx
>=
row_nnz
)
break
;
int
col_idx
=
static_cast
<
int
>
(
x_cols
[
row_first
+
idx
]);
if
(
kp_mask
!=
nullptr
&&
kp_mask
[(
cur_batch
/
num_heads
)
*
M
+
col_idx
]
==
0
)
{
mask
=
true
;
...
...
@@ -92,37 +61,30 @@ __global__ void AttnSoftmaxGpuKernel(const int64_t* x_crows,
}
if
(
!
mask
)
{
buffer
[
i
]
=
x_values
[
row_first
+
idx
]
/
scale
;
if
(
buffer
[
i
]
>
max_val
)
{
max_val
=
buffer
[
i
]
;
T
val
=
x_values
[
row_first
+
idx
]
;
if
(
val
>
max_val
)
{
max_val
=
val
;
}
out_values
[
row_first
+
idx
]
=
val
;
}
else
{
// Note corner case: when all elements of the row are masked, result
// may be wrong because of exp('-inf' - '-inf'), just ignore now.
out_values
[
row_first
+
idx
]
=
-
std
::
numeric_limits
<
T
>::
infinity
();
}
}
T
row_max_val
=
phi
::
funcs
::
warpReduceMax
<
T
>
(
max_val
,
0xFFFFFFFF
);
auto
functor
=
phi
::
funcs
::
CudaExpFunctor
<
T
>
();
T
exp_sum
=
0
;
for
(
int
i
=
0
;
i
<
kIteration
;
++
i
)
{
int
idx
=
threadIdx
.
x
+
i
*
WARP_SIZE
;
if
(
idx
>=
row_nnz
)
break
;
if
(
buffer
[
i
])
{
T
exp
=
functor
(
buffer
[
i
]
-
row_max_val
);
exp_sum
+=
exp
;
buffer
[
i
]
=
exp
;
}
for
(
int
idx
=
threadIdx
.
x
;
idx
<
row_nnz
;
idx
+=
blockDim
.
x
)
{
auto
functor
=
phi
::
funcs
::
CudaExpFunctor
<
T
>
();
T
exp
=
functor
(
out_values
[
row_first
+
idx
]
-
row_max_val
);
exp_sum
+=
exp
;
out_values
[
row_first
+
idx
]
=
exp
;
}
T
row_exp_sum
=
phi
::
funcs
::
warpReduceSum
<
T
>
(
exp_sum
,
0xFFFFFFFF
);
for
(
int
i
=
0
;
i
<
kIteration
;
++
i
)
{
int
idx
=
threadIdx
.
x
+
i
*
WARP_SIZE
;
if
(
idx
>=
row_nnz
)
break
;
if
(
buffer
[
i
])
{
out_values
[
row_first
+
idx
]
=
buffer
[
i
]
/
row_exp_sum
;
}
else
{
out_values
[
row_first
+
idx
]
=
static_cast
<
T
>
(
0
);
}
for
(
int
idx
=
threadIdx
.
x
;
idx
<
row_nnz
;
idx
+=
blockDim
.
x
)
{
out_values
[
row_first
+
idx
]
=
out_values
[
row_first
+
idx
]
/
row_exp_sum
;
}
}
...
...
@@ -219,49 +181,36 @@ void FusedAttentionCsrKernel(
"shape of 'attn_mask' must be [seq_len, seq_len]"
));
}
/* Step1: SDD Matmul, reuse */
/* Step1: SDD Matmul, reuse
matmul
*/
SparseCsrTensor
sdd_result
;
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
sparse_mask
,
&
sdd_result
);
auto
sparse_blas
=
phi
::
funcs
::
sparse
::
GetSparseBlas
<
Context
,
T
>
(
dev_ctx
);
sparse_blas
.
SDDMM
(
false
,
true
,
static_cast
<
T
>
(
1
),
static_cast
<
T
>
(
1
/
std
::
sqrt
(
N
)
),
query
,
key
,
static_cast
<
T
>
(
0
),
&
sdd_result
);
/* Step2: Softmax with kp_mask/attn_mask, manualy not reuse */
EmptyLikeCsrKernel
<
T
,
Context
>
(
dev_ctx
,
sdd_result
,
softmax
);
int
buffer_size
;
if
(
M
<
128
)
{
buffer_size
=
(
M
+
32
-
1
)
/
32
;
}
else
{
buffer_size
=
((
M
+
128
-
1
)
/
128
)
*
4
;
}
dim3
grid
((
total_row_num
+
3
)
/
4
);
dim3
block
(
WARP_SIZE
,
4
);
dim3
grid
((
total_row_num
+
7
)
/
8
);
dim3
block
(
WARP_SIZE
,
8
);
int
batch_nnz
=
sdd_result
.
nnz
()
/
batch_num
;
AttnSoftmaxGpuKernel
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
sdd_result
.
non_zero_crows
().
data
<
int64_t
>
(),
sdd_result
.
non_zero_cols
().
data
<
int64_t
>
(),
sdd_result
.
non_zero_elements
().
data
<
T
>
(),
kp_mask_ptr
?
kp_mask_ptr
->
data
<
T
>
()
:
nullptr
,
attn_mask_ptr
?
attn_mask_ptr
->
data
<
T
>
()
:
nullptr
,
softmax
->
mutable_non_zero_elements
()
->
data
<
T
>
(),
M
,
total_row_num
,
q_dim
[
1
],
batch_nnz
);
VISIT_ATTN_SFOTMAX
(
buffer_size
,
"AttnSoftmaxGpuKernel"
,
[
&
]
{
AttnSoftmaxGpuKernel
<
T
,
KBufferSize
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
sdd_result
.
non_zero_crows
().
data
<
int64_t
>
(),
sdd_result
.
non_zero_cols
().
data
<
int64_t
>
(),
sdd_result
.
non_zero_elements
().
data
<
T
>
(),
kp_mask_ptr
?
kp_mask_ptr
->
data
<
T
>
()
:
nullptr
,
attn_mask_ptr
?
attn_mask_ptr
->
data
<
T
>
()
:
nullptr
,
softmax
->
mutable_non_zero_elements
()
->
data
<
T
>
(),
M
,
total_row_num
,
std
::
sqrt
(
N
),
q_dim
[
1
],
batch_nnz
);
});
/* Step3: DSD Matmul, reuse */
softmax
->
set_dims
(
phi
::
make_ddim
({
q_dim
[
0
],
q_dim
[
1
],
q_dim
[
2
],
q_dim
[
2
]}));
MatmulCsrDenseKernel
<
T
,
Context
>
(
dev_ctx
,
*
softmax
,
value
,
out
);
#else
...
...
python/paddle/fluid/tests/unittests/test_sparse_fused_attention_op.py
浏览文件 @
1149a378
...
...
@@ -37,7 +37,7 @@ def get_cuda_version():
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
()
or
get_cuda_version
()
<
11070
,
"core is not compiled with CUDA and cuda version need larger than or equal to 11.
3
"
"core is not compiled with CUDA and cuda version need larger than or equal to 11.
7
"
)
class
TestSparseAttentionAPI1
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录